

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION FOR ANTI-CANCER DRUGS USING HPLC: A REVIEW

K. Pravalika^{1*}, B. Gayatri¹, M. Srikanth Reddy¹, Arunabha Mallik²

¹Department of Pharmaceutical Analysis, Marri Laxman Reddy Institute of Pharmacy, Dundigal, Hyderabad, Telangana – 500046, India.

²Department of Pharmacology, Marri Laxman Reddy Institute of Pharmacy, Dundigal, Hyderabad, Telangana – 500046, India.

*Corresponding Author: K. Pravalika

Department of Pharmaceutical Analysis, Marri Laxman Reddy Institute of Pharmacy, Dundigal, Hyderabad, Telangana – 500046, India. DOI: <https://doi.org/10.5281/zenodo.18438405>

How to cite this Article: K. Pravalika^{1*}, B. Gayatri¹, M. Srikanth Reddy¹, Arunabha Mallik². (2026). Analytical Method Development and Validation For Anti-Cancer Drugs Using Hplc: A Review. European Journal of Biomedical and Pharmaceutical Sciences, 13(2), 19–23.

This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 05/01/2025

Article Revised on 25/01/2026

Article Published on 01/02/2026

ABSTRACT

High-performance liquid chromatography (HPLC) plays an indispensable role in the analytical characterization of anti-cancer drugs due to their structural complexity, narrow therapeutic index, and stringent regulatory requirements. Anti-cancer agents—including alkylating agents, antimetabolites, topoisomerase inhibitors, taxanes, tyrosine kinase inhibitors (TKIs), monoclonal antibody fragments, and novel targeted therapies—require robust, selective, and stability-indicating analytical methods for quality control and therapeutic monitoring. This review summarizes key strategies for method development and validation of anti-cancer drugs using HPLC. Detailed emphasis is placed on chromatographic principles, physicochemical considerations of drugs, column and mobile phase selection, assay development, impurity profiling, bioanalytical sample preparation, and forced degradation studies. Furthermore, this review discusses validation parameters according to ICH, challenges in analyzing cytotoxic compounds, and modern advancements including UHPLC, LC-MS-hyphenation, green analytical chemistry, and Analytical Quality by Design (AQbD). Future perspectives highlight the need for eco-friendly methods, miniaturized formats, and highly selective detection approaches for new-generation targeted anti-cancer agents.

KEYWORDS: HPLC, Anti-cancer drugs, Method development, Validation, Stability-indicating methods, AQbD, Impurity profiling, Oncology analytics.

1. INTRODUCTION

Cancer remains one of the foremost global health challenges, leading to continuous research and development of chemotherapeutic, targeted, and immunotherapy agents. The structural diversity and potency of anti-cancer drugs demand sophisticated analytical procedures to ensure safety, efficacy, and quality.^[1] Among various analytical tools, HPLC has emerged as the most widely used technique in pharmaceutical development, QC testing, bioanalysis, and stability studies.

Anti-cancer drugs often present analytical challenges due to

* Low therapeutic concentration

* Complex degradation pathways

* Sensitivity to light, heat, or oxidative stress

* Coexistence with potentially genotoxic impurities

* Similar chromatographic behaviors among structural analogues

This review highlights the systematic approach for developing and validating robust HPLC methods for anti-cancer drugs.

2. Classification of Anti-Cancer Drugs and Chromatographic Challenges

Anti-cancer drugs belong to several pharmacological classes, each displaying unique chromatographic behavior.

2.1 Alkylating Agents (e.g., cyclophosphamide, Ifosfamide)

- * Highly hydrophilic; sometimes weak UV absorbance
- * Require derivatization or MS detection.

2.2 Antimetabolites** (e.g., methotrexate, 5-fluorouracil)

- * Highly polar; may require ion-pairing or HILIC columns
- * Sensitive to pH

2.3 Topoisomerase Inhibitors (e.g., doxorubicin, irinotecan, etoposide)

- * Strong chromophores; easily detected by UV
- * Some are photosensitive (e.g., doxorubicin)

2.4 Taxanes (e.g., paclitaxel, docetaxel)

- * Highly lipophilic; need high organic content
- * Possibly unstable in aqueous media

2.5 Tyrosine Kinase Inhibitors (TKIs) (e.g., Imatinib, Erlotinib, Sunitinib)

- * Moderate–high lipophilicity
- * Good UV absorbance
- * Multiple degradation paths requiring stability-indicating methods

2.6 Platinum Compounds (e.g., cisplatin, carboplatin)

- * Limited UV absorption; frequently require derivatization or LC-MS detection

2.7 Biological and Targeted Therapies

- * Large molecules (e.g., peptides) requiring specialized LC/MS or size-exclusion HPLC.

These characteristics influence mobile phase composition, stationary phase selection, and detection mode.^[2]

3. Method Development Strategy for Anti-Cancer Drugs

3.1 Understanding Physicochemical Properties

Collect data on:

- ✚ pKa
- ✚ logP/logD
- ✚ Solubility
- ✚ UV spectrum
- ✚ Chemical stability

This guides the selection of pH, buffer, organic modifiers, and detection wavelength.

3.2 Column Selection

Most anti-cancer drugs are analyzed using.

• Reversed-phase C18 columns

- * First choice for structurally diverse oncology APIs
- Suitable for TKIs, taxanes, antimetabolites, and anthracyclines

• Phenyl Columns

- Provide π – π interactions; useful for aromatic TKIs and anthracyclines.^[3]

• HILIC Columns

- Essential for highly polar antimetabolites such as 5-FU and methotrexate

• C8 Columns

- Useful for reducing retention of very hydrophobic drugs

3.3 Mobile Phase Selection

Buffers

- * Phosphate buffer (UV detection)
- * Ammonium formate/acetate buffers (MS detection)

Organic modifiers

- * Acetonitrile preferred (lower viscosity, better peak shape)
- * Methanol for selectivity changes

pH

- * Maintain analyte in neutral or favorable ionization state
- * pH 2.5–4.5 common for many anti-cancer APIs.^[4]

Additives

- * Triethylamine for peak tailing (basic drugs)
- * Formic acid or acetic acid for MS systems

3.4 Detection Techniques

UV / PDA Detection

- ✓ Useful for anthracyclines, TKIs, etoposide, taxanes

Fluorescence Detection

- ✓ Highly sensitive for doxorubicin, Daunorubicin

Mass Spectrometry (LC-MS/MS)

- ✓ Essential for impurity profiling and bioanalysis
- ✓ Necessary for low-UV drugs such as cisplatin

3.5 Sample Preparation

For bulk drugs/Formulations

- * Direct dissolution
- * Sonication
- * Filtration

For Bioanalysis (Plasma/Serum)

- * Protein precipitation
- * Solid-phase extraction (SPE)
- * Liquid–liquid extraction (LLE)

For Taxanes

- * Special handling due to sensitivity to degradation.^[5]

3.6 Gradient vs Isocratic Mode

Gradient: recommended for multi-component mixtures, impurities, and lipophilic drugs Isocratic: useful for QC assay of single analytes with simple matrices.

4. Stability-Indicating Method Development

Anti-cancer drugs undergo significant degradation under environmental stress.

A stability-indicating method (SIM) is mandatory.

4.1 Forced Degradation Studies (ICH Q1A (R2))

Conduct degradation under

- * Acid/base hydrolysis
- * Oxidative conditions
- * Thermal stress
- * Photolytic stress.^[6]

4.2 Requirements of a Good SIM

- * All degradants well separated from the main peak
- * Peak purity index > 0.999 (PDA)
- * Mass balance close to 100%

4.3 Examples

- * Doxorubicin degrades under light; protect samples
- * Erlotinib shows oxidative degradation
- * Paclitaxel is hydrolytically unstable

5. Analytical Quality by Design (AQbD) for Anti-Cancer Drugs

AQbD ensures robust methods through scientific and statistical tools.

Key Elements^[7,10]

- * Analytical Target Profile (ATP)
- * Critical Method Attributes (CMAs)
- * Critical Method Parameters (CMPs)
- * Risk Assessment tools (Ishikawa, FMEA)
- * Design of Experiments (DoE)

7. Representative HPLC Conditions for Anti-Cancer Drugs.^[14,17]

Drug	Column	Mobile Phase	Detection	Notes
Doxorubicin	C18	ACN/Water + 0.1% FA (gradient)	Fluorescence/UV	Light-sensitive
Paclitaxel	C18	ACN: Water (60:40)	UV 227 nm	Highly lipophilic
Methotrexate	HILIC or C18 (IP-RP)	Phosphate buffer/ACN	UV 302 nm	Very polar
Imatinib	C18	Ammonium formate buffer + ACN	UV 260 nm	Stable under acidic pH
Cisplatin	C18	Derivatization often required	UV or MS	Weak chromophore
Erlotinib	Phenyl/C18	ACN/Water + 0.1% FA	UV 331 nm	Oxidative degradation possible

8. DISCUSSION

The literature demonstrates a strong preference for RP-HPLC with C18 columns due to their versatility and compatibility with a wide range of chemotherapeutic agents. Gradient elution is commonly employed for multi-component or impurity profiling studies, while isocratic methods are adequate for routine assays. The wide structural variability of anti-cancer drugs necessitates specific optimizations, especially concerning retention behavior, solubility, and stability.^[18]

The application of Advanced Column Technologies (core-shell, monolithic, UPLC) has significantly

* Method Operable Design Region (MODR)

AQbD minimizes risk of method failure and simplifies lifecycle management.^[11]

6. Validation of HPLC Methods (ICH Q2 (R1))

6.1 Specificity

- * Demonstrate clear separation from degradants, excipients, and impurities
- * Use peak purity analysis

6.2 Linearity

- * Minimum of 5 concentration levels
- * $r^2 \geq 0.999$ for assay methods

6.3 Accuracy

- * Perform recovery studies at 50%, 100%, 150% levels.^[12]

6.4 Precision

- * Repeatability (%RSD $< 2\%$)
- * Intermediate precision (different days, analysts, instruments)

6.5 LOD/LOQ

- * LOD = $3.3 \sigma/S$
- * LOQ = $10 \sigma/S$

6.6 Robustness

Small changes in flow, temperature, mobile phase, Ph.^[13]

6.7 Solution Stability

- * Evaluate standard and sample stability under various conditions.

^[14,17]

improved efficiency, analysis time, and solvent consumption. AQbD-based approaches have become increasingly prevalent in recent years, offering robustness and regulatory compliance.

One of the greatest analytical challenges is handling drug instability, especially with taxanes, anthracyclines, and antimetabolites. Forced degradation studies are crucial for developing stability-indicating methods. Analytical validation across the literature largely complies with ICH guidelines,^[19,21] although some older studies lack robustness or ruggedness evaluations.

8. Challenges in HPLC Analysis of Anti-Cancer Drugs

- * Cytotoxicity: special handling and disposal required
- * Light/thermal sensitivity (anthracyclines, taxanes)
- * Structural similarity of analogues
- * Matrix interference in biological samples
- * Chromatographic instability.^[22] (e.g., platinum drugs)

9. Advances in HPLC for Anti-Cancer Drugs

9.1 UHPLC (Ultra-High Performance LC)

- * Faster analysis
- * Reduced solvent usage
- * Higher resolution.^[23]

9.2 LC-MS/MS Hyphenation

- * Identification of degradants and impurities
- * High sensitivity for trace-level analysis

9.3 Green Analytical Chemistry

- * Eco-scale scoring
- * Reduced solvent consumption
- * Ethanol-based green mobile phases.^[24]

9.4 Monolithic Columns and Core-Shell Technology

- * Faster separations
- * Reduced back-pressure

10. Future Trends in Anti-Cancer Drug Analysis

- * Increased use of HRMS (Orbitrap/TOF) for degradant identification
- * Fully automated sample preparation systems
- * Integrated AqBd lifecycle management
- * Emerging micro-HPLC and nano-HPLC techniques
- * Improved green chemistry integration for sustainable labs.^[25]

11. CONCLUSION

HPLC remains the most powerful and versatile analytical tool for anti-cancer drugs, ensuring quality, safety, and efficacy of these life-saving therapeutic agents. Effective method development requires understanding physicochemical properties, selecting appropriate columns and mobile phases, optimizing detection, and designing stability-indicating procedures. Validation following ICH ensures method suitability for routine QC, bioanalysis, and regulatory submissions. With advancements such as AqBd, UHPLC, and LC-MS/MS, analytical practices for anti-cancer drugs continue to evolve toward greater precision, speed, and sustainability.

HPLC remains indispensable for the analysis of anti-cancer drugs due to its efficiency, reproducibility, and adaptability. Continued advancements in chromatographic science, including column technology, AqBd approaches, and greener practices, are expected to strengthen the reliability and sustainability of analytical methods. The systematic review presented here highlights classical and modern strategies for method development and validation, providing a comprehensive

reference for future analytical research and regulatory submissions.

12. REFERENCES

1. International Conference on Harmonisation. ICH Q2 (R1)-Validation of Analytical Procedures: Text and Methodology. 2005.
2. International Conference on Harmonisation. ICH Q1A (R2)-Stability Testing of New Drug Substances and Products. 2003.
3. U.S. Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation. 2018 (latest rev.). Silver Spring (MD): FDA.
4. European Medicines Agency. ICH Guideline Q2 (R1) - Validation of Analytical Procedures (EMA document) 2006.
5. Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices, *Trends Anal Chem.** 2013; 50: 78–84.
6. Snyder LR, Kirkland JJ, Dolan JW. *Introduction to Modern Liquid Chromatography*. 3rd ed. Hoboken (NJ): Wiley; 2010.
7. Swartz ME, Krull IS, editors. *Analytical Method Development and Validation*. Boca Raton (FL): CRC Press; 2012.
8. Niessen WM. *Liquid Chromatography–Mass Spectrometry*, 3rd ed. Boca Raton (FL): CRC Press; 2017.
9. Mathias PI, Hartsock DT, Huestis MA. A review of high performance liquid chromatographic–mass spectrometric methods for anticancer drugs in human biological matrices. *J Chromatogr B*. 2017; 1032: 99–111.
10. Sabourian R, et al. HPLC methods for quantifying anticancer drugs in human samples: a systematic review, *Analytica Chimica Acta*. 2020.
11. Kehl N, et al. An easily expandable multi-drug LC-MS assay for the quantification of oral antitumor agents in plasma, *J Chromatogr B*. 2021.
12. Lu S, et al. Development of a UPLC–MS/MS method for simultaneous therapeutic-drug-monitoring of chemotherapy agents, *Front Pharmacol*. 2023; 14: 1136735.
13. Hirasawa T, et al. High-throughput LC/ESI-MS/MS method for simultaneous quantification of 20 oral molecular-targeted anticancer drugs, *J Chromatogr B*. 2023.
14. Kumar S, et al. Editorial: Chromatographic analytical methods for quantifying anticancer medicines in biological materials. *Pharmaceutics*. 2023; (PMC10644766).
15. Xuan DT, et al. Recent applications of Analytical Quality-by-Design (AqBd) for chromatographic method development (2019–2024), *J Pharm Biomed Anal*. 2024.
16. Roge M, et al. Quality by Design in analytical method development: practical approaches and case studies, *J Chromatogr A*. 2019.

17. Peters FT, Drummer OH, and Musshoff F. Validation of new analytical methods— forensic and pharmaceutical contexts, *Forensic Sci Int*, 2007; 165(2–3): 216–224.
18. Dong MW. HPLC Method Development for Pharmaceuticals. In: *Modern HPLC for Pharmaceutical Analysis*. 1st ed. Elsevier, 2006; 45–122.
19. De la Peña AM, et al. UHPLC and LC–MS/MS methods for glucose-lowering / anticancer drugs: trends and challenges, *J Chromatogr A*. 2020.
20. Gaudiano MC, et al. Monolithic and core–shell columns: benefits for fast analysis of complex drug mixtures, *Anal Chim Acta*. 2016.
21. Pérez-Ruiz T, et al. Analytical methods for the determination of antineoplastic drugs- a critical review, *TrAC Trends Anal Chem.** 2018.
22. European Pharmacopoeia Commission. European Pharmacopoeia (Ph. Eur.) - monographs relevant to anticancer APIs. Strasbourg: Council of Europe; latest edition.
23. United States Pharmacopeial Convention. USP–NF Monographs -Selected anticancer drug monographs (e.g., paclitaxel, doxorubicin, methotrexate). Rockville (MD): USP; latest edition.
24. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point-of-care diagnostics: status and future, *Anal Chem*. 2012; 84(2): 487–515.
25. Gałuszka A, Konieczka P, Migaszewski Z. Greening of chromatographic laboratories: metrics, calculators, and case studies (AGREE/GAPI approaches), *J Chromatogr A*. 2021.