

CURATIVE STUDY ON THE ACTIVITY OF METHANOLIC EXTRACT OF ACALYPHA WILKESIANA (COPPER LEAF) IN ASPIRIN INDUCED GASTRIC ULCERATION IN SPRAGUE DAWLEY RATS.

Wali Catherine Chukwumuanya^{1*}, Okewumi Tolunigba Abisola², Aligwekwe Athanasius Ugochukwu¹, Aguwa Ugochukwu¹, Ugochukwu Arinze Kingsley¹ and Asuquo Akaninyene Efa¹

¹Department of Anatomy, Faculty of Basic Medical Sciences, Madonna University Elele.

²Department of Physiology, Faculty of Basic Medical Sciences, Madonna University Elele.

*Corresponding Author: Wali Catherine Chukwumuanya

Department of Anatomy, Faculty of Basic Medical Sciences, Madonna University Elele.

Article Received on 19/05/2017

Article Revised on 09/06/2017

Article Accepted on 29/06/2017

ABSTRACT

This study was undertaken to evaluate the activity of methanolic extract of *Acalypha Wilkesiana* in aspirin induced gastric ulceration in Sprague dawley rats. Thirty adult Sprague dawley rats weighing between 160-240g were divided into six groups consisting of five rats each. Gastric ulceration was induced with aspirin (200mg/kg). Groups I- received no treatment, while groups II-VI received various treatments consisting of aspirin only (200 mg/kg), aspirin (200mg/kg with *Acalypha wilkesiana* (100 mg/kg 200mg/kg and 300mg/kg) and *Acalypha wilkesiana* (300mg/kg). At the end of the experiment (day 7) rats were sacrificed and their stomachs were harvested and fixed in 10% formalin solution. Ulcer index, size, number, gastric acid secretion and the histological changes were observed. The reduction in ulcer index was stepwise as the dose of the extract increased. Administration of *Acalypha wilkesiana* had no significant effect on gastric acid and gastric volume. Post treatment with *A. wilkesiana* reduced the severity of aspirin induced gastric ulcer. Cimetidine (standard drug 20mg/kg) was used to treat ulcer also and compared with the extract. Methanolic extract of *A. wilkesiana* at a dose of 200mg/kg and 300mg/kg reduced ulcer incidence when compared to the control group. This work suggests that the *Acalypha wilkesiana* has antiulcer potentials due to the presence of tannins and saponins.

KEYWORDS: Ulcer, *Acalypha wilkesiana*, aspirin, stomach.

INTRODUCTION

An ulcer is basically an inflamed break in the skin or mucus membrane lining the alimentary tract.^[1] Ulceration occurs when there is a disturbance of the normal equilibrium caused by either enhanced aggression or diminished mucosal resistance.^[2] Peptic ulcer disease is one of the most common gastrointestinal disorders, which causes a high rate of morbidity particularly in the population of non-industrialized countries.^[3] Peptic ulcers are a broad term that includes ulcers of digestive tract in the stomach or the duodenum. The formation of peptic ulcers depends on the presence of acid and peptic activity in gastric juice plus a breakdown in mucosal defenses.^[4] The gastric mucosa is continuously exposed to potentially injurious agents such as acids, pepsin, bile acids, and bacterial products (*Helicobacter pylori*) and drugs.^[5]

Despite the decline in the incidence of peptic ulcer disease in the recent years, the economic burden, morbidity and mortality due to the disease are massive.^[6]

The efficacy of the agents used to treat peptic ulcer are

marred by their numerous adverse effects which include gastrointestinal dysfunction, mental state changes and an increased risk of respiratory/enteric infections.^[7] With all these aforementioned effects, it is therefore necessary to find a safer and affordable alternative for the treatment of peptic ulcer.

Medicinal plants are believed to be important sources of new chemical substances with potential therapeutic effects.^[8] Natural medicines derived from plant extracts are being increasingly utilized to treat a wide variety of clinical diseases, though relatively little knowledge about their mode of action is available. There have been reports that a vast majority of the population particularly those living in villages depend largely on herbal medicines.^[9] Before the availability of synthetic drugs man was completely dependent on natural medicinal plants for curing diseases.^[10] These plants, which abound in our environment, enjoy wide acceptability by the population and serve as cheaper alternatives to orthodox medicine.^{[11];[12]}

intergroup differences, each parameter was analyzed separately and one-way analysis of variance (ANOVA) was carried out. $p<0.05$ was considered significant.

RESULT AND DISCUSSION

qualitative phytochemical analysis of *Acalypha wilkesiana*

The preliminary qualitative phytochemical screening of the leaf of *A. wilkesiana* showed the presence of

Table 1: Result of the Preliminary Qualitative phytochemical analysis of *Acalypha wilkesiana*.

ACTIVE INGREDIENTS	METHANOLIC EXTRACT
Tannins	+++
Saponins	++
Resins	-
Alkaloids	+
Glycosides	+
Flavonoids	+
Steroids and Terpenoids	+
Protein	-
Carbohydrates	+

+ = slightly Present, ++ = moderately Present, +++ = highly present, - = Not detected.

The result of the phytochemical analysis obtained from the methanolic leave extract of *A. wilkesiana* indicated a high level of tannins and saponins.

quantitative phytochemical analysis of *Acalypha wilkesiana*

The result of the preliminary quantitative analysis for Flavonoids, flavonol, phenol and tannins is shown in

Table 2: Result of the Preliminary Quantitative Phytochemical Screening of *Acalypha wilkesiana*

Active ingredients/metabolite	Methanol extract
Flavonoids ++	0.0506±0.035
Flavonol ++	1.575±0.044
Phenol *	0.331±0.024
Tannins *	0.066±0.024

Data represented as Mean+- SEM of triplicate analyses

*Expressed as mg gallic acid equivalents (GAE)/ mg dry weight plant extract

++Expressed as mg quacitin equivalents (QE)/ g dry weight plant extract

antiulcer studies

The effects of *Acalypha wilkesiana* on Aspirin induced mucosal ulceration are in Table 4. The result shows that *Acalypha wilkesiana* significantly reduced the ulcer index from 2.32 ± 0.26 to 0.60 ± 0.15 . The reduction in

important phytochemical constituents as summarized in Table 1.

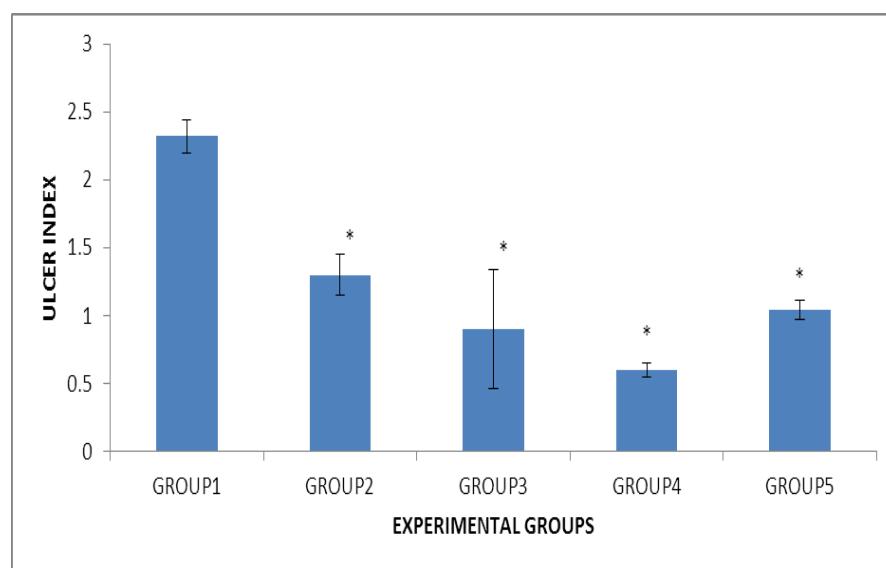

Table 2. The results showed that the methanolic extract of *A. wilkesiana* had high level of tannins and phenol content (0.066 ± 0.024 and 0.331 ± 0.024 mg gallic acid equivalents (GAE)/ mg dry weight plant extract) respectively.

Table 3. Effect of methanolic extracts of *A. wilkesiana* against Aspirin induced gastric ulcer in rats.

TREATMENT	DOSE (mg/kg)	ULCER INDEX	% INHIBITION (%)	pH	GASTRIC VOLUME GV (ml)
Control	200	2.32 ± 0.26	-	4.53 ± 0.36	5.54 ± 0.07
Low dose	100	$1.30\pm0.15^*$	5	4.57 ± 0.16	5.42 ± 0.27
Medium dose	200	$0.90\pm0.44^*$	27	4.63 ± 0.09	5.46 ± 0.07
High dose	300	$0.60\pm0.15^*$	59.57	4.62 ± 0.12	5.44 ± 0.17
Standard Cimetidine	20	$1.04\pm0.68^*$	25	4.63 ± 0.21	5.54 ± 0.13

Results are mean \pm S.E.M. ($n = 5$). Statistical comparison was performed by using ANOVA coupled with student 't' test.

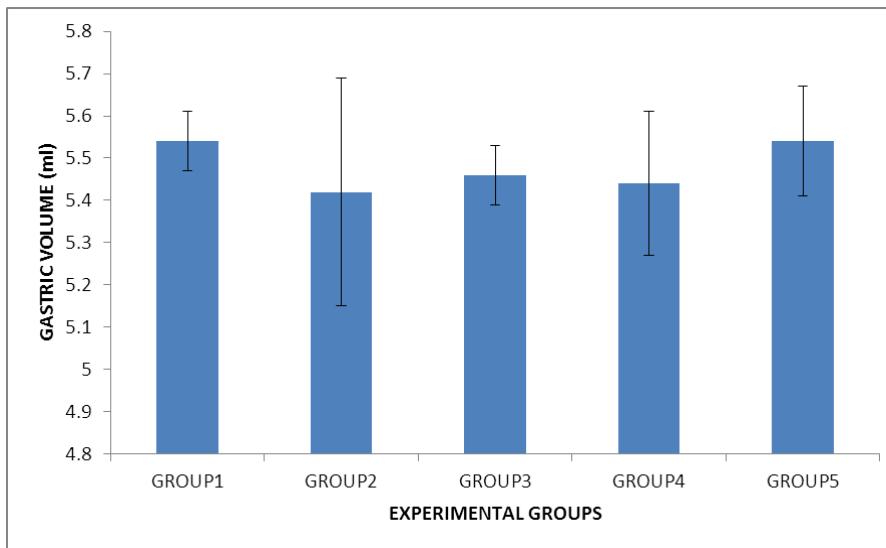

* $P<0.05$ were consider statistically significant when compared to control group.

Figure 1: effect of methanolic extracts of *a. wilkesiana* against aspirin induced gastric ulcer in rats

Figure 2: effect of extract, aspirin and cimetidine on ph of wistar rats

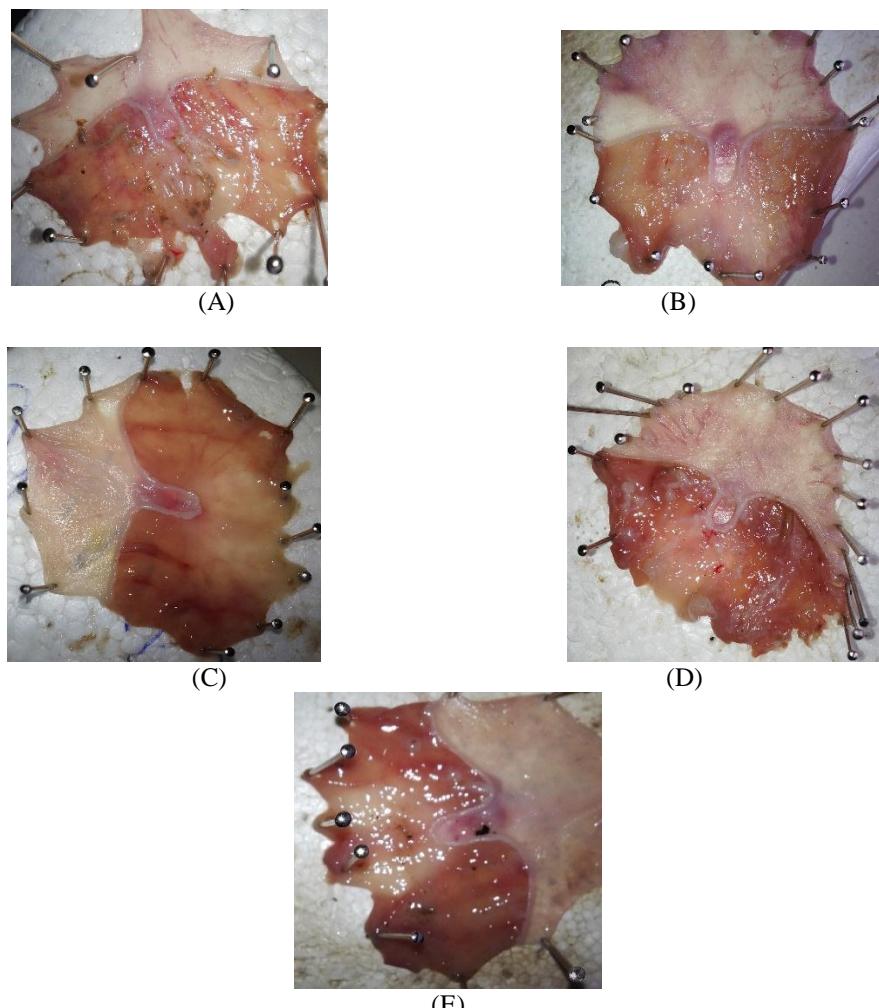


Figure 3: effect of extract, aspirin and cimetidine on gastric volume (ml) of wistar rats

macroscopical view of aspirin-induced ulcer

Figure 4 shows the representative stomachs of rats after aspirin induction of gastric ulcer. Administration of aspirin (200mg/kg) produced superficial or deep

erosions, bleeding, and antral ulcers. However, post treatment with cimetidine and *A. wilkesiana* reduced the severity of aspirin induced gastric ulcer.

Figure 4. anti-ulcer activity of methanolic extract obtained from *A. wilkesiana* leaves. a: stomach of an ulcer control rat showing larger ulcer area; b: stomach of a rat treated with cimetidine; c: stomach of rats treated with extract 100mg/kg; d: stomach of rat treated with 200 mg/kg; e: stomach of rat treated with extract 300mg/kg.

The etiology of peptic ulcer is unknown in most cases, yet it is generally accepted that it results from an imbalance between aggressive factors and the maintenance of mucosal integrity through the endogenous defence mechanisms. To regain the balance, different therapeutic agents including plant extracts may be used.^[27] *Acalypha wilkesiana* is one such herbal drug used in this present study to evaluate its anti-ulcer property. In most of the cases, non-steroidal anti-inflammatory drugs like indomethacin and aspirin are known to induce numerous punctiform and filiform gastric ulcers during the course of anti-inflammatory therapy and hence, aspirin induced model was used in the present study.^[28]

Aspirin is a nonsteroidal anti-inflammatory drug which induces ulcers by inhibiting prostaglandin synthesis in

the stomach by blocking the cyclooxygenase enzymes.^[29] Nonsteroidal anti-inflammatory drugs also cause an inflammatory response increasing the reactive oxygen species in the gastric mucosa.^[30]

The result of the phytochemical analysis obtained from the methanolic leave extract of *A. wilkesiana* indicated the presence of tannins, saponins, flavonoids, Alkaloids, Glycosides, Steroids, Terpenoids and Carbohydrates. In this present study the methanolic extract of *Acalypha wilkesiana* was investigated for its anti-ulcer effect on aspirin induced ulcers in wistar rats. The result shows that *Acalypha wilkesiana* significantly reduced the ulcer index from 2.32 ± 0.26 to 0.60 ± 0.15 . The reduction in ulcer index was stepwise as the dosage of the extract increased. A reduction in the ulcer index signifies the anti-ulcer property of the methanolic extract of *Acalypha*

wilkesiana. This can be ascribed to the presence of tannins in the methanolic extract of *Acalypha wilkesiana*. Tannins react with the proteins of the tissue layers. They precipitate micro proteins at the site of the peptic ulcer, forming a protective pellicle that prevents absorption of toxic substances, and promote resistance to the action of proteolytic enzymes.^[31] Saponins also have a beneficial effect on aspirin induced ulcers, due to the fact that plant extracts containing saponins have been patented for the prevention and/treatment of a variety of conditions including gastric ulcer and duodenal ulcer.^[32] Flavonoids are among the cytoprotective materials for which antiulcerogenic efficacy has been extensively confirmed.^[33] Therefore the anti-ulcer activity of *Acalypha wilkesiana* can also be attributed to the flavonoid content. Administration of *Acalypha wilkesiana* had no significant reduction in the amount of gastric acid and the gastric volume. The results of the present study suggest that the methanolic extract of *Acalypha wilkesiana* leaves may be valuable in the treatment of peptic ulcer. Further studies to identify the active moieties and elucidation of the mechanism of action are recommended.

CONCLUSION

Methanolic extract of *A. wilkesiana* at dose 200mg/kg and 300mg/kg reduced ulcer incidence when compared to the control group as evident by decrease in ulcer index in the above model. There was no decrease or significant change in gastric volume and gastric pH. The extract was found to possess antiulcer activity due to presence of tannins and saponins in it and thus justifies the local uses of the plant for the treatment of ulcers in humans.

ACKNOWLEDGEMENT

The research team would like to thank the laboratory crew of the biochemistry laboratory of Madonna University, Elele for their assistance in this work.

REFERENCES

- Ukwani AN, Ihebunna O, Samuel RM, Peni IJ. Acute oral toxicity and antiulcer activity activity of *Pilosigma thonningii* leaf fraction in albino rats. *Bull. Env. Pharmacol. Life Sci*, 2012; 2(1): 4-45.
- Sravani P, Jayasri PS, Ershad KP, Nishad KP. Review on natural antiulcer agents. *Int. J. Pharm. Ind. Res*, 2011; 1(1): 6-70.
- Falk GW. Disease of the stomach and duodenum. In: Andreoli The editor. *Cecil essentials of medicine*. 5th ed., Edinburgh; W.B. Saunders Company: 2001; 334-343.
- Gadekar R, Singour PK, Chaurasiya PK, Pawar RS and Patil UK. A potential of some medicinal plants as antiulcer agents. *Pharmacogn Rev*, 2010; Jul-Dec 4(8): 136-146.
- Grossman M. Peptic ulcer: A guide for the practicing physician. Am J Pharm Toxicol. Vol. 4, Chicago; Year Book Medical Publishers: 2009; 79: (89-93).
- Yuan Y, Padol IT, Hunt RH: Peptic ulcer disease today. *Nat Clin Pract Gastroenterol Hepatol*, 2006; 3: 80-89.
- McQuaid KR: Drugs used in the treatment of gastrointestinal diseases. In: Katzung BG, Trevor AJ (eds). *Basic and Clinical Pharmacology*. New York; McGraw-Hill: 2015; 1536-1579.
- Chandra M. Antimicrobial Activity of medicinal plants against human pathogenic bacteria. *International Journal of Biotechnology and Bioengineering Research*, 2013; 4: 653-658.
- Gupta SS. Prospect and perspectives of natural plants products in medicine. *Indian J. Pharm*, 1994; 26: 1-12.
- Singh AS, Malhotra S, Subban R. Anti-inflammatory and analgesic agents from Indian medicinal plants. *Int. J. Integrative Biol*, 2008; 3(1): 57.
- Sofowora, EA (1993). *Medicinal plants and Traditional Medicine in Africa*. 2nd ed., Spectrum Books Ltd; Ibadan, Nigeria: 2001; 150.
- Akah PA, Nwabie AI. Evaluation of Nigerian traditional medicinal plants used for rheumatic inflammatory disorders. *J. Ethnopharm*, 1994; 42: 179-182.
- Madziga HA, Sanni S, Sandabe UK. Elemental analysis of *Acalypha wilkesiana* leaf. *Journal of American Science*, 2010; 6(11): 510-514.
- Alli Smith YR, Adanlawo IG, Aluko BT And Omoluabi IO. Effect of aqueous extract of *Acalypha Wilkesiana* (Copper leaf) on some enzyme activities and metabolites in the liver and kidney of albino rats. *J. Nat. Prod. Plant Resour*, 2011; 1(3): 70-74.
- Adesina SK, Idowu O, Ogundaini AO, Oladimeji H, Olugbade TA, Onawunmi GO and Pais M.. Antimicrobial constituents of the leaves of *Acalypha wilkesiana* and *Acalypha hispida*. *Phytother. Res*, 2000; 14: 371-374.
- Ogundaini AO. From Greens into Medicine: Taking a lead From Nature. An Inaugural Lecture at Oduduwa Hall, Obafemi Awolowo University, Ile – Ife, Nigeria: 2005; 12-15.
- Oladunmoye, M.K. "Comparative Evaluation of Antimicrobial Activities and Phytochemical Screening of Two Varieties of *Acalypha wilkesiana*". *Trends Appl Sci Res*, 2006; 1: 538-541.
- Trease GE, Evans WC. *Pharmacology* 11th Edn., Bailliere Tindall Ltd; London: 1989; 60-75.
- Harborne JB. *Photochemical Methods: A Guide to Modern Techniques of Plant Analysis*. Chapman A. & Hall: 1973, London p. 279.
- Zhongzhi W, Junichi H, Xinhui W, Akiko M, Takahiro T, Norimasa M and Tatsuo W. Protective Effects of Ginger against Aspirin-Induced Gastric Ulcers in Rats. *Yonago Acta medica*, 2011; 54: 11-19.
- Singh S, Bani S, Singh GB, Gupta BD, Banerjee SK, Singh B. Antiinflammatory activity of Lupeol. *Fitoterapia* 1997; 68: 9 – 16.

22. Tan PV, Nditafon GN, Yewah MP, Dimo T, and Ayafor JF. *Eremomastax speciosa*: effects of leaf aqueous extract on ulcer formation and gastric secretion in rats. *J. Ethnopharmacol.*, 1996; 54: 139-142.
23. Adami R, Maraggi UE, Turba C. Pharmacological research on gefernate, a new synthetic isoprenoid with anti ulcer activity. *Br J. Pharmacol.*, 1997; 120: 581-586.
24. Dashputre NL, Naikwade NS. Evaluation of Anti-Ulcer Activity of Methanolic Extract of *Abutilon indicum* Linn Leaves in Experimental Rats. *International Journal of Pharmaceutical Sciences and Drug Research*, 2011; 3(2): 97-100.
25. Nafeeza MI, Fauzee AM, Kamsiah J, Gapor MT. Comparative effects of a tocotrienol-rich fraction and tocopherol in aspirin-induced gastric lesions in rats. *Asia Pac J Clin Nutr*, 2002; 11: 309-13.
26. Shay H, Sun DC and Gruenstein M. A quantitative method of measuring spontaneous gastric secretion in the rat. *Gastroenterology*, 1954; 26: 906.
27. Raju D, Ilango K, Chitra V, Ashish K. Evaluation of Anti-ulcer activity of methanolic extract of *Terminalia chebula* fruits in experimental rats. *J. Pharm. Sci & Res*, 2009; 3: 101-107.
28. Sai KB, Radha KL and Gowrinath RM. Anti-ulcer effect of *Aloe vera* in non-steroidal anti-inflammatory drug induced peptic ulcers in rats. *African Journal of Pharmacy and Pharmacology*, 2011; 5(16): 1867-1871.
29. Wallace JL, Sharkey KA. Pharmacotherapy of gastric acidity, peptic ulcers and gastroesophageal reflux disease. In: Brunton LL (ed). *Goodman and Gilman's The Pharmacological Basis of Therapeutics*. New York; McGraw-Hill: 2012; 1307-1351.
30. Whittle BJ: Gastrointestinal effect of nonsteroidal anti-inflammatory drugs. *Fundam Clin Pharmacol*, 2003; 17: 301-313.
31. Vasconcelos PC, Kushima H, Andreo M, Hiruma-Lima C.A, Vilegas W, Takahira RK, Pellizon CH. Studies of gastric mucosa regeneration and safety promoted by *Mouriri pusa* treatment in acetic acid ulcer model. *J. Ethnopharmacol*, 2008; 115: 293-301.
32. Kim DH, Bae, EA, Han MJ, Choo, MK, Park EK, and Park JH. Novel use of the extract of processed panax genus plant and saponin compound isolated therefrom. US Patent Application 2003/0190377 A1.
33. Saket SS, Juvekar RA. Antiulcer Activity of Methanol Extract of *Erythrina indica* leaves in Experimental Animals. *Pharmacognosy Research*, 2009; 1: 396-401.