

TREATMENT AND CLINICAL OUTCOME OF PATIENTS WITH CORONAVIRUS DISEASE
1*Razia Ansari, 1R.Shivani and 2Dr. Nikhil Kumar Vanajari
¹Pharm D, Department of Clinical Pharmacy, Vaageswari College of Pharmacy, Karimnagar, Telangana.

²Pharm D, Clinical Assistant Professor, Department of Clinical Pharmacy, Vaageswari College of Pharmacy, Karimnagar, Telangana.

***Corresponding Author: Razia Ansari**

Pharm D, Department of Clinical Pharmacy, Vaageswari College of Pharmacy, Karimnagar, Telangana.

Article Received on 29/06/2022

Article Revised on 19/07/2022

Article Accepted on 09/08/2022

ABSTRACT

The COVID-19 outbreak has brought our lives to a sudden and complete lockdown. While the numbers of confirmed cases and deaths still rise, people round the world are taking brave actions to mitigate transmission and save lives. Coronavirus disease 2019 (COVID-19) is an infectious disease caused by coronavirus-2 (SARS-CoV-2) that causes a severe acute respiratory syndrome, a characteristic hyper inflammatory response, vascular damage, micro-angiopathy, angiogenesis and widespread thrombosis. During this emergency period of the COVID-19 outbreak, clinical researchers are using and testing a spread of possible treatments. Combination treatment of low-dose systematic corticosteroids and anti-virals, anti-coagulants, use of statins, zinc, role of vitamin C, D and convalescent plasma have been encouraged as part of critical COVID-19 management. Vaccine-associated enhanced disease has been rarely encountered with existing vaccines or viral infection. Safe and effective vaccines are a game-changing tool: but for the foreseeable future we must continue wearing masks, cleaning our hands, ensuring good ventilation indoors, physically distancing and avoiding crowds. But it's not vaccines that will stop the pandemic, it's vaccination. We must all do our part to keep each other safe until this outbreak subsides and humanity are back to being greater than ever.

KEYWORDS: COVID-19, Outbreak, Treatment, Clinical Research, Vaccine.

INTRODUCTION

Coronaviruses belong to the Coronaviridae family in the Nidovirales order. Corona represents crown-like spikes on the outer surface of the virus; thus, it was named as a coronavirus. Coronaviruses are minute in size (65–125 nm in diameter) and contain a single-stranded RNA as a nucleic material, size ranging from 26 to 32kbs in length. These viruses were thought to infect only animals until the world witnessed a severe acute respiratory syndrome (SARS) outbreak caused by SARS-CoV, 2002 in Guangdong, China.^[1] All coronaviruses contain specific genes in ORF1 downstream regions that encode proteins for viral replication, nucleocapsid and spikes formation.^[2] The glycoprotein spikes on the outer surface of coronaviruses are responsible for the attachment and entry of the virus to host cells. The receptor-binding domain (RBD) is loosely attached among virus, therefore, the virus may infect multiple hosts.^[3,4] SARS-coronavirus require angiotensin-converting enzyme 2 (ACE2) as a key receptor. The spike protein of SARS-CoV-2 contains a 3-D structure in the RBD region to maintain the van der Waals forces.^[5] The 394 glutamine residue in the RBD region of SARS-CoV-2 is recognized

by the critical lysine 31 residue on the human ACE2 receptor.^[6]

Anti-Virals for SARS-CoV-2 infection
Lopinavir

Lopinavir is employed together with ritonavir for treatment and prevention of HIV infection. It is reported that lopinavir inhibited SARS-CoV-2 at a half-maximal effective concentration (EC50) - the level of drug that induces a response halfway between the baseline and maximum after a specified exposure time - of 26.36 μ M^[7], therapy was discontinued in some of the studies due to serious side effects including severe gastrointestinal disturbances, hypokalemia, and self-limited skin eruptions is seen in some of the reported studies.^[8,9]

Remdesivir

Remdesivir is an NtRTI drug that's deserve a "solidarity" clinical test for COVID-19, consistent with WHO.^[10] It acts as an RNA-dependent RNA polymerase (RdRp) inhibitor and its pharmacokinetics and characteristics are studied in SARS-CoV and MERS-CoV infections.^[11] It alters functions of viral exonuclease and thanks to

disturbed proof reading, viral genomic RNA replication and production declines.^[12] Since it can prevent viral replication and may be recommended for COVID-19 patients to stop the severity of disease progression.

Favipiravir

Favipiravir may be a prodrug and becomes a lively molecule called favipiravir ibufuranosyl-5'-triphosphate (T-705-RTP) upon administration.^[13] It competes with guanine nucleosides during RNA viral replication by getting integrated with viral RNA, leading to selectively blocking the RdRp to arrest the synthesis of viral RNA.^[14]

Baricitinib

Baricitinib is a Janus kinase (JAK) inhibitor with high potential to bind to and inhibit AAK1.^[15] Hence baricitinib can be used to inhibit both viral entry as well as the inflammatory response associated with SARS-CoV-2 infection.^[15] Therapeutic use of baricitinib is associated with the occurrence of neutropenia, lymphocytopenia, and viral reactivation.^[16]

Ivermectin

The basis of ivermectin's broadspectrum antiviral activity appears to relate to the very fact that ivermectin binds to, and inhibits, the nuclear transport role of the host importin α (IMP α) protein.^[17,18,19]

Role of Anti-coagulants

Several recent studies administered in quick succession have reported coagulopathy to be a standard complication of the novel coronavirus SARS-CoV-2.^[20]

The nature of the coagulopathy seen in COVID-19 has been repeatedly characterised by elevated D-dimers and fibrin degradation products (FDP), mild thrombocytopenia, and prolonged prothrombin time with pulmonary coagulation and fibrinolysis alleged to be influenced by, and correlate to, certain proinflammatory cytokines.^[21,22-24] Viral injury, abnormal release of cytokines, and damage associated molecular patterns (DAMPs) are thought to induce localized microvascular inflammation.

Heparin has also been discussed favourably by Thachil.^[25] This piece outlines the bidirectional relationship between the system and thrombin production whereby the inflammatory response could also be attenuated by the action of heparin inhibiting thrombin. They also outline heparin's innate ability to bind to inflammatory cytokines, disabling neutrophil chemotaxis, inhibiting the complement factor C5a, and sequestering acute-phase proteins.^[26]

Another important consideration in reference to antithrombotic therapies is that the occurrence of drug interactions with antivirals utilized in COVID-19 in terms of their active metabolites and

competition surely CYP450 enzymes.^[27] LMWH should be considered altogether patients with COVID-19 requiring hospital admission.^[28]

Rivaroxaban inhibits thrombin generation in blood and platelet-rich plasma.^[29]

Convalescent plasma transfusion for the treatment of COVID-19

A private who is sick with infectious diseases and recovers has blood drawn and screened for particular microorganism neutralizing antibodies. Following identification of these with high titers of neutralizing antibody, convalescent plasma containing these neutralizing antibodies are often administered in individuals with specified clinical disease to scale back symptoms and mortality. Hence, convalescent plasma transfusion (CPT) has been the topic of accelerating attention, especially within the wake of large-scale epidemics.^[30]

In addition, studies show convalescent plasma antibodies which will limit the virus reproduction within the acute phase of infection and help clear the virus, which is useful to the rapid recovery of the disease.^[31]

Impact of Corticosteroids in Coronavirus Disease

Corticosteroids are the most immunomodulatory agent used for the clinical management of SARS; both benefits and poor outcomes are reported as a results of their use. the many role of the immune reaction within the pathogenesis of SARS-CoV-2, it became clear that immune modulation are going to be essential in its management.^[32,33] A study of 107 patients treated with high-dose methylprednisolone (0.5–1 mg/kg prednisolone on day 3, followed by hydrocortisone 100 mg every 8 h plus methylprednisolone pulse 0.5 g intravenously for 3 additional days), 95 (89%) patients recovered from SARS.^[32]

Dexamethasone are often beneficial in patients with COVID-19 due to its ability to inhibit the generation of cytokines and reduce their destructive effects. Therefore, it are often useful to counter the COVID-19-associated cytokine storm.^[34] it's been demonstrated that short-term dexamethasone therapy can reduce the severity of inflammation by inhibiting the severe cytokine storm or the hyperinflammatory introduce patients with COVID-19 who develop pneumonia.^[35]

Colchicine are often an honest therapeutic option due to several effects within the immunology system involved in SARS-CoV-2 infection.^[36]

The infection of cells by coronaviruses involves the interaction of the cytoplasmic tail of the spike protein with cytoskeletal proteins (i.e., tubulin).^[37] This interaction results in viral entry. Furthermore, microtubules are involved within the transport and assembly of spike proteins into virions during the

replication cycle.^[38,39] The colchicine-tubulin complex may block viral entry and replication.^[40]

The Role of Vitamin C in the Immune System

A meta-analysis has shown that administration of high doses of vitamin C at the onset of the cold decreased the duration of the cold and relieved the symptoms, like pain, fever, and chills.^[41] After vitamin C treatment, the patients had decreased inflammatory markers, like ferritin and D-dimer, and a fraction of the sooner inspired oxygen requirements^[42]

The study suggests that the antiviral effect of vitamin C might be mediated by radical formation or its binding to the virus or molecules involved in viral replication. Therefore, the antiviral effect of vitamin C could also be attributed to the assembly of antiviral cytokines (IFN- α/β), radical formation, or direct binding to the virus.^[43]

The Role of Vitamin D in the Immune System

Vitamin D reduces the danger of viral infections. It improves the body's physical barrier by regulating the assembly of proteins for tight junctions^[44], adherens junctions^[45], and gap junctions^[46], which may be disturbed by infection by microorganisms, including viruses.^[47]

Severely ill patients with COVID-19 have a high level of pro-inflammatory cytokines, like IL-6, compared to patients with moderate symptoms.^[48] The increased level of IL-6 in critically ill COVID-19 patients was associated with the detection of SARS-CoV-2 macromolecule in serum.^[49] Vitamin D can decrease the assembly of pro-inflammatory cytokines, like TNF- α , IL-6, IL-1 β ^[67], IL-12, and IFN- γ .^[50]

Use of Statins in Human Viral Infections

There also are some reports suggesting that statins might enhance ACE2, which could mitigate the invasion of SARS-CoV-2 through the ACE2 receptor.^[51] These results seem encouraging but got to be confirmed in further observational and interventional clinical studies.

Potential Impact of Zinc Supplementation on COVID-19

The very fact that deficiency disease is liable for 16% of all deep respiratory infections world-wide^[52] it had been suggested that zinc can prevent fusion with the host membrane, decreases the viral polymerase function, impairs protein translation and processing, blocks viral particle release, and destabilizes the viral envelope.^[53,54,55]

Other Drugs

Hydroxychloroquine (HCQ) alone or in combination with azithromycin (AZ) reduced viral load in coronavirus disease 2019 (COVID-19) patients.^[56] Multiple mechanisms have been proposed for the putative antiviral properties observed with AZ and HCQ.

These are weak bases and preferentially accumulates intracellularly in endosomal vesicles and lysosomes, which could increase pH levels, and potentially block endocytosis and/or viral genetic shedding from lysosomes, thereby limiting viral replication.^[57,58]

Interleukin-6 as a potential biomarker of COVID-19 progression

Cytokines are vital in regulating immunological and inflammatory responses. Among them, IL-6 is of major importance because of its pleiotropic effects.^[59]

Tocilizumab and sarilumab are monoclonal antibodies that inhibit both membrane-bound and soluble interleukin-6 receptors and are used to treat inflammatory conditions, such as rheumatoid arthritis, as well as cytokine release syndrome after chimeric antigen receptor (CAR) T-cell therapy (tocilizumab).^[60]

The neutralizing antispike monoclonal antibodies against SARS-CoV-2—bamlanivimab, casirivimab-imdevimab, and bamlanivimab-etesevimab—are available under separate emergency use authorizations (EUAs) by the US Food and Drug Administration (FDA) for early outpatient treatment of mild-to-moderate coronavirus-19 disease (COVID-19) in patients at increased risk of clinical progression and hospitalization.^[61,62]

In a subsequent analysis of this ongoing clinical trial, the patients who received the combination of bamlanivimab and etesevimab had significant reductions in viral load compared with those who received bamlanivimab monotherapy.^[63] In an interim analysis of a phase 1 to 2 trial of 275 patients, the use of casirivimab and imdevimab was also associated with reduction in viral load, especially among patients with high initial viral load and negative SARS-CoV-2 serology.^[64]

Vaccines for SARS-CoV-2

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the most important counter measure to fight the coronavirus 2019 (Covid-19) pandemic. There is a strong consensus globally that a COVID-19 vaccine is likely the most effective approach to sustainably controlling the COVID-19 pandemic. From December 2020 through March 2021, the European Medicines Agency approved four vaccines on the basis of randomized, blinded, controlled trials: two messenger RNA-based vaccines — BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) — that encode the spike protein antigen of SARS-CoV-2, encapsulated in lipid nanoparticles; ChAdOx1 nCov-19 (AstraZeneca), a recombinant chimpanzee adenoviral vector encoding the spike glycoprotein of SARS-CoV-2; and Ad26.COV2.S (Johnson & Johnson/Janssen), a recombinant adenovirus type 26 vector encoding SARS-CoV-2 spike glycoprotein.^[65]

- a. BNT162b2, ^[66]is a lipid nanoparticle-formulated, ^[67] nucleoside-modified RNA (modRNA) ^[68] encoding the SARS-CoV-2 full-length spike.
- b. Covaxin (BBV152) is India's first indigenous COVID-19 inactivated vaccine developed and manufactured by Bharat Biotech in collaboration with the Indian Council of Medical Research (ICMR) and the National Institute of Virology (NIV). ^[69] The recent findings indicate that Covaxin can effectively neutralize the recently emerged B 1.1.7 SARS-CoV-2 variant (UK variant). ^[70]
- c. Covishield is the Indian version of the replication-deficient adenoviral vector vaccine developed by Oxford University and AstraZeneca (AZD1222, previously called ChAdOx1 nCoV-19 vaccine). It is manufactured by the Serum Institute of India (SII), the world's largest vaccine manufacturer and one of the leading exporters of vaccines. SII has also collaborated with Codagenix to manufacture COVI-VAC, a live-attenuated intranasal vaccine against COVID-19. ^[71]
- d. ^[69]In addition to that, indigenously developed vaccine candidates such as ZyCoV-D (plasmid-based DNA vaccine), HGCO19 (mRNA vaccine) and Mynvax COVID-19 vaccine (RBD-based subunit vaccine) are also making significant progress in pre-clinical/clinical studies. ^[72]

CONCLUSION

Patients presenting with Symptoms are advised to take COVID 19 Test as soon as possible. Most of the mortality rates are in patients with late presentation.

There is also promising evidence of pharmacological treatment efficiency when treated early. Vaccination, Monoclonal Antibodies, Preventive measures are effective in prevention of Pneumonitis. Physicians of varied specialization along with the government must get updated information from the doctors who treated large number of COVID patients with evidence based clinical data.

REFERENCES

1. Zhong NS, Zheng BJ, Li YM, Poon LL, Xie ZH, Chan KH, Li PH, Tan SY, Chang Q, Xie JP, Liu XQ. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. *The Lancet*, Oct 25, 2003; 362(9393): 1353-8.
2. Van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. *MBio*, Dec 31, 2012; 3(6).
3. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. *Nature*, Mar, 2013; 495(7440): 251-4.
4. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. *Nature reviews microbiology*, Jun, 2009; 7(6): 439-50.
5. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. *Science China Life Sciences*, Mar, 2020; 63(3): 457-60.
6. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. *Journal of virology*, Mar 17, 2020; 94(7).
7. Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KP, Chu DK, Chan MC, Cheung PP, Huang X, Peiris M. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. *Antiviral research*, Apr 3, 2020; 104786.
8. Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, Lu J, Xue Y. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. *Journal of Infection*, Jul 1, 2020; 81(1): e21-3.
9. Fan L, Liu C, Li N, Liu H, Gu Y, Liu Y, Chen Y. Medical treatment of 55 patients with COVID-19 from seven cities in northeast China who fully recovered: a single-center, retrospective, observational study. *medRxiv*, 2020 Jan 1.
10. WHO Solidarity Trial Consortium. Repurposed antiviral drugs for COVID-19—interim WHO SOLIDARITY trial results. *New England Journal of Medicine*, 2020 Dec 2.
11. Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikebara Y, Kobayashi T, Segawa H, Takayasu S, Sato H. Development of defective and persistent Sendai virus vector a unique gene delivery/expression system ideal for cell reprogramming. *Journal of Biological Chemistry*, Feb 11, 2011; 286(6): 4760-71.
12. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, Ray AS. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. *MBio*, May 2, 2018; 9(2).
13. Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. *Travel medicine and infectious disease*, 2020 Mar 5.
14. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. *Proceedings of the Japan Academy, Series B.*, Aug 2, 2017; 93(7): 449-63..
15. Richardson P., Griffin I., Tucker C. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. *Lancet (London, England)*, 2020; 395: e30.
16. Praveen D., Chowdary P.R., Aanandhi M.V. Janus kinase inhibitor-not an ideal option for management

OF covid 19. *Int J Antimicrob Agents*, 2020; 55(5): 105967. doi: 10.1016/j.ijantimicag, 2020; 105967.

17. Yang SN, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, Jans DA. The broad spectrum antiviral ivermectin targets the host nuclear transport importin $\alpha/\beta 1$ heterodimer. *Antiviral research*, Mar 3, 2020; 104760.
18. Lv C, Liu W, Wang B, Dang R, Qiu L, Ren J, Yan C, Yang Z, Wang X. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. *Antiviral research*, Nov 1, 2018; 159: 55-62.
19. King CR, Tessier TM, Dodge MJ, Weinberg JB, Mymryk JS. Inhibition of human adenovirus replication by the importin $\alpha/\beta 1$ nuclear import inhibitor ivermectin. *Journal of Virology*, Aug 31, 2020; 94(18).
20. Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. *Intensive Care Medicine*, Apr 28, 2020; 1-4.
21. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, Du B. Clinical characteristics of coronavirus disease 2019 in China. *New England journal of medicine*, Apr 30, 2020; 382(18): 1708-20.
22. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. *Journal of thrombosis and haemostasis*, May, 2020; 18(5): 1094-9.
23. Yin S, Huang M, Li D, Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. *Journal of thrombosis and thrombolysis*, Apr 3, 2020; 1.
24. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. *Jama*, Mar 17, 2020; 323(11): 1061-9.
25. McGovern R, Conway P, Pekrul I, Tujjar O. The Role of Therapeutic Anticoagulation in COVID-19. *Case Reports in Critical Care*, Aug 27, 2020; 2020.
26. Young E. The anti-inflammatory effects of heparin and related compounds. *Thrombosis research*, Jan 1, 2008; 122(6): 743-52.
27. Ithonen MK, Tornio A, Lapatto-Reiniluoto O, Neuvonen M, Neuvonen PJ, Niemi M, Backman JT. Clopidogrel increases dasabuvir exposure with or without ritonavir, and ritonavir inhibits the bioactivation of clopidogrel. *Clinical Pharmacology & Therapeutics*, Jan, 2019; 105(1): 219-28.
28. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. *Journal of Thrombosis and Haemostasis*, May, 2020; 18(5): 1023-6.
29. Gerotziafas GT, Elalamy I, Depasse F, Perzborn E, Samama MM. In vitro inhibition of thrombin generation, after tissue factor pathway activation, by the oral, direct factor Xa inhibitor rivaroxaban. *Journal of Thrombosis and Haemostasis*, Apr, 2007; 5(4): 886-8.
30. Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. *The Journal of clinical investigation*, Apr 1, 2020; 130(4): 1545-8.
31. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, Chan P, Wong KC, Leung CB, Cheng G. Use of convalescent plasma therapy in SARS patients in Hong Kong. *European Journal of Clinical Microbiology and Infectious Diseases*, Jan 1, 2005; 24(1): 44-6.
32. Ho JC, Ooi GC, Mok TY, Chan JW, Hung I, Lam B, Wong PC, Li PC, Ho PL, Lam WK, Ng CK. High-dose pulse versus nonpulse corticosteroid regimens in severe acute respiratory syndrome. *American journal of respiratory and critical care medicine*, Dec 15, 2003; 168(12): 1449-56.
33. Yam LY, Lau AC, Lai FY, Shung E, Chan J, Wong V, Hong Kong Hospital Authority SARS Collaborative Group (HASCOG. Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. *Journal of Infection*, Jan 1, 2007; 54(1): 28-39.
34. Sung JJ, Wu A, Joynt GM, Yuen KY, Lee N, Chan PK, Cockram CS, Ahuja AT, Yu LM, Wong VW, Hui DS. Severe acute respiratory syndrome: report of treatment and outcome after a major outbreak. *Thorax*, May 1, 2004; 59(5): 414-20.
35. Lim MA, Pranata R. Worrying situation regarding the use of dexamethasone for COVID-19. *Therapeutic advances in respiratory disease*, Jul, 2020; 14: 1753466620942131.
36. Selvaraj V, Dapaah-Afriyie K, Finn A, Flanigan TP. Short-term dexamethasone in Sars-CoV-2 patients. *RI Med J.*, Jun 19, 2020; 103(6): 39-43.
37. Nuki G. Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. *Current rheumatology reports*, Jun, 2008; 10(3): 218-27.
38. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. *Microbiology and molecular biology reviews*, Dec 1, 2005; 69(4): 635-64.
39. Sims AC, Burkett SE, Yount B, Pickles RJ. SARS-CoV replication and pathogenesis in an in vitro model of the human conducting airway epithelium. *Virus research*, Apr 1, 2008; 133(1): 33-44.
40. de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. *Advances in virus research*, Jan 1, 2005; 64: 165-230.
41. Milewska A, Nowak P, Owczarek K, Szczepanski A, Zarebski M, Hoang A, Berniak K, Wojarski J, Zeglen S, Baster Z, Rajfur Z. Entry of human coronavirus NL63 into the cell. *Journal of virology*, Feb 1, 2018; 92(3).

42. Ran L, Zhao W, Wang J, Wang H, Zhao Y, Tseng Y, Bu H. Extra dose of vitamin C based on a daily supplementation shortens the common cold: A meta-analysis of 9 randomized controlled trials. *BioMed research international*, Jul 5, 2018; 2018.
43. Hiedra R, Lo KB, Elbashabsheh M, Gul F, Wright RM, Albano J, Azmaiparashvili Z, Patarroyo Aponte G. The use of IV vitamin C for patients with COVID-19: a case series. *Expert Review of Anti-infective Therapy*, Dec 1, 2020; 18(12): 1259-61.
44. García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. *Frontiers in immunology*, Jun 16, 2020; 11: 1441.
45. Chen H, Lu R, Zhang YG, Sun J. Vitamin D receptor deletion leads to the destruction of tight and adherens junctions in lungs. *Tissue barriers*, Oct 2, 2018; 6(4): 1-3.
46. Gniadecki R, Gajkowska B, Hansen M. 1, 25-dihydroxyvitamin D3 stimulates the assembly of adherens junctions in keratinocytes: involvement of protein kinase C. *Endocrinology*, Jun 1, 1997; 138(6): 2241-8.
47. Clairmont A, Tessmann D, Stock A, Nicolai S, Stahli W, Sies H. Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear vitamin D receptor.
48. Kast JI, McFarlane AJ, Głobińska A, Sokolowska M, Wawrzyniak P, Sanak M, Schwarze J, Akdis CA, Wanke K. Respiratory syncytial virus infection influences tight junction integrity. *Clinical & Experimental Immunology*, Dec, 2017; 190(3): 351-9.
49. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. *Frontiers in immunology*, Jul 10, 2020; 11: 1708.
50. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, Men D, Huang Q, Liu Y, Yang B, Ding J. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. *Clinical infectious diseases*, 2020 Apr 17.
51. Sharifi A, Vahedi H, Nedjat S, Rafiei H, Hosseinzadeh-Attar MJ. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. *Apmis*, Oct, 2019; 127(10): 681-7.
52. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. *American Journal of Physiology-Heart and Circulatory Physiology*, 2020 Apr 13.
53. World Health Organization. The world health report 2002: reducing risks, promoting healthy life. World Health Organization, 2002.
54. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. *Advances in Nutrition*, Jul 1, 2019; 10(4): 696-710.
55. Suara RO, Crowe JE. Effect of zinc salts on respiratory syncytial virus replication. *Antimicrobial agents and chemotherapy*, Mar 1, 2004; 48(3): 783-90.
56. Kümel G, Schrader S, Zentgraf H, Daus H, Brendel M. The mechanism of the antiherpetic activity of zinc sulphate. *Journal of general virology*, Dec 1, 1990; 71(12): 2989-97.
57. Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. *International journal of antimicrobial agents*, Jul 1, 2020; 56(1): 105949.
58. Tyteca D, Van Der Smissen P, Mettlen M, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP, Courtoy PJ. Azithromycin, a lysosomotropic antibiotic, has distinct effects on fluid-phase and receptor-mediated endocytosis, but does not impair phagocytosis in J774 macrophages. *Experimental cell research*, Nov 15, 2002; 281(1): 86-100.
59. Homolak J, Kodvanj I. Widely available lysosome targeting agents should be considered as potential therapy for COVID-19. *International Journal of Antimicrobial Agents*, Aug 1, 2020; 56(2): 106044.
60. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, Men D, Huang Q, Liu Y, Yang B, Ding J. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. *Clinical infectious diseases*, 2020 Apr 17.
61. Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, Zhang X. Effective treatment of severe COVID-19 patients with tocilizumab. *Proceedings of the National Academy of Sciences*, May 19, 2020; 117(20): 10970-5.
62. Gremese E, Cingolani A, Bosello SL, Alivermini S, Tolusso B, Perniola S, Landi F, Pompili M, Murri R, Santoliquido A, Garcovich M. Sarilumab use in severe SARS-CoV-2 pneumonia. *EClinicalMedicine*, Oct 1, 2020; 27: 100553.
63. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, Musser BJ, Soo Y, Rofail D, Im J, Perry C. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. *New England Journal of Medicine*, Jan 21, 2021; 384(3): 238-51.
64. Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, Shawa I. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. *Jama*, Feb 16, 2021; 325(7): 632-44.
65. Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, Shawa I. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. *New England Journal of Medicine*, Jan 21, 2021; 384(3): 229-37.

66. Johansen K, Nohynek H. No country or continent is on its own in the ongoing COVID-19 pandemic. *Eurosurveillance*, Apr 29, 2021; 26(17): 2100430.
67. Walsh EE, Frenck Jr RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. *New England Journal of Medicine*, Dec 17, 2020; 383(25): 2439-50.
68. Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. *Journal of Controlled Release*, Nov 10, 2015; 217: 345-51.
69. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. *Molecular therapy*, Nov 1, 2008; 16(11): 1833-40.
70. Elliott W, Chan J. COVID-19 Vaccine Update. *Internal Medicine Alert*, Nov 1, 2020; 42(21).
71. Sapkal GN, Yadav PD, Ella R, Deshpande GR, Sahay RR, Gupta N, Vadrevu KM, Abraham P, Panda S, Bhargava B. Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2. *Journal of Travel Medicine*, May, 2021; 28(4): taab051.
72. Chakraborty C, Agoramoorthy G. India's cost-effective COVID-19 vaccine development initiatives. *Vaccine*, Nov 25, 2020; 38(50): 7883.
73. Khan Sharun M, Dhama K. Indias role in COVID-19 vaccine diplomacy.