EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH www.ejpmr.com Research Article ISSN 3294-3211 EJPMR # SYNTHESIS AND EVALUATION OF BENZOTHIAZOLE DERIVATIVES FOR ANTHELMINTIC ACTIVITY Gaware Vinayak M.*1, Dhamak Kiran B.1 and Kotade Kiran B.2 ¹Department of Pharmaceutical Chemistry, PRES's College of Pharmacy (For Women), Nashik. Affiliated to SNDT Women's University, Mumbai ²Department of Pharmacology, PRES's College of Pharmacy (For Women), Nashik. Affiliated to SNDT Women's University, Mumbai. *Corresponding Author: Prof. Gaware Vinayak M. Department of Pharmaceutical Chemistry, PRES's College of Pharmacy (For Women), Nashik. Affiliated to SNDT Women's University, Mumbai. Article Received on 02/03/2016 Article Revised on 24/03/2016 Article Accepted on 15/04/2016 #### **ABSTRACT** Derivatives of benzothiazoles were synthesized and evaluated for their anthelmintic activity. 2-amino benzothiazole was first converted to 6 substituted derivatives of 2-amino benzothiazole by nitration and bromination reaction to yield 6-nitro-2-amino benzothiazole and 6-bromo-2-amino benzothiazole respectively. All the derivatives including 2-amino benzothiazole were further treated with chloroacetyl chloride to form chloroacetamido derivatives of benzothiazole. Further the product is treated with various heterocyclic and aromatic amines. The synthesized compounds were confirmed by IR, ¹H NMR and Mass spectral data. Synthesized substituted benzothiazole derivatives were investigated for their anthelmintic activity against Indian adult earthworms (pheretima posthuma) at various concentrations (25 mg/ml and 50 mg/ml). It was observed that the new synthesized compounds possessing electron withdrawing group like nitro and bromo groups at 6th position of benzothiazole nucleus and chloro, fluoro substituted at 3rd position of aromatic amine exhibited higher anthelmintic activity when compared to that of other synthesized compounds. The present research focus on the different methods of synthesis of substituted benzothiazoles with potential anthelmintic activity that are now in developing phase. KEY WORDS: Anthelmintic, Albendazole, Benzothiazole; Bromination; Nitration. #### INTRODUCTION Benzothiazole is a privileged bicyclic ring system. It contains a benzene ring fused to a thiazole ring.[1] The small and simple benzothiazole nucleus is present in compounds involved in research aimed at evaluating new products that possess interesting biological activities like antimicrobial, antitubercular^[2], antitumor^[3]. anthelmintic^[6]. antimalarial^[4] antimicrobial^[5], antidiabetic^[7], anticonvulsant^[8], analgesic^[9] and antiinflammatory [10] activity. In addition, the benzothiazole ring is present in various marine or terrestrial natural compounds, which have useful biological activities. Due to their importance in pharmaceutical utilities, the synthesis of various benzothiazole derivatives is of considerable interests. The basic structure of benzothiazole consist of benzene ring fused with 4, 5 position of thiazole. The two rings together constitute the basic nucleus 1, 3-benzothiazole. Being a heterocyclic compound, benzothiazole finds its use in research as a starting material for the synthesis of bioactive molecules. Its aromaticity makes it relatively stable, although as a heterocycles, it has reactive sites which allow for functionalization. The biological profiles of these new generations of benzothiazoles represent much progress with regards to older compounds. Looking into the medicinal importance of benzothiazole moiety, it was thought worthwhile to synthesize certain newer derivatives of benzothiazole and screen them for their biological activities. 1, 3-benzothiazole #### **METHODOLOGY** Scheme for Synthesis (Chemistry): The general method of synthesis of substituted benzothiazole and its derivatives are outlined below. $$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$ 2-amino benzothiazole 6-nitro 2-amino benzothiazole $$Br_2$$, GAA NH_2 $0^{\circ}C - 5^{\circ}C$ Rr 2-amino benzothiazole 6-bromo 2-amino benzothiazole STEP - I: Synthesis of 6-substituted 2-amino benzothiazole from 2 amino benzothiazole $$\begin{array}{c|c} & & & \text{CICOCH}_2\text{CI} \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$ 2-amino benzothiazole *N*-(benzo[*d*]thiazol-2-yl)-2-chl oroacetamide 6-substituted 2-amino benzothiazole 2-chloro-*N*-(6-substitutedbenz o [*d*]thiazol-2-yl)acetamide STEP – II: Synthesis of N-(benzo[d]thiazol-2-yl)-2-chloroacetamide $$\begin{array}{c|c} & & NH_2\text{-R} \\ \hline & & \\ & &$$ R - various amines STEP – III: Incorporation of various heterocyclic and aromatic amines at 2 positions of A & B: ## EXPERIMENTAL PROCEDURE STEP – I Synthesis of 6-substituted 2-amino benzothiazole^[11] - i. Synthesis of 6-nitro 2-amino benzothiazole: 2-amino benzothiazole (1g, 0.008 moles) and concentrated sulphuric acid (30 ml) were stirred at 0°C for 15 minutes. To the above solution a mixture of concentrated nitric acid (1.5 ml) and sulphuric acid (5 ml) were added. The reaction was kept was at 0-5°C during the period of addition, and the mixture was then continuously stirred for 2 h at 5°C. The mixture was poured into ice cold water, the precipitate formed was filtered and dried. The product was recrystallized from ethanol to get yellow coloured crystals. - ii. Synthesis of 6-bromo 2-amino benzothiazole: 2-amino benzothiazole (1g, 0.008 moles) and glacial acetic acid (4 ml) were placed in conical flask. The flask was kept in an ice bath at 0-5°C. To this solution bromine (7 ml) in glacial acetic acid (14 ml) was added dropwise from dropping funnel with constant stirring. The reaction was poured into excess of water (100 ml). The precipitate was filtered and washed thoroughly with ice cold water. The product was recrystallized from ethanol. STEP – II iii. Synthesis of N-(benzo[d]thiazol-2-yl)-2-chloroacetamide^[12]: 2-amino benzothiazole (1g) was taken in 100 ml of iodine flask. To this ethanol (10 ml) was added till all benzothiazole gets dissolved. Chloroacetyl chloride (6 ml) was taken in dropping funnel and added dropwise into 2-amino benzothiazole in ice cold condition for 1 h. After complete addition of chloroacetyl chloride for 1 h the reaction mixture was stirred for additional 2 h in ice cold condition. The reaction mixture was further refluxed at temperature 20 - 30°C for 3 h. Cool the reaction mixture and poured into ice cold water. The precipitate formed was filtered and dried. The product was recrystallized from ethanol. The same procedure was followed for 6-substituted-2-amino benzothiazole to give 6-substituted-2-chloroacetamidobenzothiazole. #### STEP III Incorporation of various heterocyclic and aromatic amines at 2 positions of A & B^[13]: Equimolar mixture of compound A and various substituted aromatic and heterocyclic amines (0.1 moles) were refluxed for 6 h in presence of DMF. The reaction mixture was cooled and poured into crushed ice. The solid separated was filtered, dried and recrystallized form ethanol. The same procedure was followed for compound B with various substituted amines. Table no. 1: Physical data for 2-substituted benzothiazole (Compound A) | Sl. No. | Comp. No. | Chemical Name | Mol. Formula | M.W. (g) | M.P (°C) | % Yield | |---------|------------------|--|---|----------|----------|---------| | 1 | $\mathbf{A_1}$ | N-(benzo[d]thiazol-2-yl)-2-
(benzo[d]thiazol-2-ylamino) acetamide | $C_{16}H_{12}N_4OS_2$ | 340.42 | 133 | 63 | | 2 | \mathbf{A}_2 | 2-(1 <i>H</i> -benzo[<i>d</i>]imidazol-2-ylamino)- <i>N</i> -(benzo[<i>d</i>]thiazol-2-yl) acetamide | $C_{16}H_{13}N_5OS$ | 323.37 | 181 | 82 | | 3 | \mathbf{A}_3 | 2-(4,5dihydrothiazol-2-ylamino)- <i>N</i> -(benzo[<i>d</i>]thiazol-2-yl) acetamide | $C_{12}H_{12}N_4OS_2$ | 292.38 | 111 | 29 | | 4 | $\mathbf{A_4}$ | 2-(1, 5-dihydro-1,2,4-triazol-4-ylamino)- <i>N</i> -(benzo[<i>d</i>]thiazol-2-yl) acetamide | $C_{11}H_{12}N_6OS$ | 276.32 | 174 | 49 | | 5 | \mathbf{A}_{5} | 2-(4-fluorophenylamino)- <i>N</i> -(benzo[<i>d</i>]thiazol-2-yl) acetamide | $C_{15}H_{12}N_3OFS$ | 301.34 | 199 | 28 | | 6 | $\mathbf{A_6}$ | 2-(4-chlorophenylamino)-N- | C ₁₅ H ₁₂ N ₃ OCIS | 317.79 | 194 | 41 | | | | (benzo[d]thiazol-2-yl) acetamide | | | | | |---|----------------|---|--|--------|-----|----| | 7 | \mathbf{A}_7 | 2-(3-chloro-4-fluorophenylamino)- <i>N</i> -(benzo[<i>d</i>]thiazol-2-yl) acetamide | C ₁₅ H ₁₁ N ₃ OFClS | 335.78 | 202 | 25 | Table no. 2: Physical data for 6-substituted 2-substituted benzothiazole (Compound B) | Sl. No. | Comp No. | Chemical name | Mol. Formula | M.W (g) | M.P (°C) | % Yield | |---------|-------------------|--|--|---------|----------|---------| | 9 | $\mathbf{A_8}$ | 2-(4-chlorophenylamino)- <i>N</i> -(6-nitrobenzo[<i>d</i>]thiazol-2-yl) acetamide | $C_{15}H_{11}N_4O_3ClS$ | 362.79 | 168 | 59 | | 10 | A9 | 2-(4-fluorophenylamino)- <i>N</i> -(6-nitrobenzo[<i>d</i>]thiazol-2-yl) acetamide | C ₁₅ H ₁₁ N ₄ O ₃ FS | 346.34 | 171 | 48 | | 11 | \mathbf{A}_{10} | 2-(4-chloro-3-fluorophenylamino)- <i>N</i> -(6-nitrobenzo[<i>d</i>]thiazol-2yl) acetamide | C ₁₅ H ₁₀ N ₄ O ₃ ClFS | 380.78 | 184 | 56 | | 12 | A ₁₁ | 2-(4-chloro-3-fluorophenylamino)- <i>N</i> -(6-bromobenzo[<i>d</i>]thiazol-2-yl) acetamide | C ₁₅ H ₁₀ N ₂ OClFBrS | 412.68 | 210 | 66 | | Table no. 3: Spectra characterization of derivatives A ₁ -A ₁₁ | | | | | | |--|---|--|-----------------------|--|--| | Comp. No. | IR spectra (cm ⁻¹) | ¹ H NMR δ (ppm) | MS m/z | | | | $\mathbf{A_1}$ | Aromatic C-H stretch (3060 cm ⁻¹), C=N strech (1600 cm ⁻¹), C-N strech (1316 cm ⁻¹), C-S strech (1106 cm ⁻¹), NH strech (3288 cm ⁻¹), C=O strech (1656 cm ⁻¹), CH aliphatic (2805 cm ⁻¹) | 8.5 (m, aromatic); 8.2 (m, aromatic); 3.3 (s, 1H CH ₂); 7.3 (s, NH), 4.0 (s, NH) | 341 (M ⁺) | | | | \mathbf{A}_2 | Aromatic C-H stretch (3053 cm ⁻¹), C=O stretch (1657 cm ⁻¹), N-H stretch (3248 cm ⁻¹), C=S stretch (1163 cm ⁻¹), C-N stretch (1314 cm ⁻¹). | | | | | | \mathbf{A}_3 | Aromatic C-H stretch (3050-3150 cm ⁻¹), C=O stretch (1658 cm ⁻¹), N-H stretch (3289 cm ⁻¹), C-N stretch (1318 cm ⁻¹), C=N stretch (1615 cm ⁻¹), CH aliphatic (2830 cm ⁻¹) | 8.5 (m, aromatic); 3.3 (s, 1H CH ₂); 7.3 (s, NH), 4.0 (s, NH) | 292 (M ⁺) | | | | $\mathbf{A_4}$ | Aromatic C-H stretch (3050-3150 cm ⁻¹), C=O stretch (1669 cm ⁻¹), C=S stretch (1159 cm ⁻¹), C=N stretch (1604 cm ⁻¹), N-H stretch (3286 cm ⁻¹), CH aliphatic (2830cm ⁻¹) | | | | | | \mathbf{A}_{5} | Aromatic C-H stretch (3057 cm ⁻¹), N-H stretch (3270 cm ⁻¹), C=O stretch (1634 cm ⁻¹), C-F stretch (1110 cm ⁻¹), aliphatic C-H (2853 cm ⁻¹) | 8.23-8.12 (m aromatic), 7.3 (s NH),
3.2 (d CH ₂), 4.0 (s NH) | 302 (M ⁺) | | | | A_6 | Aromatic C-H stretch (3067 cm ⁻¹), N-H stretch (3290 cm ⁻¹), C=O stretch (1657 cm ⁻¹), C-Cl (691 cm ⁻¹), C=N (1601 cm ⁻¹), C-N stretch (1257 cm ⁻¹), aliphatic C-H (2801 cm ⁻¹) | | | | | | A ₇ | Aromatic C-H stretch (3059 cm ⁻¹), N-H stretch (3263 cm ⁻¹), C=O stretch (1692 cm ⁻¹), C-Cl stretch (676 cm ⁻¹), C-F stretch (1131 cm ⁻¹), C-N stretch (1274 cm ⁻¹), aliphatic C-H (2851 cm ⁻¹) | 8.2-8.4 (m aromatic), 7.3 (s NH), 3.2 (d CH ₂) | 335 (M ⁺) | | | | $\mathbf{A_8}$ | Aromatic C-H stretch (3096 cm ⁻¹), N-H stretch (3293 cm ⁻¹), C=O stretch (1648 cm ⁻¹), C-NO ₂ stretch (1531 cm ⁻¹)
C-Cl stretch (696 cm ⁻¹) | | | | | | A 9 | Aromatic C-H stretch (3037 cm ⁻¹), N-H stretch (3297 cm ⁻¹), C=O stretch (1650 cm ⁻¹), C-F stretch (1109 cm ⁻¹), C-NO ₂ stretch (1502 cm ⁻¹) | 8.4 (m, aromatic); 8.2 (m, aromatic); 3.3 (s, 1H CH2); 7.3 (s, NH) | 362 (M ⁺) | | | | \mathbf{A}_{10} | Aromatic C-H stretch (3078 cm ⁻¹), N-H stretch (3200-3350 cm ⁻¹), C=O stretch (1646 cm ⁻¹), C-NO ₂ stretch (1528 cm ⁻¹), C-F stretch (1123 cm ⁻¹), C-Cl stretch (696 cm ⁻¹). | | | | | | A ₁₁ | Aromatic C-H stretch (3081 cm ⁻¹), N-H stretch (3278 cm ⁻¹), C=O stretch (1591 cm ⁻¹), C-Br stretch (1055 cm ⁻¹), C-Cl stretch (688 cm ⁻¹), aliphatic C-H (2831 cm ⁻¹) | | | | | PHARMACOLOGICAL ACTIVITY Anthelmintic^[14, 15]: Indian adult earthworms (*pheretima* posthuma) were used to study anthelmintic activity. The earthworms were collected from the water logged areas of soils, Chincholi Village, Nashik, were washed with normal saline to remove all fecal materials. The earthworms in 6-7 cm in length and 0.2 - 0.3 cm in width were used for all experimental procedure. The earthworm resembles both anatomically and physiologically to the intestinal roundworm parasites of human beings, hence can be used to study anthelmintic activity. The newly synthesized compounds were tested for anthelmintic activity. Pheretima posthuma of nearly equal size were selected randomly for present study. The earthworms were divided into four groups of six earthworms in each. Albendazole diluted with normal saline solution to obtain 25 mg/ml and 50 mg/ml served as standard and poured into petridishes. The synthesized compounds were prepared in minimal quantity of DMSO and diluted to prepare two concentrations 25 mg/ml and 50 mg/ml for each compound. Normal saline served as negative control as shown in Table 4. Six earthworms nearly equal size are taken for each concentration and placed in petridishes at room temperature. The mean time for paralysis (min) was noted when no movement of any sort could be observed, except when the worm was shaken vigorously; the time death of worm (min) was recorded after ascertaining that worms neither moved when shaken nor when given external stimuli. In the same manner albendazole was included as reference compound. #### RESULTS AND DISCUSSION Table no 4: Anthelmintic activity of synthesized compounds A₁-A₁₁ | _ | Time for paralysis (min) | | Time for Death (min) | | | |---------------------------|--------------------------|------|-----------------------|------|--| | Compound | Concentration (mg/ml) | | Concentration (mg/ml) | | | | | 25 | 50 | 25 | 50 | | | A_1 | 2: 20 | 1.35 | 2.35 | 1.60 | | | A_2 | 2.13 | 1.33 | 2.21 | 1.20 | | | A_3 | 2.16 | 1.25 | 2.20 | 1.33 | | | A_4 | 2.11 | 1.06 | 2.17 | 1.10 | | | A_5 | 2.06 | 1.02 | 2.10 | 1.08 | | | A_6 | 2.05 | 1.08 | 2.01 | 1.01 | | | A_7 | 2.01 | 1.00 | 2.06 | 1.02 | | | A_8 | 0: 70 | 0:60 | 0:85 | 0:95 | | | A_9 | 0: 75 | 0:70 | 0:82 | 0:93 | | | A_{10} | 0: 69 | 0:61 | 0:74 | 0:70 | | | A_{11} | 0: 67 | 0:63 | 0:68 | 0:75 | | | Negative Control | | | | | | | Standard
(Albendazole) | 0:35 | 0:31 | 0:33 | 0:37 | | #### (--- No activity, Negative control- Normal Saline) aromatic and heterocyclic benzothiazole derivatives were synthesized from 2amino benzothiazole by treating with chloroacetyl chloride and further treatment with various aromatic and heterocyclic amines. The progress of reaction was monitored using precoated TLC plates. The absence of TLC spots for starting materials and appearance of new TLC spot at different R_f value were ensured to declare completion of reaction. The TLC plates were visualized either by iodine vapors or by viewing in UV-visible chamber. The reaction products of all the reactions were purified initially by different workup processes to remove unreacted starting materials if any and then by recrystallization using suitable solvents. Most of the steps were optimized in order to achieve quantitative yields. The physical data of synthesized derivatives are reported in Table 1 and 2 respectively. The FTIR spectra of final derivatives showed the expected bands for the characteristic groups which are present in the compounds such as C=O at 1600-1690cm⁻¹. The N-H stretching bands at 3343 -3185 cm⁻¹ show the presence of -NH group. The presence of aliphatic CH_2 stretch was observed bands at 2800-2950 cm⁻¹. The IR spectral studies are reported in **Table 3.** In ¹H NMR spectra of some derivatives, band was observed at δ 8.2-8.4 which showed the presence of aromatic ring and bands around δ 3.2 showed the presence of CH_2 . The mass spectra of one compound was taken and found to have 346 M^+ . All the compounds where screen for anthelmintic activity exhibited by compounds on *Pheretima posthuma* is shown in **Table 4.** A closer scrutiny of data from this table indicates that compounds A_8 , A_9 , A_{10} and A_{11} showed very high activity than all the other synthesized compounds. The compounds A_5 and A_6 showed good activity and compounds A_1 , A_2 , A_3 , A_4 and A_7 showed moderate activity. But all the compounds have shown less anthelmintic activity when compared to the standard drug Albendazole. ### **CONCLUSION** The present work is a bonafide and novel for the synthesis of Sulphur and Nitrogen containing heterocycles like benzothiazole of biological interest. In this view we have made extensive review and literature survey on substituted thiazole and benzothiazole derivatives for their medicinal uses with the help of chemical abstracts, journals, internet surfing and text books etc. The chemical and medicinal significance of title compounds were studied. 11 new derivatives of benzothiazole were synthesized with the standard chemicals and by established procedures. The synthesized compounds were tested for their preliminary tests, physical constants, TLC etc. The structures of the final compounds were confirmed by IR for all the compounds. However ¹H-NMR spectra, MS m/z and CHN analysis were carried out for prototype of compounds. The proposed compounds were screened for their Anthelmintic activity with the Albendazole as a standard drug in the well-equipped lab by using standard methods. The proposed work has given out many active Anthelmintic agents. Some of the compounds have showed very high activity. These compounds with suitable modification can be explored better for their therapeutic activities in the future. #### REFERENCES - http://www.articlesbase.com/medicinearticles/importance-of-benzothiazole-nucleus-inmedicinal-531934.html (Accessed on 06/04/2010). - Gaware V. M, Dhamak K. B, Synthesis And Evaluation Of anti-Tubercular Activity Of Benzothiazole Derivatives, ejbps, 2015; 2(2): 392-401. - 3. Kini S, Swain S, Gandhi A. Synthesis and Evaluation of novel Benzothiazole Derivates against Human Cervical Cancer cell lines. Ind J Pharm Sci. 2007; Jan-Feb: 46-50. - 4. Gupta S, Ajmera N, Gautam N, Sharma R, Gauatam D. Novel synthesis and biological activity study of pyrimido [2,1-b] benzothiazoles. Ind J Chem. 2009; 48B: 853-858. - 5. Kumbhare RM, Ingle VN. Synthesis of novel benzothiozole and benzisoxazole functionalized unsymmetrical alkanes and study of their antimicrobial activity. Ind J Chem. 2009; 48B: 996-1000 - Sreenivasa M, jaychand E, Shivakumar B, Jayrajkumar K, Vijaykumar J. Synthesis of bioactive molecule flurobenzothiazole comprising potent heterocylic moieties for anthelmintic activity. Arch Pharm Sci and Res. 2009; 1(2): 150-157. - 7. Pattan S, Suresh C, Pujar V, Reddy V, Rasal V, Koti B. Synthesis and antidiabetic activity of 2-amino[5"(4-sulphonylbenzylidine)-2, 4-thiazolidinenone]-7-chloro-6-flurobenzothiazole. Ind J Chem. 2005; 44B: 2404-2408. - 8. Magdy, M. M., Geneinah., "The 6,7,8-(5-aryl-1-phenyl-2-pyrazolin-3-yl) imidazole and pyrimido [2,1-b] benzothiazoles as novel anticonvulasants agents," Sci Pharm., 2001; 69(1): 53-61. - 9. Bele, D. S., Singhvi, I., "Synthesis and analgesic activity of some Mannich bases of 6-substituted-2-aminobenzothiazole," Res J Pharm and Tech., 2008; 1(1): 22-4. - Sawhney, S. N., Bhutani, S., Vir, D., "Synthesis of some 2-(2-benzothiazolyl)-and-2-(2-benzoimidazolyl)-6-aryl-4, 5 dihydro-3(2H)-pyridazinones as potential anti-inflammatory agents," Indian J Chem., 1987; 26B: 348-50. - 11. Vogel, A. I, "Aromatic amines and their simple derivatives, In elementary practical organic - chemistry Part I, Small Scale preparation," 2nd ed. CBS Publishers & Distributors., 1987; 312-13. - 12. Gurupadayya, B. M., Gopal, M., Basavaraja, P., Vaidya, V. P., "Synthesis and biological activities of fluorobenzothiazoles," Indian J Heterocycl Chem., 2005; 15(2): 169-72. - 13. Indian pharmacopoeia. New Delhi: Govt. of India, 1996; 2: A: 104-08. - 14. Srikanth Lingala, Raghunandan Nerella, Synthesis, antimicrobial and anthelmintic activity of some novel benzimidazole derivatives, Der Pharma Chemica, 2011; 3 (4): 344-352. - S.Vidyadhar*, M.Saidulu, In Vitro Anthelmintic Activity Of The Whole Plant Of Enicostemma Littorale By Using Various Extracts, IJABPT, 2010; I(3): 1119-1125.