

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

Research Article ISSN 2394-3211

EJPMR

NEWER APPLICATIONS OF BENZOTHIAZEPINES AS POTENTIAL CYTOTOXIC AGENTS

M. Venkateswara Rao^{a*} and V. Venkata Rao^b

^{a*}Guntur Medical College, Guntur. ^bChalapathi Institute of Pharmaceutical Sciences, Lam, Guntur.

*Corresponding Author: M. Venkateswara Rao

Guntur medical College, Guntur.

Article Received on 03/11/2016

Article Revised on 24/11/2016

Article Accepted on 14/12/2016

ABSTRACT

Benzothiazepines are synthesized by conventional synthesis metho. The compounds have been screened for Cytotoxic activity. Tested compounds were prepared by the reactions between 1,3-diarylprop-2-enones with orthoamino thio phenol. All the products were tested for purity by TLC and charecterised by elemental analysis and different spectroscopic methods.

KEYWORDS: 2-fluoroacetophenone, Benzothiazepine, 2-Aminothiophenol, piperidine.

INTRODUCTION

The benzothiazepines are important nitrogen- and sulfurcontaining seven-membered heterocyclic compounds in drug research since they possess diverse bioactivities. Benzothiazepines are the most representatives of benzologs of 1, 4-thiazepine and one of the three possible benzo-condensed derivatives, viz. 1,4-and 1,5-benzothiazepines.The benzothiazepine derivatives are of particular interest for lead discovery because they have been found active against different families of targets. The first molecule of benzothiazepine used clinically was diltiazem, followed by clentiazem, for their cardiovascular action. thebenzothiazepines are useful compounds in the drug research which has stimulated the invention of a wide range of synthetic methods for their preparation and chemical transformations. [25-45]

MATERIALS AND METHODS

Procedure for Synthesis of 1, 5-Benzothiazepines

Chalcones of 2-FluoroAcetophenone (1 mill mole) and O-Amino thiophenol (1 mill mole) was dissolved in 10 ml of boiling methanol the heat was removed and piperidine (2 drops) was added. After the mixture had cooled to room temperature the additional 10 ml of methanol was added and heated until the slurry was dissolved. Then add 1 ml of Glacial acetic acid and allow the mixture at 250C for overnight. The yellow color crystals benzothiazepine was separated out. This was recrystallised with methanol and filtered. The scheme and physical characterization data will be given below.

Table-1: Physical characterization data of benzothiazepines (BP_1 - BP_{12}).

Compound	R	Molecular Formula	Relative Molecular Mass (RMM)	Melting Point (°C)	Yield %
BP ₁	——————————————————————————————————————	C ₂₂ H ₁₇ FNS	365	140-143	89
BP ₂	- F	$C_{21}H_{14}F_2NS$	369	153-154	89
BP ₃	——Cl	C ₂₁ H ₁₄ CIFNS	385	143-145	93
BP ₄	Cl	C ₂₁ H ₁₄ CIFNS	385	120-123	71
BP ₅	F_F	C ₂₁ H ₁₃ F ₃ NS	387	138-141	75
BP ₆	C1 ————————————————————————————————————	C ₂₁ H ₁₃ Cl ₂ FNS	420	117-120	86
BP ₇	C_1 NO_2	C ₂₁ H ₁₃ ClFN ₂ O ₂ S	430	164-167	77
BP ₈	NO ₂	C ₂₁ H ₁₄ FN ₂ O ₂ S	396	142-145	82
BP ₉	$ \langle O_2 \rangle$	$C_{21}H_{14}FN_2O_2S$	396	130-131	89
BP ₁₀	ОН	C ₂₁ H ₁₅ FNOS	367	226-229	84
BP ₁₁	NO_2 $-CH_3$	C ₂₂ H ₁₆ FN ₂ O ₂ S	410	176-179	94

BP ₁₂	OCH ₃ OCH ₃	C ₂₄ H ₂₁ FNO ₃ S	441	148-151	85
	OCH ₃				

Table 2: IR spectral data (KBr disc) of benzothiazepines (BP_1 - BP_{12})

Compound	Position of absorption band (cm ⁻¹)
BP_1	1585 (C=N), 1505 (C=C), 1395 (C-N), 923 (C-F) and 654 (C-S).
BP_2	1625 (C=N), 1509 (C=C),1399 (C-N), 689 (C-S) and 931 (C-F)
BP_3	1595 (C=N), 1502 (C=C), 1384 (C-N), 778 (C-Cl), 921 (C-F) and 667 (C-S)
BP ₄	1596 (C=N), 1510 (C=C), 1365 (C-N), 688 (C-S), 923 (C-F) and 805 (C-Cl)
BP ₅	1612 (C=N), 1501 (C=C),1382 (C-N), 689 (C-S), 913 (C-F) and 944 (C-F)
BP ₆	1593 (C=N), 1502 (C=C), 1382 (C-N), 687 (C-S), 925 (C-F) and 805 (C-Cl)
BP ₇	1588 (C=N), 1520 (N=O, asymmetric), 1505 (C=C), 1382 (C-N), 1340 (N=O,
	symmetric), 656 (C-S), 933 (C-F) and 781 (C-Cl)
BP ₈	1580 (C=N), 1522 (N=O, asymmetric), 1501 (C=C), 1385 (C-N), 1345 (N=O,
DP ₈	symmetric), 924 (C-F) and 689 (C-S)
BP ₉	1586 (C=N), 1515 (N=O, asymmetric), 1506 (C=C), 1380 (C-N), 1338 (N=O,
DF 9	symmetric), 925 (C-F) and 713 (C-S)
$\mathbf{BP_{10}}$	1653 (C=N), 1528 (C-N), 1502 (C=C), 925 (C-F) and 694 (C-S)
BP ₁₁	1642 (C=N), 1548 (N=O, asymmetric), 1510 (C=C), 1380 (C-N), 1338 (N=O,
	symmetric), 927 (C-F) and 668 (C-S)
BP_{12}	1648 (C=N), 1505 (C=C), 1365 (C-N), 1225 (-O-CH ₃), 923 (C-F) and 678 (C-S)

Table 3: 1 H NMR spectral data of benzothiazepines (BP $_{1}$ – BP $_{12}$)

Compound	Chemical shift (δ) in ppm
•	4.94 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.25 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.9$ Hz, 1H, C_3 -
BP ₁	H-3a), 3.04 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 2.40 (3H, s, Ar-CH ₃), 7.22 (1H, s, Ar-H),
	7.61 (3H, m, Ar-H), 7.20-8.10 (7H, Ar-H).
BP ₂	5.27 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.50 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.6$ Hz, 1H, C_3 -
	H-3a), 2.97 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 7.05 (1H, s, Ar-H), 7.19 (3H, m, Ar-H), 7.20-
	8.09 (7H, Ar-H).
	5.0 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.53 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.9$ Hz, 1H, C_3 -
BP_3	H-3a), 3.39 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C_3 -H-3b), 7.25 (1H, s, Ar-H), 7.65 (3H, m, Ar-H), 7.22-
	8.08 (7H, Ar-H).
	4.89 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.43 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.6$ Hz, 1H, C_3 -
BP_4	H-3a), 3.36 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 7.12 (1H, s, Ar-H), 7.72 (3H, m, Ar-H), 6.95-
	7.60 (7H, Ar-H).
	5.31 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.36 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.9$ Hz, 1H, C_3 -
BP_5	H-3a), 2.87 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 7.08 (1H, s, Ar-H), 7.30 (3H, m, Ar-H), 6.98-
	8.12 (6H, Ar-H).
	5.10 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.27 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.6$ Hz, 1H, C_3 -
BP_6	H-3a), 2.66 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 7.15 (1H, s, Ar-H), 7.20 (3H, m, Ar-H), 7.05-
	7.95 (6H, Ar-H).
D.D.	4.32 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.74 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.9$ Hz, 1H, C_3 -Hz, $J_{3a,2} = 9.9$ Hz, 1H, $J_{3a,2} = $
BP ₇	H-3a), 3.51 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 7.09 (1H, s, Ar-H), 7.12 (3H, m, Ar-H), 6.98-
	8.10 (6H, Ar-H).
DD	5.42 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.38 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.6$ Hz, 1H, C_3 -Hz, 12.0 Hz, 1H, C_3 -Hz,
BP ₈	H-3a), 2.86 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 7.30 (1H, s, Ar-H), 7.80 (3H, m, Ar-H), 7.48-
	8.60 (7H, Ar-H).
BP ₉	5.42 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.47 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.7$ Hz, 1H, C_3 -H, 3a), 3.10 (t. $J_{11} = J_{12} = 12.9$ Hz, 1H, C_4 -H, 3b), 7.18 (1H, s. Ar, H), 7.25 (3H, m. Ar, H), 7.25
	H-3a), 3.10 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C ₃ -H-3b), 7.18 (1H, s, Ar-H), 7.25 (3H, m, Ar-H), 7.25-8.20 (7H, Ar-H).
	3.85 (dd, $J_{2,3a} = 5.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.34 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.0$ Hz, 1H, C_3 -
BP_{10}	3.65 (dd, $J_{2,3a} = 3.1$ Hz, $J_{2,3b} = 12$ Hz, 1H, C_2 -H), 3.54 (dd, $J_{3a,3b} = 14.4$ Hz, $J_{3a,2} = 9.0$ Hz, 1H, C_3 -H-3a), 2.41 (t, $J_{3b,3a} = J_{3b,2} = 12.9$ Hz, 1H, C_3 -H-3b), 7.25 (1H, s, Ar-H), 7.30 (3H, m, Ar-H), 7.15-
	7.80 (7H, Ar-H), 6.85 (1H, s, Ar-OH).
	7.00 (711, 711-11), 0.05 (111, 5, 711-011).

CYTOTOXICITY STUDIES

The *in vitro* cytotoxicity of the test compounds ($\mathbf{B_1}$ to \mathbf{B}_{12}) was evaluated by the MTT assay. This is a colorimetric assay that measures the reduction of yellow 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by mitochondrial succinate dehydrogenase. The MTT enters the cells and passess into the mitrochondria where it is reduced to an insoluble, coloured (dark purple) formazan product. The cells are then solubilized with DMSO and the released,

solubilized formazan reagent is measured spectrophotometrically at 570 nm. Since reduction of MTT can only occur in metabolically active cells, the level of activity is a measure of the viability of the cells. When the amount of dark purple formazan produced by the cells is treated with a agent compared with the amount of formazan produced by untreated control cells, the effectiveness of the agent in causing death of cells can be deduced through the production of a doseresponse curve.

REDUCTION OF MTT MATERIALS

HT-29 (colon cancer), MCF-7 (breast cancer) and DU-145 (prostate cancer) cell lines were obtained from National Centre for Cell Science (NCCS), Pune, India. DMEM (Dulbeccos Modified Eagels Medium), MEM (Minimum Essential Media Eagle), MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidel, Trypsin, EDTA were purchased from Sigma chemicals (St.Louis, MO). Fetal bovine serum (FBS) was purchased from Arrow Labs, 96 well flat bottom tissue culture plates were purchased from Tarson.

METHOD

a) Maintainence of cell lines

HT-29 and DU-145 cell lines were grown as adherent in DMEM media, whereas MCF-7 was grown in MEM media supplemented with 10% fetal bovine serum. The cultured was maintained in a humidified atmosphere with 5% CO₂.

b)Preparation of samples for cytotoxicity

Stock solutions of test compounds $(B_1 \text{ to } B_{25})$ were prepared (10 mg/mL) in DMSO and from them various dilutions were made with sterile water to get the final drug concentrations of 10, 50, 100 and 200 mg/mL.

c) Cytotoxicity evaluation

The cells were seeded in 96 well plates at a density of 1x10⁴ (counted by Tryphan blue exclusion dye method) per well and were incubated for 24 h to recover. After incubation the medium was replaced with fresh media Purple coloured complex

containing different dilutions of the test compounds. Then the plated were incubated for additional 48 h at 37°C in DMEM/MEM with 10% FBS medium. Following incubation, the medium was removed and replaced with 90 ul of fresh DMEM without FBS. To the above wells, 10 µl of MTT reagent (5 mg/mL of stock solution in DMEM without FBS) was added and incubated at 37°C for 3-4 h, there after the above media was replaced by adding 200 µl of DMSO to each well (to dissolve the blue formazan crystals) and incubated at 37°C for 10 min. The absorbance at 570 nm was measured on a spectrophotometer.

Methotrexate was used as reference drug for comparison. Assay was performed in triplicate for three independent determinations. The cytotoxicity was expressed as IC50 (µg/mL) which is the concentration of the compound that inhibited proliferation rate of the tumor cells by 50% as compared to the control untreated cells. IC₅₀ values were determined from the plot: % inhibition versus concentration.

% inhibition at the given concentration = 1- (Absorbace average) ----- x 100 (Control absorbance average)

 IC_{50} =Inv.log(50-c) / m; c and m derived from y=mx+c of plot of % inhibition Vs log C. The results of the compounds are shown in table 4.

Table-4: Cytotoxicity of the new benzothiazepines (BP $_1$ to BP $_{12}$) (IC $_{50}$ values in $\mu g/mL$)

Compound	R	Cell line			
Compound		HT-29	MCF-7	DU-145	
BP_1	4"-methyl phenyl	55 ± 2	62 ± 2	52 ± 1	
BP_2	4"-fluorophenyl	42 ± 2	48 ± 1	62 ± 2	
BP_3	4"-chlorophenyl	92 ± 2	78 ± 2	65 ± 2	
BP ₄	2"-chlorophenyl	105 ± 2	168 ± 1	122 ± 2	
BP ₅	2",4"-difluorophenyl	28 ± 1	42 ± 2	33 ± 2	
BP_6	2",4"-dichlorophenyl	42 ± 2	67 ± 1	56 ± 2	
BP_7	2"-chloro-5"-nitrophenyl	115 ± 2	NA	NA	
BP_8	3"-nitrophenyl	180 ± 2	NA	NA	
BP_9	4"-nitrophenyl	155 ± 1	NA	105 ± 2	
BP_{10}	3"-hydroxyphenyl	148 ± 2	129 ± 2	155 ± 1	
BP_{11}	3"-nitro-4"methylphenyl	64 ± 2	58 ± 1	46 ± 2	
BP_{12}	3",4",5"-trimethoxyphenyl	132 ± 2	NA	93 ± 2	
Methotrexate		11 ± 1	9 ± 1	6 ± 1	

CONCLUSION

All the synthesized benzothiazepines have been evaluated for their cytotoxicity against HT-29 (colon cancer), MCF-7 (breast cancer) and DU-145 (prostate cancer) cell lines. Methotrexate was used as the reference standard. The results clearly revealed that most of the 1,5-benzothiazepines possessed cytotoxic activity as evidenced by the IC $_{50}$ values and is much higher than that of the chalcones indicating the positive contribution of benzothiazepine nucleus in enhancing the cytotoxic activity. Infact, a number of anticancer drugs being used currently possessed benzothiazepine nucleus as part of their structures.

REFERENCES

- 1. Anshu, D., Ruby, S., Dharmendra, S., Ashok, L., Asha, S. *Phosphorus, Sulfur, Silicon Relat. Elem.*, 2010; 185: 2472.
- Ghotekar, D.S., Joshi, R.S., Mandhane, P.G., Bhagat, S.S., Gill, C.H. *Indian J. Chem., Sect. B*, 2010; 49B: 1267.
- 3. Pant, S., Sharma, P., Pant, U.C. *Phosphorus, Sulfur, Silicon Relat. Elem.*, 2008; 183: 2974.
- 4. Desai, K.G., Desai, K.R. *Indian J. Chem., Sect. B*, 2007; 46B: 1179.
- 5. Garg, N., Chandra, T., Archana; Jain, A.B., Kumar, A. Eur. J. Med. Chem., 2010; 45: 1529.
- 6. Sarro, G.D., Chimirri, A., Sarro, A.D., Gitto, R., Grasso, S., Zappala, M. Eur. J. Med. Chem., 1995; 30: 925.
- 7. Saini, R.K., Joshi, Y.C., Joshi, P. *Phosphorus, Sulfur, Silicon Relat. Elem.*, 2008; 183: 2181.

- 8. Grandolini, G., Perioli, L., Ambrogi, V. *Eur. J. Med. Chem.*, 1999; 34: 701.
- 9. Yamada, S., Mori, Y., Morimatsu, K., Ishizu, Y., Ozaki, Y., Yoshioka, R., Nakatani, T., Seko, H. *J. Org. Chem.*, 1996; 61: 8586.