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Representation of biological systems as networks 
Direct or indirect interaction as links and molecular 

components within a cell as nodes is deployed as a 

representation mode of intracellular biological networks 

(D. Eisenberg et al., 2000). Graphs are the mathematical 

structures used for representation of different types of 

intracellular molecular biological networks (A.Ma‘ayan 

et al., 2005). Some examples are (i) metabolic networks, 

for instance, the EcoCyc database provides access to 

metabolic networks across many organisms(P. D. Karp et 

al., 1996) (ii) cell signaling (iii) kinase-substrate 

networks, such as the one we constructed for developing 

the tool kinase enrichment analysis (KEA) (A. 
Lachmann and A. Ma‘ayan, 2009) (iv) gene regulatory 

networks (v) protein-protein interaction networks for 

instance, the human protein reference database (HPRD), 

which contains a large manually extracted data set 

describing mammalian protein-protein interactions (T. S. 

Keshava Prasad et al., 2009) (vi) epistasis interaction 

networks, which are networks created by connecting 

genes if they exhibit a genetic interaction when knocked 

out or down-regulated (D. Segre et al., 2005) (vii) 

disease gene interaction networks, which connect 

diseases to genes that when mutated cause or contribute 
to the disease (K. I. Goh et al., 2007) and (viii) drug 

interaction networks in which drugs are linked to their 

targets.(M. A. Yildrim et. al 2007 and A. Ma‘ayan et al., 

2007). 

 

Directed or undirected graphs, directed acyclic graphs 

(DAGS), trees, forests, minimum spanning trees, 

Boolean networks and Steiner trees (M. T. Dittrich et al., 

2008 and A. G. White et al., 2007) are the different types 

of graphs utilized in representation of networks. The 

integration of data from many different studies into a 
single frame work is accomplished with network 

representation. Tanay et al. showed integration of 

different types of experimental data of genes as anchors 

(Tanay et al., 2004). Networks can be generated directly 

from time-series data of from perturbation data. Reverse 

engineering of topology of regulatory networks can be 

done directly from data tables of altered quantities of 

mRNA expression or protein abundance by time or under 

different perturbations using Bayesian networks (J. Pearl, 

2000 and K. Sachs et al., 2005) which are initiative from 

advanced statistical learning techniques, or using tools, 

such as ARCANE, that utilize the notion of mutual 
information from information theory originally 

developed by Claude Shannon (A. A. Margolin et al., 

2006). 

 

Data visualization is one of the challenging tasks in 

network analysis. Ball and stick diagram is one of the 

common methods to visualize networks and several 

useful software tools exist for creating these: Pajek 

(http://vlado.fmf.uni-lj.si/pub/networks/ pajek/), 

GraphViz (http://www. graphviz.org/), Cytoscape (P. 

Shannon et al., 2003), VisANT (Z. Hu et al ., 2008), 
SNAVI (A. Ma‘ayan et. al 2009), AVIS (S. I. Berger et 

al., 2007) and yEd 

(http://www.yworks.com/products/yed/) are a few 

examples. Biological networks can be based on 

integration of multiple sources of published information 

or manipulated directly from the data. Even some 

biological networks can be connected to diseases or 

drugs by integrating the different data sets through the 

abstraction to a network representation. 
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INTRODUCTION 

Network analysis of biological systems is useful for elate integration and analysis as it is gaining wide acceptance. 

Representation of biological system is just the beginning and it provides overview of the system under 

investigation. As the biological intracellular systems are dynamic, biological outcomes defines the quantitative 

balances between components. Network models that include more details about the kinetics, localization, and 

quantities of the molecular components should aid in understanding cellular behavior and cellular regulation at the 

molecular level from a systems perspective. This overview provide the idea of network analysis to predict 

interaction of genes and proteins in a biological network of genome to identify the gene or protein as target and 

aids in the prognosis of disease or malfunction in a biological pathway. 

http://vlado.fmf.uni-lj.si/pub/networks/
http://www/
http://www.yworks.com/products/yed/
http://www.ejpmr.com/
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Breakthrough in Network analysis 
Complex systems can be viewed as networks wherein 

components within a complex system can be represented 

as nodes and linked through their interactions, which are 

called edges is a popularized notion propounded by the 

seminal publications by Watts and Strogatz in 1998 (D. J. 
Watts, S. H. Strogatz, 1998) and Barabási and Albert in 

1999 (A.L. Barabasi, R. Albert, 1999). This approach is 

attributed in many scientific disciplines, including 

systems biology and cell signaling research. Analysis of 

the network‘s topology is accomplished by representing 

the complexity of biological regulatory systems as 

network and it equips insight into the organizational 

principles of the cell, achieved through evolution. 

 

Network topology encompass information about the 

general and specific properties of nodes, properties of 

edges, properties of the entire network (global 
topological properties) and modules within the network. 

Properties of nodes embrace connectivity degree, which 

is the number of links for each node; node betweenness 

centrality(M. E. Newman, 2001), which is the number of 

shortest paths that go over a node amidst all shortest 

paths between all possible pairs of nodes; closeness 

centrality, which is the mediocre shortest path from one 

node to all other nodes; eigenvector centrality (J. L. 

Morrison et al., 2005), which is a more enlightened 

centrality measure that appraises the closeness to highly 

connected nodes; and bioinformatic analyses of the 
molecules depicted by the nodes, for example, their Gene 

Ontology annotations (M. A. Harris et al., 2004), which 

exemplify the nodes function, location in the cell and 

entanglement biological processes. 

 

Edge betweenness centrality (J. Yoon et al., 2006), which 

is the number of number of shortest paths that go through 

an edge among all possible shortest paths between all the 

pairs of nodes; the types of relationship, for example, 

edges may represent activating or inhibiting relationships 

between a pair of nodes; and edge directionality, which 

indicates the upstream and downstream nodes connected 
by a particular link are the properties of edges 

supervened in analysis. Phosphorylation, binding, gene 

regulation, are the type of interactions in which analysis 

is specified in the Science Signaling Connections Maps 

in the Database of Cell Signaling (N. R. Gough, 2002), 

or those proposed by the Edge Ontology (L. J. Lu et al., 

2007) can be used to further characterize the network‘s 

topology. Global topological characteristics of networks 

include connectivity distribution (A.L. Barabasi, R. 

Albert, 1999), which is represented by a histogram 

showing number of nodes which is to be linked; 
characteristic path length (D. J. Watts, S. H. Strogatz, 

1998), which can be reckoned by using Floyd-Warshall‘s 

or Dijkstra‘s algorithms and represents the average 

shortest path interpolated all pairs of nodes; clustering 

coefficient (D. J. Watts, S. H. Strogatz, 1998), which 

impersonates the local density of interactions by 

calibrating the connectivity of neighbors for each node 

averaged over the entire network; grid coefficient, which 

prolongs the clustering coefficient from only looking at 

first neighbors to also examining second neighbors; 

network diameter, which typify the longest shortest path; 

and assortativity, which assesses whether nodes prefer to 

attach to other nodes on the basis of common nodal 

properties (M. E. J. Newman, 2003). Recurring circuits 
of few nodes and their edges in network are christened as 

network motifs, which appear in the topology of 

biological regulatory networks more frequently than in 

the random or shuffled networks (A. Ma‘ayan et al., 

2005, R. Milo et al., 2004, S. S. Shen-orr et al., 2002). 

Particular important motifs directly influence a sysytem‘s 

overall dynamics subsumes feedback loops (D. Angeli et 

al., 2004), feed forward loops (S. Mangan et al., 2003), 

bifans (A. Lipshtat et al., 2008, P. J. Ingram et al., 2008) 

and other types of cycles (A. Ma‘ayan et al., 2008). 

 

Graphlets (N. Pruzulj et al., 2006) are the network motifs 
which are identified with directed or oriented graphs or 

in undirected networks and motifs present in protein-

protein interaction network are the biological examples 

of graphlet. Modularity is a uniquity of network, which 

embodies the modules, or network clusters, which are 

dense areas of connectivity separated by regions of low 

connectivity. Algorithms convened to scare up modules 

are nearest neighbors clustering, Markov clustering and 

betweenness centrality– based clustering, which avail 

nodes with high betweenness centrality and low 

connectivity to separate clusters (M. E. Newman 2001). 
Structural organization of biological network and 

topology analysis relinquish idea to evolutionary 

processes which develop the observed topology of 

biological regulatory network. Recreation of realistic 

topologies by network evolution algorithms is based on 

simple rules governs the network growth. Network 

evolution models paved the way to understand the design 

principles assorted within complex biological regulatory 

networks. Some of these algorithms comprise rich-get-

richer (A.L. Barabasi, R. Albert, 1999), growth by 

duplication- divergence (S. A. Teichmann, M. M. Babu 

2004), exponential growth (A.L. Barabasi, R. Albert, 
1999), and geometric growth (D. J. Higham et al., 2008). 

Alternative models initiated with a random network 

where network gradually evolves to a realistic topology 

based on rules of reposition links (D. J. Watts, S. H. 

Strogatz, 1998). Deviation of topological properties 

scrutinized in real networks from random connectivity is 

determined by comparing with Erdos- Renyi random 

networks (P. Erdos, A. Renyi, 1960) or other types of 

shuffled networks (S. Maslov, K. Sneppen, 2002), which 

serve as statistical controls are not beheld by chance. 

Emanating of general properties of biological regulatory 
network is accomplished by the application of various 

topological analyses. Most biological molecular 

regulatory networks are scale, which imports the 

connectivity distribution, the distribution of edges per 

node, fits a power law (A.L. Barabasi, R. Albert, 1999). 

The scale-free architecture fabricates the networks robust 

to random failures (R. Cohen et al., 2000). 
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Biological networks are also heavens above, implied that 

they are highly clustered with shortcuts that connect the 

clusters (D. J. Watts, S. H. Strogatz, 1998). ―Party‖ hubs 

and ―date‖ hubs (J. D. Han et al., 2004) are present in 

biological networks: Interaction of nodes with many 

proteins at one cellular compartment at a specific time 
are party hubs, whereas date hubs are proteins that can be 

endowed in many places inside the cell and inter react 

with various partners at different times. Multisite or 

single-site (P. M. Kim et al., 2006) are the different types 

of hubs. Some cell signaling networks have receptors 

which are present in a bow like structure share few 

downstream adapter proteins (the knot in the bow) (K. 

Oda, H. Kitano, 2006) and these adapter nodes integrate 

information from many receptors and then disseminate 

the information to many effectors in multiple cell 

signaling pathways. Fewer feedback loops tend to be 

nested (A. Ma‘ayan et al., 2008) which are present in the 
topology of regulatory biochemical networks than 

observed in random Erdos-Renyi networks. Bifan motifs 

are most abundant (R. Milo et al., 2004, A. Lipshtat et 

al., 2008) in the topology of gene and cell signaling 

networks, probably due to evolution over duplication and 

divergence (S. A. Teichmann, M. M. Babu 2004). 

Feedback loops are depleted in most cycled real 

networks which are made of source and sink nodes. Such 

topology bequeath to optimal design for dynamical 

stability. Network evolution models are developed which 

starts with a random directed Erdos-Renyi–type network 
(B. D. MacArthuret al., 2010). Links are reassigned in 

the network evolution process if they bestowed to a local 

increase of sources and sinks. Random network becomes 

dynamically stable and displays a power-law, scale-free, 

connectivity distribution after several evolutionary steps. 

In addition of a simple rule, the evolution can endure 

forever, perpetuating the network scale-free structure, as 

well as manifesting dynamics that are at the cusp 

between stability and chaos. The hubs which are highly 

connected nodes are supplemented in the network; even 

their rise and fall in their connectivity but the global 

properties of the network remain constant. Hence, the 
simple theoretical network model captures dynamical 

evolutionary features perceived in real complex systems. 

 

Prognosis of network analysis 

Different algorithms can be enforced to predict 

―connections‖ between lists of ―seed‖ nodes using 

precedent knowledge of molecular interactions. For 

example, differentially regulated genes or proteins under 

control versus treatment conditions could be used as seed 

nodes for edifice the functional networks using 

information from antecedent publications (S. I. Berger et 
al., 2007, K. D. Bromberg et al., 2008). Mean-first-pass-

time (MFPT) (J. D. Noh, H. Rieger 2004), nearest 

neighbor expansion, Steiner trees (M. T. Dittrich et al., 

2008, A. G. White, A. Ma‘ayan 2007, S. S. Huang, E. 

Fraenkel, 2009) and the shortest path search algorithm 

(E. W. Dijkstra, 1959) are the algorithms used to 

prognosticate the connections between genes, proteins, 

or both, using information from background networks to 

form subnetworks. 

 

Huang and Fraenkel intertwine the signaling pathways to 

transcription factors (S. Huang, E. Fraenkel, 2009) is a 

basis of Steiner tree approach and it is the similar 

approach for connecting of commonly expressed genes 
in stem cells (F. J. Muller et al., 2008). These methods 

are useful for predicting functional connections of nodes 

and additional nodes that had not been ascertained 

experimentally. Utilization of background knowledge is 

mandatory to predict interactions in network analysis. 

For example, circuits which appear to have missing links 

in clusters within the network structure are completed in 

protein-protein interactions (H. Yu et al., 2008) or by 

interconnecting the clusters in the network structure with 

function of nodes in clusters (I. Albert, R. Albert 2004). 

Instead of predicting the networks or portions of 

networks, the information about the molecules within the 
network also be predicted from various properties of the 

network. For example, protein function is derived from 

the known protein-protein interactions and the 

assumption is that proteins which are close in network 

space are plausibly to share functions (R. Sharan et al., 

2007). Gene Set Enrichment Analysis (GSEA) (A. 

Subramanian et al., 2005) is utilized to derive predictions 

using network analysis are conceptually related. Gene 

sets can be indoctrinated to networks and networks can 

be indoctrinated to gene sets. For example, one can 

create a network by connecting genes which are targeted 
by the same micro RNAs, claim many Gene Ontology 

terms, or found in many pathways together. Gene sets 

are also created from networks and they encodes proteins 

of genes serves as a resource gene set library for the gene 

set enrichment analysis tool Lists2Networks (A. 

Lachmann, A. Ma‘ayan 2010). 

 

Challenges and future perspectives 

Pathway and network analysis can adequately unveil 

biological systems flustered in tumor cells. Despite, the 

knowledge of pathways and networks both in normal and 

cancer cells are far complete. Extensive quantitative data, 
orthogonal data (DNA, RNA and Protein) and 

comprehensive pathway descriptions and regulatory 

descriptions are required for the techniques of network- 

based modeling. Development of pathway databases and 

regulatory signaling networks is to be constructed for 

better understanding of biological processes including 

protein- coding genes which involves many noncoding 

genomic elements. 

 

A second challenge is the expensive computational 

modeling needs an extensive weeks of CPU time for 
permutation-based estimation of statistical significance. 

As the experimental data sets regarding reference 

pathways and networks will increase in progressive 

manner. Fundamental computer science research is 

needed to recuperate the algorithms to rule thousands of 

samples (Dittrich, MT., et al., 2008). 
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A final challenge is the appraisal of pathway and 

network methods in patient care. Pathway specific 

therapeutics is to be designed to predict therapies based 

on network constructed from molecular alterations 

present in individual tumors. Statistical challenge is 

embedded to derive the information from adaptive 
clinical trials. Complex network level alterations 

happened in patients is to be communicated by clinicians 

is a difficult method. 

 

Though the understanding of cancer biology through 

network and pathway analysis is embryonic, but it is the 

potential path to surmise the disease etiology and 

treatment. 
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