

EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.ejpmr.com

Research Article
ISSN 2394-3211
EJPMR

CLINICOPATHOLOGICAL STUDY OF OPPORTUNISTIC INFECTIONS IN HIV POSITIVE CHILDREN WITH SPECIAL REFERENCE TO CD₄ CELL COUNT

Dr. Shantisena Mishra¹, Dr. Pratibha Rai², Dr. Arakhita Swain*³ and Dr. Saiprasanna Behera⁴

¹Associate Professor Dept. of Pediatrics, MKCG Medical College, Berhampur.

²Sr. Resident, Dept. of Pediatrics, SCB Medical College, Cuttack.

³Prof. Dept. of Pediatrics SLN Medical College, Koraput.

⁴Research Associate, Dept. of Pediatrics, SCB Medical College, Cuttack.

*Corresponding Author: Dr. Arakhita Swain

Prof. Dept. of Pediatrics SLN Medical College, Koraput.

Article Received on 15/08/2018

Article Revised on 05/09/2018

Article Accepted on 25/09/2018

ABSTRACT

Background: HIV in pediatric age group is a major world health problem. In India childhood, HIV amounts to around 4.4% of all cases. It is a large contributor to childhood morbidity and mortality in India. Usually the commonest cause of death in these children is opportunistic infections, which are more seen in CD₄ cell count depleted children. **Aims and Objectives:** The study was carried out with the objectives to find out the incidence of OI in HIV positive children and its relation to CD₄ cell count. **Materials and Methods:** Hospital based observational study conducted over on period of 2 years (Sept 2015 to Aug 2017) at pediatrics Dept. of SCB Medical College, Cuttack, India. HIV seropositive children less then 14 years of age were included in the study. Detailed clinical evaluation and lab investigations were done and they were put into WHO clinical stages. They were further classified based on CD₄ count. **Results:** Out of total 50 cases, 28 presented in stage-III and 15 in stage-IV at first visit. Girls had higher mean CD₄ count (488) than boys (340). PTB was most common OI (28%) followed by oral candidiasis. Children with OI had less CD₄ cell count. **Conclusion:** The clinical manifestations of HIV infection in children may be similar to number of other diseases. As the WHO clinical stage and grade of malnutrition increases, CD₄ count decreases thus can be a reliable marker of disease progression in HIV infected children.

KEYWORDS: HIV, CD₄ cell count, OI.

BACKGROUND

HIV infection is becoming a prominent cause of childhood morbidity and mortality in India. Although children represent only 6% of all people infected with HIV/AIDS, out of this about 50% die within 2 yrs of onset, constituting about 18% out of the 3.2 million deaths due to HIV every year. [1]

The predominant mode of transmission in children is vertical i.e., it is acquired through intrauterine, intrapartum or through breast feeding from a HIV infected mother. Other routes such as sexual transmission and blood transfusion are not as common. [2]

Children with HIV infection differ from HIV infected adult patients. Children usually have higher viral load, weaker immune system, variable latency period, fewer opportunistic infections, fewer medicine approved for the management, different spectrum of clinical manifestations, diagnostic differences, and patterns of disease progression.

Soon after HIV was found to the cause of AIDS, it was shown that the virus binds to receptors on CD_4 cells, enters the cells and uses them to create new virus, destroying them in the process. This results in the depletion of CD_4 cells and immunodeficiency.

Opportunistic infections (OIs) are the most common cause of death among children living with HIV/AIDS. These infections are called "opportunistic" because they take advantage of the weakened immune system and they can cause devastating illnesses. OIs are a sign of declining immune system. OIs in children are usually primary and have a more fulminant course in comparison to adults. OIs in HIV children are typically seen in children with severe depression of CD_4 count or CD_4 %. $^{[3]}$

With the increased availability of equipment to perform CD_4 counts and the knowledge that CD_4 cells were the primary target of HIV, the determination of CD_4 count became the standard measure of immunodeficiency in HIV infected patients in resource rich countries. The relative ease of CD_4 cell monitoring also led to its

advocacy in treatment guidelines for determining when to start, stop or change ART and for deciding when to initiate prophylaxis for opportunistic infections. This is despite the fact that CD_4 count does not always correlate with functional immunity; some patients with normal CD_4 counts are susceptible to OIs and some patients with significantly depressed CD_4 counts do not seem unduly susceptible to OIs. Hence this study attempts to correlate CD_4 count with opportunistic infections.

AIMS AND OBJECTIVES

The present study was carried out with the objectives to find out the incidence and clinical profile of opportunities infections in HIV infected children less than 14 years of age and to correlate it with CD4 counts.

MATERIALS AND METHODS

The study was a hospital based observational study conducted over a period of 2 years (Sept 2015 to Aug 2017) at Dept. of pediatrics, SCB medical college, Cuttack, India. Institutional ethics committee of the hospital approved the study. All children seropositive for HIV/DBS positive / whole blood DNA PCR positive below 14 years of age were selected as cases. Based on clinical presentations, they were classified into various

WHO clinical stages who were further classified based on CD₄ counts according to WHO classification of immunodeficiency. Various data obtained were displayed in tables and charts, statistical analysis of the observations were done using percentages mean etc.

RESULTS

In the study 30% of children were in the age group of 4 to 7 years. The mean age of presentation was 7.12 years. 56% of children presented with WHO clinical stage III & 30% with stage IV at first visit. Female children had higher mean CD₄ count (488 cells/cmm) than male children (340 cells/cmm). Vertical transmission was the predominant mode of transmission (92%). Anemia (48%). fever (42%) and cough (34%) were common symptoms. PTB (28%) was the most common opportunistic infection seen at mean CD₄ count of 267 ± 5.37, Oral candidiasis at CD₄ count of 364.8 \pm 6.5, Peneumocystis jiroveci pneumonia at CD4 count of 261.25 ± 0.8 . Children with opportunistic infection had lesser CD₄ count. With the increasing grades of WHO clinical stage, there was CD₄ count decline, the severity of immune suppression increases with increasing WHO clinical stages.

OBSERVATION

Table 1: Age and Gender wise classification of Children.

Age group	Male (%)	Female (%)	Total (%)
0-5Yr	4 (14)	7 (31)	11 (22)
5 – 7Yr	6 (21)	9 (41)	15 (30)
7 – 10Yr	8(29)	3 (14)	11 (22)
10 – 13 Yr	10(36)	3 (14)	13

Table 2: Age group and mean CD4 count.

Age group	Number (%)	Mean CD4 count ± SD
0-5Yr	11 (22)	635 ± 11.49
5 – 7Yr	15 (30)	428 ± 9.61
7 – 10Yr	11 (22)	213 ± 8.13
10 – 13 Yr	13 (26)	209 ± 5.94
Total	50 (100)	

Table 3: Gender wise CD4 count of HIV infected children.

Gender	Number	Mean CD4 count ± SD
Male	28 (56%)	340 ± 8.31
Female	22 (44%)	488 ± 9.63

Table 4: Age and WHO classification of immunodeficiency.

Age group	No evidence of suppression	Evidence of moderate suppression	Severe suppression	Total
0-5Yr	2 (18%)	5 (46%)	4 (36%)	11
5 – 7Yr	4 (27%)	4 (27%)	7 (46%)	15
7 – 10Yr	3 (27%)	3 (27%)	5 (46%)	11
10 – 13 Yr	00	6 (46%)	7 (54)	13
Total	9 (18%)	18 (36%)	23 (46%)	50

Table 5: Frequency of various symptoms and sign in HIV infected children.

Symptoms and sign	Percentage
Fever	42
Recurrent / Chronic diarrhea	7
Cough	34
Weight loss	25
Skin lesions	23
Lymphadenopathy	17
Hepatomegaly	7
Hepatosplenomegaly	3
Anemia	48
Recurrent / persistent bacterial peneumonia	10
CNS involvement	9

Table 6: Opportunistic infections in HIV infected children.

Opportunistic infections	Percentage
Pulmonary tuberculosis	26%
Abdominal Tuberculosis	2%
Tubercular meningitis	8%
Oral candidiasis	10%
Pneumocystis carinii pneumonia	8%
Herpes Zoster	2%

Table 7: Correlation of CD4 count with opportunistic infection.

Opportunistic infections	Number (%)	Mean CD4 count ± SD
Abdominal TB	1 (2%)	348
Pulmonary TB	13 (26%)	267 ± 5.37
Oral candidasis	5 (10%)	364.8 ± 6.5
Tubercular meningitis	4 (8%)	319 ± 3.36
Pneumocystis Jirovecii pneumonia	4 (8%)	261.25 ± 10.8
Herpes zoster	1 (2%)	613

Table 8: Correlation of opportunistic infections with immunological category.

Opportunistic infections	No evidence of suppression	Evidence of moderate suppression	Severe suppression	Total
Abdominal TB	0	1 (100%)	0	1
Pulmonary TB	0	3 (20%)	10 (80%)	13
Oral candidiasis	0	2 (40%)	3 (60%)	5
Tubercular meningitis	0	2 (50%)	2 (50%)	4
PCP	0	0	4 (100%)	4
Herpes Zoster	0	1 (100%)	0	1

Table 9: Correlation of CD4 count with WHO clinical stages.

WHO clinical stage	Number	Mean CD4 count ± SD
I	4	1093 ± 10.73
II	3	611±8.85
III	27	338.5 ± 5.70
IV	16	307 ± 6.09

Table 10: Correlation of WHO clinical stages with immunological category.

WHO clinical stage	No evidence of suppression (stage1)	Evidence of moderate suppression (stage 2)	Severe suppression (stage 3)
I	5 (100%)	00	00
II	3 (100%)	00	00
III	1 (4%)	13 (46%)	14 (50%)
IV	00	4 (29%)	10 (71%)

DISCUSSION

Out of 50 cases in the study majority of children were in the age group of 4 to 7 years. The mean age of presentation was 7.12 yrs. Shah *et al* reported mean age of presentation of 4.7 years and study conducted by Ramesh R Pol reported mean age of 5.75 years and most of the children presented late with WHO clinical stage 3 (56%) and 4 (30%). In the present study, 28 (56%) were males and 22 (44%) were females. Male to female ratio was 1:0.78. Similar male predominance was noted in other studies like Agarwal et al^[4], Shah et al^[5] and Sehgal et al.^[6]

It was observed that as age advances CD_4 count decreases. As the age advances severity of immune suppression increases and hence the CD_4 count decreases, however the statistical significance is not found using analysis of variance, [F = 1.01, p>0.05].

Female mean CD_4 count was 488 and for male it is 340, which is lower but the difference was statistically not significant. [t = 0.67, p > 0.05]. Similar result had been observed by Agarwal *et al.*^[4]

Study showed that children with WHO clinical stage I had mean CD_4 count of 1093 ± 10.73 (8%), children with WHO clinical stage II had mean CD_4 count of 611 ± 8.85 (6%), children with WHO clinical stage III had mean CD_4 Count of 338.5 ± 5.70 (56%), children with WHO clinical stage IV had mean CD_4 count of 307 ± 6.09 (30%), which is in accordance with study conducted by Agarwal et al. WHO clinical stages correlated with CD_4 count showed, as WHO clinical stage increases CD_4 count decreases. This was statistically also highly significant. F = 18.44, degrees of freedom = (3,46) and p < 0.01.

The most common presentation in the present study is Anemia (48%), followed by fever (42%), cough (34%), weight loss (25%), skin lesions (23%) in descending order, least being hepatosplenomegaly (3%). Higher incidence of anaemia, fever, cough and weight loss had also been observed in studies by Shah et al^[5] and Agarwal et al.^[4]

The study showed Tuberculosis (pulmonary and extrapulmonary) in 26% which is in accordance with study conducted by Ramesh. R Pol. (38.3%), Oral candidiasis in 12%, Pneumocystis carinii pneumoria in 8%, Molluscum Contagiosum in 6% & Herpc zoster in 7.14% which is in accordance with study conducted by Shah et al. [5]

Study showed opportunistic infections in 56% of children. Pulmonary TB was the most common opportunistic infection (26%) followed by oral candidasis (10%), Pneumocystis Jirovecii pneumonia was seen in 8% of children. Pulmonary TB was seen at mean CD_4 count of 267 ± 5.37 , Oral candidasis was seen at mean CD_4 count of 364.8 ± 6.5 , *Pneumocystis Jirovecii*

pneumonia was seen at mean CD_4 count of 261.25 ± 10.8 , tubercular meningitis was seen at mean CD_4 count of 319 ± 3.36 . Similar findings were observed in studies by Ramesh R Pol. [7]

The study showed Pulmonary Tuberculosis in 26% which is in accordance with study conducted by Agarwal et al (13.8%), Extrapulmonary Tuberculosis is seen in 10% of cases, which is in accordance with study conducted by Shah et al (10%).

The study showed all children with Pneumocystis jirovecii pneumonia, 80% of children with pulmonary TB and 60% of children with oral candidasis had evidence of severe immune suppression. Tubercular meningitis occurred with equal incidence (50%) with evidence of moderate suppression & severe suppression. Hence it is concluded that opportunistic infections increases with increasing immunological category.

The study showed, with the increasing WHO clinical stage there was decline of CD4 count. The mean CD4 count in WHO clinical stage I is 1093 ± 10.73 , II is 611 ± 8.85 . III is 338.5 ± 5.70 , IV is 307 ± 09 . This is also statistically significant F = 18.44, degrees of freedom = (3,46) and p < 0.01.

Study showed children with WHO clinical stage I and II had no evidence of immune suppression, children with stage III had evidence of moderate immune suppression in 46%, severe immune suppression in 50% of cases. Children with stage IV had evidence of moderate immune suppression in 29%, severe immune suppression in 71% of cases. The severity of immune suppression increases with increasing WHO clinical stages.

CONCLUSION

Tuberculosis and oral candidiasis are the most common opportunistic infections in HIV infected children. Children with lower mean CD4 counts more likely to suffer from PCP and Pulmonary tuberculosis than other types of opportunistic infections. Perinatal transmission is the most common mode of acquiring HIV in Pediatric age group. As WHO clinical stage of HIV increases CD4 count decreases. CD4 count decreases as the grade of PEM increases. Besides ART, early diagnosis and prompt management of opportunistic infections still remains the cornerstone of HIV management and will definitely decreases the morbidity and mortality and increase the quality of life of those affected children.

BIBLIOGRAPHY

- Joint United Nations Program on HIV/AIDS (UNAIDS) WHO AIDS epidemic update 2012. Available from URL; http://www.unaids.org/en/resources/publications/201 2/default.asp Accessed September 18, 2012.
- 2. Joint United Nations Program on HIV/AIDS (UNAIDS)/WHO AIDS epidemic update 2004. Available from URL;

- http://www.unaids.org/en/resources/publications/200 4/default.asp Accessed September 28, 2012.
- 3. Pediatric OI guidelines; from URL, http://aidsinfo.nih.gov/contentfiles/vguidelines/oi_g uidelines_pediatrics.pdf. Accessed November 14, 2012.
- 4. Agarwal D, Chakravarty J, Sunder S, Gupta V, Bhatia BD. Correlation between clinical features and degree of immunosupression in HIV infected children. Indian Pediatr, 2008; 45: p140-43.
- 5. Shilpa R, Shah, Milind S, Tullu, Jaishree R Kamat. Clinical profile of pediatric HIV infectio from India. Archives of Medical research, 2005; 36: p24-31.
- 6. Sehgal R, Baveja UK, Chattopadhya D, Chandra J, Lal S. Clinical profile of HIV infection in children in north India. Indian J Pediatr, 2005; 72(11): 925-30.
- 7. Pol RR, ShepurTA, Ratageri VH. Clinico-Laboratory Profile of pediatric HIV in Karnataka. Indian J Pediatr, 2007; 74(12): 1071-5.