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INTRODUCTION 

Pneumonia is responsible for significantly more disease 

than cancer, diabetes, HIV/AIDS, malaria, and many 

other diseases that are regarded as important global 

health concerns (Mizgerd, 2012). Pneumonia has the 

highest global burden of disease, owing to the fact that it 

kills more children than any other disease (Rudan, 2008). 

In elderly people, pneumonia hospitalization is linked to 

a higher risk of death than any other common reason of 

hospitalization (Maurer, 2007). Pneumonia is a leading 

cause of death than any other infectious disease on the 

around the globe (Troeger et al., 2018). In the United 

States, the financial repercussions are considerable, 

ranging from about 20 billion dollars to more than 80 

billion dollars every year (Andrejko et al., 2021). There 

are also indirect and long-term consequences, such as 

cognitive decline comparable to traumatic brain injury, 

increased incidence and severity of depression, worsened 

cardiovascular and cerebrovascular health, physical 

limitations, and a shorter life span, after all of this 

physical discomfort and expenditure (Leung et al., 

2020). Pneumonia demands special attention from the 

biomedical profession since it is a clear risk factor for 

mortality, as well as a factor in improper ageing and 

degeneration. Since microbial infection can lead 

to pneumonia, the host's response has an impact on the 

disease's pathogenesis (Maggini et al., 2018). Pneumonia 

is a respiratory disease in the host, however it is a 
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ABSTRACT 

Background: Staphylococcus aureus is a leading cause of about 80% of infections in humans and up to 60–70% of 

hospital-acquired infections. Identification of an etiologic agent for pneumonia is critical in order to provide 

appropriate therapy and maintain epidemiological records. Study on the transcriptional profiling of patients 

infected with S. aureus is a pivot to the analysis of differentially expressed gene in the blood of patients infected 

with S. aureus. This study performed the analysis of gene expression dataset GSE30119 available on the Gene 

expression Omnibus (GEO) which is based on the hypothesis tested that patient clinical heterogeneity will be 

reflected in transcriptional profile heterogeneity. Methods: Gene expression profile dataset GSE30119 was 

obtained from Gene Expression Omnibus (GEO). We performed bioinformatic analysis to identify Differentially 

Expressed Genes in S. aureus infection induced Pneumonia from the transcriptional level.  The study comprised 

143 pediatric patients, with 44 healthy individuals, 81 pneumonia-free, and 18 pneumonia infection patients. Gene 

Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) functional, and pathway enrichment 

analyses were performed using Metascape. STRING and Cytoscape were used for the construction and 

visualization of biological networks. Hub-genes were identified through degree of association of interaction 

networks.  Results: We discovered a total of 54 genes related to S. aureus infection and 612 genes associated with 

Pneumonia. According to Gene Ontology (GO) functional and pathway enrichment studies, the S. aureus infection 

associated genes are predominantly engaged in the innate immune response, calcium-mediated signaling, 

Neutrophil extracellular trap formation, Formation of Fibrin Clot (Clotting Cascade). Whereas the genes associated 

with Pneumonia are enriched in adaptive immune response, inflammatory, Interferon alpha/beta signaling, TCR 

signaling, Gα(i) signalling events. Conclusions: This study shows differentially expressed genes and their 

biological activities in relation to S. aureus infection and Pneumonia, and it may provide more light on the 

underlying molecular mechanisms and possibly important gene signatures in Pneumonia development. 
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complex disease involving numerous physiological 

systems working together. Despite being a brief sickness, 

it is associated with chronic conditions that have 

protracted consequences (Quinton et al., 2018).  

 

Pneumonia has a wide range of risk factors ranging from 

poor nutrition to microbial infections (Bacteria, Viruses 

and fungi). Microoganisms such as Streptococcus 

pneumoniae and Haemophilus influenza, corona virus, 

rhinovirus, human metapneumovirus,  human  bocavirus, 

parainfluenza, Respiratory syncytial virus, Mycoplasma 

pneumonia, S. pneumoniae, Staphylococcus aureus, 

Moraxella catarrhalis, H. influenzae, Mycoplasma 

pneumonia, Chlamydophila pneumoniae etc. The advent 

of molecular diagnostics techniques such as polymerase 

chain reachtion (PCR), Microarray techniques, and next-

generation sequencing (NGS) has been helpful in the 

detection of the pathogens associated with Pneumonia 

(Bhuiyan et al., 2018). However, NGS has proven to be 

superior over the traditional or conventional diagnostic 

techniques. In severe pneumonia, NGS may lead to a 

quick and effective diagnosis with a better clinical 

outcome than traditional detection approaches. It first 

demonstrates that NGS may swiftly provide etiology 

proof for severe pneumonia patients, guide clinic care, 

and ultimately reduce mortality (Li et al., 2021). 

 

Staphylococcus aureus being a common cause of 

hospital-acquired infection with Pneumonia recognized 

as the second most common hospital-associated 

infection, we assayed to study the biomarkers which may 

be linked to Pneumonia infection in staphylococcus 

infected patients. Due to the emergence antibiotic 

resistant strains of Staphylococcus aureus, e.g. 

Methicillin resistant Staphylococcus aureus (MRSA), 

there has been also increase in the number of infections 

arising from it.  A longitudinal study of roughly 10 

million pneumonia cases requiring hospitalization found 

that Staphylococcus aureus pneumonia was identified as 

the primary diagnosis in just 1.08 percent of the cases 

(Jacobs and Shaver, 2017). Staphylococcus aureus has 

long been recognised to play a big role in the 

development of pneumonia, and its importance as a 

pneumonia pathogen was recently demonstrated in an 

observational study in different Intensive care unit across 

Europe (Paling et al., 2020).  Furthermore, SARS-CoV-2 

patient morbidity and death have recently been linked to 

Staphylococcus aureus pneumonia. Furthermore, SARS-

CoV-2 patient morbidity and death have recently been 

linked to Staphylococcus aureus pneumonia (Lai et al., 

2020). The fact that S. aureus is multidrug-resistant adds 

to the problem's complexity. The nares and extranasal 

locations, such as the epidermis, perineum, and throat, 

have been proven to be colonised by S aureus, 

particularly MRSA (Gagnaire et al., 2017). The absence 

of nasal colonization has been linked to a reduced risk of 

future MRSA infection (Kapali et al., 2021). When the 

nares are colonized, S aureus has oppotunity to hide from 

the host's defenses, which can lead to infection if the 

host's defenses are breached (Ajayi, 2018).   This study 

was carried out based on the hypothesis that 

“transcriptional profile heterogeneity will reflect patient 

clinical heterogeneity” and also identify gene signatures 

that may serve as biomarkers of staphylococcus infection 

in human. It is aimed at investigating the biomarker 

panel of pneumonia infection caused by staphylococcus 

aureus. 

 

MATERIALS AND METHODS 

Transcriptomic dataset 

The original submitter-supplied datasset GSE30119 was 

obtained from GEO (http://www.ncbi.nlm.nih.gov/geo/), 

which was based on the platform of GPL6947 Illumina 

Human HT-12 V3.0 expression beadchip. The data was 

submitted by Banchereau et al., 2012 collected from 

Genome-wide analysis of whole blood transcriptional 

response to community-acquired Staphylococcus aureus 

infection in vivo Total RNA extracted from whole blood 

(lysed in Tempus tubes) drawn from pediatric patients 

with acute community-acquired Staphylococcus aureus 

infection. A total of 143 samples are included in this 

dataset, comprising 44 healthy individuals, 81 

pneumonia-free, and 18 pneumonia infection patients. 

Total RNA extracted from whole blood was utilized for 

gene expression microarrays. This dataset was generated 

using the platform GPL6947 Illumina HumanHT-12 

V3.0 expression beadchip. 

 

Differential gene expression analysis 

Data pre processing was performed using GEO2R (https:

//www.ncbi.nlm.nih.gov/geo/geo2r) and was applied to 

screen Differentially Expressed Genes (DEGs) between 

the following groups: staphylococcus infection (SI) vs. 

Healthy (H), Pneumonia-free (PF) vs Healthy and 

Pneumonia infection (PI) vs. Healthy. GEO2R is a web-

based tool that allows users to compare two or more 

groups of Samples in a GEO Series to find genes that are 

differentially expressed under different experimental 

settings. The results are supplied as a table of genes 

ordered by significance, as well as a collection of graphic 

plots to aid in the visualization of differentially 

expressed genes and the evaluation of data set quality. 

Using the Bioconductor project's GEOquery and limma 

R packages, GEO2R compares original submitter-

supplied processed data tables. Bioconductor is an open 

source software project that provides tools for analyzing 

high-throughput genetic data. It is based on the R 

programming language. The R package GEOquery 

parses GEO data into R data structures that other R tools 

can use. Log transformation was applied to the data. The 

adjusted P<0.01 and |log2 fold change (FC)| >1 (i.e., FC 

>2) were selected as the threshold for each group. 

 

Venn Diagram Analysis of DEGs 

Venn diagram for DEGs of the comparison groups was 

constructed using Venny (http://bioinfogp.cnb.csic.es 

/tools/venny/index.html). The similarities and differences 

in three comparison groups were observed. The DEGs 

that overlap the three comparison groups were 

recognized as genes associated with S. aureus infection. 

http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01093/full#B6
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6947
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The other DEGs, observed between Pneumonia vs. 

Healthy but not Pneumonia free vs. Healthy were 

identified as Pneumonia-associated genes associated. 

 

Functional, pathway enrichment Analysis 

To undertake enrichment analysis for the DEGS, the 

Metascape database for annotation, visualization, and 

integrated discovery (http://metascape.org) was 

introduced. As an enrichment background, all genes in 

the genome were employed. Terms with a P-value less 

than .01, a minimum count of 3, and an enrichment 

factor more than 1.5 (the enrichment factor is the ratio 

between the observed counts and the counts expected by 

chance) are gathered and classified into clusters based on 

membership commonalities. To adjust for repeated 

testings, P-values are determined using the accumulative 

hypergeometric distribution (Karp et al., 2021), and q-

values are calculated using the Banjamini–Hochberg 

technique (Menyhart et al., 2021). When doing 

hierarchical clustering on the enriched terms, Kappa 

scores (Gu and Huebschmann, 2021) are used as the 

similarity metric, and sub-trees with a similarity of >0.3 

are deemed a cluster. Protein-protein interaction 

enrichment analysis was performed on each gene list 

using the STRING database (Szklarczyk et al., 2016). In 

STRING (physical score > 0.132), only physical 

interactions are exploited. The resulting network 

comprises the proteins that have at least one physical 

contact with another member of the list. The Molecular 

Complex Detection (MCODE) algorithm has been used 

to discover highly coupled network components in 

networks with between 3 and 500 proteins.  

 

Protein-protein Interaction analysis 

Protein products of the differentially expressed genes 

were obtained from the String database  (http://string-

db.org/) and used to construct a network of protein-

protein interaction profile. This database is one of the 

Cytoscape software 3.4.0 apps (Yan et al., 2017)  that 

gives interaction information from three separate panels, 

including disease, protein, and PubMed queries. The 

strength of protein interactions can be fitted for the 

network construction (Szklarczyk et al., 2016). It's set to 

0.4, which is the default value. The proteins were 

analyzed via the undirected edges methods by Cytoscape 

software. The gene expression data obtained from gene 

expression analysis was used to layout the network. The 

nodes (proteins) were mapped continuously using the 

log2foldchange value. Red colour indicates upregulation 

while blue colour indicates downregulation.    

 

RESULTS 

Identification of DEGs 

The gene expression dataset GSE30119 was downloaded 

from the GEO database. DEGs between the disease and 

healthy samples were determined using the GEO2R tool. 

As presented in Fig. 1, a total of 821 DEGs were 

identified in the all the comparison groups using the 

threshold of P<0.05 and |log2FC| >1, including 488 

upregulated genes and 333 downregulated genes. The top 

10 up- and downregulated genes for each comparison 

group are listed in Table 1. 

 

 

 

 
Figure 1: Differential gene expression analysis (a) Intersection of differentially expressed genes (DEGs). 

Staphylococcus infection associated genes (SIAGs) are marked by pink circles and Pneumonia infection 

associated genes (PIAGs) are marked by red circle. Volcano Plot representation of the transcriptomic analysis of 

differentially expressed genes between (b) Staphylococcus aureus infected and healthy individuals (c) Pneumonia 

infected and healthy individuals (d) Pneumonia free and healthy individuals. The black points (NO) stands for 

genes that have a fold change less than 1.0. The blue points represent the genes which fold change is lower than -

1.0 but their p-value is lower than 0.05 (down regulated genes). The genes depicted by red points have a p-value 

lower than 0.05 and a fold change higher than 1.0 (upregulated genes). 

http://string-db.org/
http://string-db.org/
https://www.spandidos-publications.com/10.3892/etm.2019.7541#f1-etm-0-0-7541
https://www.spandidos-publications.com/10.3892/etm.2019.7541#tI-etm-0-0-7541
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Table 1a: The top upregulated and downregulated genes between staphylococcus infection and healthy patients 

(ranked by Log2-fold change). 

Gene.symbol adj.P.Val logFC Gene.title Regulation 

CAMP 7.88E-12 2.420397 cathelicidin antimicrobial peptide Upregulated 

LCN2 6.11E-14 2.187087 lipocalin 2 Upregulated 

PGLYRP1 5.09E-13 1.867231 peptidoglycan recognition protein 1 Upregulated 

MYL9 2.16E-15 1.847294 myosin light chain 9 Upregulated 

ANKRD22 3.55E-08 1.577498 ankyrin repeat domain 22 Upregulated 

CETP 4.55E-15 1.509164 cholesteryl ester transfer protein Upregulated 

RNASE2 3.49E-12 1.475392 ribonuclease A family member 2 Upregulated 

ASGR2 1.49E-15 1.452085 asialoglycoprotein receptor 2 Upregulated 

PLOD2 5.07E-11 1.440901 procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 Upregulated 

KLRF1 4.28E-07 -1.134533 killer cell lectin like receptor F1 Downregulated 

P2RY10 7.89E-13 -1.1355418 purinergic receptor P2Y10 Downregulated 

CMKLR1 2.38E-08 -1.1554959 chemerin chemokine-like receptor 1 Downregulated 

CD79A 1.39E-06 -1.1817243 CD79a molecule Downregulated 

GZMB 1.13E-07 -1.1865535 granzyme B Downregulated 

SH2D1B 5.90E-11 -1.243959 SH2 domain containing 1B Downregulated 

FGFBP2 1.95E-08 -1.259197 fibroblast growth factor binding protein 2 Downregulated 

CXCL8 7.15E-06 -1.3766733 C-X-C motif chemokine ligand 8 Downregulated 

FCER1A 2.91E-09 -1.4779835 Fc fragment of IgE receptor Ia Downregulated 

 

Table 1b: The top 10 upregulated and downregulated genes between pneumonia free but staphylococcus 

infected and healthy patients (ranked by Log2-fold change). 

Gene.symbol adj.P.Val logFC Gene.title Regulation 

CAMP 4.34E-11 2.459041 cathelicidin antimicrobial peptide Upregulated 

LCN2 2.10E-12 2.126062 lipocalin 2 Upregulated 

MYL9 6.18E-14 1.876577 myosin light chain 9 Upregulated 

PGLYRP1 3.16E-11 1.751401 peptidoglycan recognition protein 1 Upregulated 

CETP 3.12E-13 1.509559 cholesteryl ester transfer protein Upregulated 

ANKRD22 4.34E-07 1.457372 ankyrin repeat domain 22 Upregulated 

RNASE2 9.74E-11 1.450099 ribonuclease A family member 2 Upregulated 

NDUFAF3 7.08E-10 1.440268 NADH:ubiquinone oxidoreductase complex assembly factor 3 Upregulated 

PLOD2 2.69E-09 1.413943 procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 Upregulated 

ASGR2 1.39E-13 1.372498 asialoglycoprotein receptor 2 Upregulated 

ITM2A 1.64E-06 -1.0254427 integral membrane protein 2A Downregulated 

CD79A 1.98E-06 -1.0341676 CD79a molecule Downregulated 

SAMD3 3.59E-09 -1.0604968 sterile alpha motif domain containing 3 Downregulated 

GZMB 2.70E-06 -1.064022 granzyme B Downregulated 

CMKLR1 7.71E-07 -1.072244 chemerin chemokine-like receptor 1 Downregulated 

FGFBP2 1.03E-06 -1.0850047 fibroblast growth factor binding protein 2 Downregulated 

SH2D1B 4.98E-09 -1.0950522 SH2 domain containing 1B Downregulated 

CXCL8 1.11E-04 -1.1211511 C-X-C motif chemokine ligand 8 Downregulated 

FCER1A 6.95E-09 -1.2169814 Fc fragment of IgE receptor Ia Downregulated 

CXCL8 6.93E-05 -1.2487535 C-X-C motif chemokine ligand 8 Downregulated 

 

Table 1c: The top 10 upregulated and downregulated genes between staphylococcus infected with pneumonia 

infection and healthy patients (ranked by Log2-fold change). 

Gene.symbol adj.P.Val logFC Gene.title Regulation 

CEACAM8 1.11E-09 3.95031 carcinoembryonic antigen related cell adhesion molecule 8 Upregulated 

VNN1 8.25E-10 2.507865 vanin 1 Upregulated 

LCN2 6.17E-10 2.4617 lipocalin 2 Upregulated 

OPLAH 3.75E-10 2.450587 5-oxoprolinase (ATP-hydrolysing) Upregulated 

PGLYRP1 2.34E-11 2.388465 peptidoglycan recognition protein 1 Upregulated 

CYSTM1 5.03E-06 2.312637 cysteine rich transmembrane module containing 1 Upregulated 

CA4 9.30E-08 2.276497 carbonic anhydrase 4 Upregulated 

DYSF 2.18E-12 2.267905 dysferlin Upregulated 

CAMP 7.83E-07 2.246501 cathelicidin antimicrobial peptide Upregulated 
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TLR5 6.67E-12 2.228208 toll like receptor 5 Upregulated 

FAM102A 4.43E-05 -1.95014138 family with sequence similarity 102 member A Downregulated 

CXCL8 3.93E-06 -1.9523124 C-X-C motif chemokine ligand 8 Downregulated 

LRRC26 3.19E-06 -1.99051709 leucine rich repeat containing 26 Downregulated 

KLRF1 1.28E-09 -2.00306038 killer cell lectin like receptor F1 Downregulated 

FGFBP2 4.77E-10 -2.04306243 fibroblast growth factor binding protein 2 Downregulated 

KLRF1 2.30E-08 -2.21270306 killer cell lectin like receptor F1 Downregulated 

S1PR5 8.14E-11 -2.2156796 sphingosine-1-phosphate receptor 5 Downregulated 

TRAV20 8.49E-09 -2.27602061 T cell receptor alpha variable 20 Downregulated 

KLRD1 2.59E-09 -2.30542009 killer cell lectin like receptor D1 Downregulated 

FCER1A 3.35E-10 -2.65249304 Fc fragment of IgE receptor Ia Downregulated 

 

Enrichment analysis 

Pathway and process enrichment analysis 

For each given gene list, pathway and process 

enrichment analysis has been carried out with the 

following ontology sources: KEGG Pathway, GO 

Biological Processes, Reactome Gene Sets. All genes in 

the genome have been used as the enrichment 

background. Terms with a p-value < 0.01, a minimum 

count of 3, and an enrichment factor > 1.5 (the 

enrichment factor is the ratio between the observed 

counts and the counts expected by chance) are collected 

and grouped into clusters based on their membership 

similarities. The genes associated with staphylococcus 

infection, being 54 in number from differential gene 

expression analysis are enriched several pathways and 

processes as presented in Table 2. The table only shows 

the top 16 clusters with their representative enriched 

terms (one per cluster). "Count" is the number of genes 

in the user-provided lists with membership in the given 

ontology term. "%" is the percentage of all of the user-

provided genes that are found in the given ontology term 

(only input genes with at least one ontology term 

annotation are included in the calculation). "Log10(P)" is 

the p-value in log base 10. "Log10(q)" is the multi-test 

adjusted p-value in log base 10. The enrichment category 

includes 9 GO Biological Processes (innate immune 

response, cell activation, muscle cell differentiation, 

calcium-mediated signaling, positive regulation of 

response to external stimulus, antimicrobial humoral 

immune response mediated by antimicrobial peptide, 

circulatory system process, cellular modified amino acid 

metabolic process, negative regulation of apoptotic 

signaling pathway),  4 Reactome Gene Sets (Neutrophil 

degranulation, Formation of Fibrin Clot/Clotting 

Cascade, Immunoregulatory interactions between a 

Lymphoid and a non-Lymphoid cell, Cell surface 

interactions at the vascular wall, Diseases of 

metabolism). Only one KEGG Pathway category 

(Neutrophil extracellular trap formation) and 

WikiPathways (miRNAs involvement in the immune 

response in sepsis) are included. While for the 

Pneumonia related genes, the top processes involved are 

response to cytokine, leukocyte activation, Neutrophil 

degranulation, Hematopoietic cell lineage, positive 

regulation of cell-cell adhesion, Cytokine Signaling in 

Immune system, Immunoregulatory interactions between 

a Lymphoid and a non-Lymphoid cell, positive 

regulation of cytokine production, Th1 and Th2 cell 

differentiation, positive regulation of cytokine 

production, Th1 and Th2 cell differentiation, positive 

regulation of immune response, regulation of defense 

response, inflammatory response, Network map of 

SARS-CoV-2 signaling pathway, negative regulation of 

immune system process, negative regulation of immune 

system process, T cell differentiation involved in 

immune response, Inflammatory bowel disease, positive 

T cell selection and Cell surface interactions at the 

vascular wall. 

 

Table 2: Top 16 clusters with their representative enriched terms (one per cluster) for staphylococcus infection 

related genes. 
GO Category Description Count % Log10(P) Log10(q) 

R-HSA-6798695 Reactome Gene Sets Neutrophil degranulation 12 22.22 -10.37 -6.03 

R-HSA-140877 Reactome Gene Sets Formation of Fibrin Clot (Clotting Cascade) 4 7.41 -6.15 -2.18 

GO:0045087 GO Biological Processes innate immune response 10 18.52 -6.05 -2.18 

GO:0001775 GO Biological Processes cell activation 9 16.67 -5.76 -2.09 

R-HSA-198933 Reactome Gene Sets Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 5 9.26 -5.41 -1.9 

GO:0042692 GO Biological Processes muscle cell differentiation 5 9.26 -4 -0.94 

GO:0019722 GO Biological Processes calcium-mediated signaling 4 7.41 -3.87 -0.88 

GO:0032103 GO Biological Processes positive regulation of response to external stimulus 6 11.11 -3.87 -0.88 

WP4329 WikiPathways miRNAs involvement in the immune response in sepsis 3 5.56 -3.7 -0.75 

GO:0061844 GO Biological Processes antimicrobial humoral immune response mediated by antimicrobial peptide 3 5.56 -3.55 -0.68 

hsa04613 KEGG Pathway Neutrophil extracellular trap formation 4 7.41 -3.43 -0.62 

GO:0003013 GO Biological Processes circulatory system process 5 9.26 -2.73 -0.19 

R-HSA-202733 Reactome Gene Sets Cell surface interactions at the vascular wall 3 5.56 -2.72 -0.18 

GO:0006575 GO Biological Processes cellular modified amino acid metabolic process 3 5.56 -2.38 0 

GO:2001234 GO Biological Processes negative regulation of apoptotic signaling pathway 3 5.56 -2.11 0 

R-HSA-5668914 Reactome Gene Sets Diseases of metabolism 3 5.56 -2.02 0 
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Figure 2: Bar-graph for top 16 clusters with their representative enriched terms (one per cluster) for 

staphylococcus infection related genes (colored by p-values). "Log10(P)" is the p-value in log base 10. 

"Log10(q)" is the multi-test adjusted p-value in log base 10. 

 

 
Figure 3: Bar-graph for top-level Gene Ontology biological processes enriched by staphylococcus aureus 

infection associated genes (colored by p-values). "Log10(P)" is the p-value in log base 10. "Log10(q)" is the 

multi-test adjusted p-value in log base 10. 

 

 
Figure 4: Bar-graph for top 20 clusters with their representative enriched terms (one per cluster) for pneumonia 

infection related genes (colored by p-values). "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-

test adjusted p-value in log base 10. 
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Figure 5: Bar-graph for top-level Gene Ontology biological processes enriched in pneumonia infection 

associated genes (colored by p-values). "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-test 

adjusted p-value in log base 10. 

 

Table 3: Top 20 clusters with their representative enriched terms (one per cluster). "Count" is the number of 

genes in the user-provided lists with membership in the given ontology term. "%" is the percentage of all of the 

user-provided genes that are found in the given ontology term (only input genes with at least one ontology term 

annotation are included in the calculation). "Log10(P)" is the p-value in log base 10. "Log10(q)" is the multi-test 

adjusted p-value in log base 10. 
GO Category Description Count % Log10(P) Log10(q) 

GO:0034097 GO Biological Processes response to cytokine 68 11.11 -22.85 -18.51 

GO:0045321 GO Biological Processes leukocyte activation 52 8.5 -20.78 -16.91 

R-HSA-6798695 Reactome Gene Sets Neutrophil degranulation 50 8.17 -20.58 -16.83 

hsa04640 KEGG Pathway Hematopoietic cell lineage 22 3.59 -16.29 -13.09 

GO:0022409 GO Biological Processes positive regulation of cell-cell adhesion 34 5.56 -15.64 -12.47 

R-HSA-1280215 Reactome Gene Sets Cytokine Signaling in Immune system 51 8.33 -14.04 -10.98 

R-HSA-198933 Reactome Gene Sets Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 22 3.59 -13.52 -10.5 

GO:0001819 GO Biological Processes positive regulation of cytokine production 40 6.54 -13.41 -10.41 

hsa04658 KEGG Pathway Th1 and Th2 cell differentiation 18 2.94 -12.42 -9.54 

GO:0050778 GO Biological Processes positive regulation of immune response 42 6.86 -12.38 -9.51 

GO:0031347 GO Biological Processes regulation of defense response 45 7.35 -12.04 -9.21 

M54 Canonical Pathways PID IL12 2PATHWAY 15 2.45 -11.89 -9.07 

GO:0006954 GO Biological Processes inflammatory response 38 6.21 -11.3 -8.53 

GO:0045087 GO Biological Processes innate immune response 47 7.68 -10.71 -7.97 

WP5115 WikiPathways Network map of SARS-CoV-2 signaling pathway 24 3.92 -10.54 -7.83 

GO:0002683 GO Biological Processes negative regulation of immune system process 31 5.07 -8.97 -6.37 

GO:0002292 GO Biological Processes T cell differentiation involved in immune response 10 1.63 -8.51 -5.93 

hsa05321 KEGG Pathway Inflammatory bowel disease 12 1.96 -8.19 -5.65 

GO:0043368 GO Biological Processes positive T cell selection 8 1.31 -7.1 -4.65 

R-HSA-202733 Reactome Gene Sets Cell surface interactions at the vascular wall 15 2.45 -6.87 -4.44 

 

Protein-protein interaction analysis 

From the 54 identified genes related to staphylococcus 

infection, C-X-C motif chemokine ligand 8 (CXCL8) has 

the most significant interaction with the other proteins 

(Table S1). Its expression was however downregulated. 

Cathelicidin antimicrobial peptide (CAMP) and lipocalin 

2 (LCN2) shows the highest expression values. It’s 

however intriguing that both shows strong interaction as 

shown in Figure 4. About 613 genes are related to 

pneumonia infection in this study (Table S3), with 

carcinoembryonic antigen related cell adhesion molecule 

8 (CEACAM8) and Fc fragment of IgE receptor Ia 

(FCER1A) emerging as the most upregulated and 

downregulated proteins respectively (Table 1c). 

However, FCER1A is not shown on the network in 

Figure 5 because there’s no known functional and 

physical protein associations. In the network graph, the 

nodes represent proteins and the edges indicate both 

functional and physical protein associations existing 

among the nodes. The sources from which the 

interactions were obtained includes Text-mining from 

literature, empirical studies, Databases, co-expression, 

Neighborhood, gene fusion and co-ocurrence studies. 

Minimum required interaction score was set at 0.4 being 
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the default value on string database. Nodes without any 

connection were excluded from the network. 

 

 

 
Figure 4: Protein-protein interaction network of staphylococcus infection related genes. Blue nodes are proteins 

whose expression were downregulated while the red nodes are those which were upregulated. 

 

 
Figure 5: Protein-protein interaction network of pneumonia infection related genes. Blue nodes are proteins 

whose expression were downregulated while the red nodes are those which were upregulated. CEACAM8 has 

the highest fold change in expression value. Two clusters appear from the network. One basically comprises only 

downregulated proteins (right) while the other contains upregulated and downregulated proteins and a protein 

whose expression did not change significantly. 

 

DISCUSSION 
 

This study was carried out based on the hypothesis that 

“transcriptional profile heterogeneity will reflect patient 

clinical heterogeneity” and also identify gene signatures 

that may serve as biomarkers of staphylococcus infection 

in human”.  It is our goal to identify the genes which 

exhibit differential expression in pneumonia infection 

induced by staphylococcus aureus. One of the most 

common uses of sequencing data is differential gene 

expression (DGE) analysis. This method is commonly 

utilized in many sequencing data analysis applications 

since it enables for the identification of differentially 

expressed genes across two or more conditions. Due to 

the variety of formats based on the tool of choice and the 

multiple bits of information contained in these results 

files, interpreting DGE findings can be difficult and time 

consuming (Wang et al., 2019). In the ICU, 

Staphylococcus aureus is the second most prevalent 

cause of pneumonia. Toxins and enzymes produced by 

the bacteria highlight its virulence, causing significant 

lung tissue damage. Clinical signs are insufficient to 

identify Staphylococcus aureus pneumonias from those 

caused by other pathogens, and clinical diagnosis suffers 

from the same limitations as other bacterial pneumonia 

causes (Hooper and Smith, 2012).  
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The comparison groups set for differential analysis in 

this study include staphylococcus aureus infected 

patients, staphylococcus infected patients with 

pneumonia infection and staphylococcus infected 

patients without pneumonia infection. The infection 

present aside pneumonia included bacteremia, 

osteomyelitis, suppurative arthritis, pyomyositis, 

empyema, abscess. Downregulation of gene expression 

is an indication of the inhibitory activity of the pathogen 

while the genes whose expression were upregulated are 

involved in the host defense against the pathogen 

(Shirahama et al., 2020). The downregulated genes 

during staphylococcus infection include KLRF1, 

P2RY10, CMKLR1, CD79A, GZMB, KLRF1, SH2D1B, 

FGFBP2, CXCL8, FCER1A. KLRK1 is a type II 

transmembrane-anchored glycoprotein that is expressed 

on the surface of Natural Killer (NK) cells, gamma/delta 

TcR+ T cells, CD8+ T cells, and a modest subset of 

CD4+ T cells as a disulfide-linked homodimer. It binds 

to the DAP10 signaling protein non-covalently and sends 

activating or costimulatory signals to NK cells and T 

cells. NKG2D interacts to a family of glycoproteins 

called MICA, MICB, and ULBP1-6 membrane proteins 

in humans, which are commonly produced on cells that 

have been infected with pathogens or transformed. In 

comparison to adults, infants are more susceptible to 

many infections, which can be related to their 

undeveloped innate and adaptive immunity. Without pre-

sensitization, natural killer cells provide first-line innate 

immune reactions against infected cells (Land, 2018). 

Lanier (2015), proved that the expression of KLRG1 on 

T cells improves during M. tuberculosis infection and 

declines after treatment, suggesting a correlation between 

KLRG1 expression and disease progression. The 

decrease in KLRG1 observed in this study may not be 

unconnected to the undeveloped immunity in pediatrics. 

The genes which contributed tremendously to the host 

defense against staphylococcus aureus infection include 

CAMP, LCN2, PGLYRP1, MYL9, ANKRD22, CETP, 

RNASE2, ASGR2, PLOD2. Cathelicidin antimicrobial 

peptide has the highest change in expression value. 

CAMP expression is also a member of the of the 

pneumonia infection associated/related genes (PIAGs) 

(figure 5). 

 

Cathelicidin is an antibacterial peptide of the cathelicidin 

family. It is a small molecule (composed of 12-100 

amino acids) with wide antibacterial activity that is 

thought to play a role in the innate immunity as the first 

line of defense against microbes. (Iacob and Iacob, 

2014). When cathelicidin is produced enzymatically, it 

has an N-terminal prosequence followed by a C-terminal 

variable sequence with strong microbial activity. This 

antimicrobial peptide group is called cathelicidin because 

the structure of the prosequence is extremely similar to 

that of a protein called cathelin. Although the exact 

method of CAMP (Cathelicidin Antimicrobial Peptide) 

gene regulation is unknown, cathelicidin is reported to be 

upregulated when bacteria are present (Wang et al., 

2021). Bacterial compounds have been found to boost 

Cathelicidin production in cultured human cells, showing 

that Cathelicidin plays a role in infection resistance. 

Several compounds, including 1,25-dihydroxyvitamin 

D3 (1,25(OH)2 D3), an active form of vitamin D, have 

been described as potent inducers of CAMP gene 

expression. Butyrate, Trichostatin A, Lithocholic acid, 

Interleukin-6, 1,25(OH)2 D3 (Pineda et al., 2019, Febriza 

et al., 2019). The physical structure of cathelicidin, as 

well as its cationic and hydrophobic characteristics, are 

responsible for the majority of its antimicrobial 

activities. The N-terminal helix is involved in 

chemotaxis and proteolisis defense, while the C-terminal 

helix is involved in antimicrobial activity. Cathelicidin 

binds to the surface of the microbial membrane, covers 

it, and perforates it, generating pores on the membrane 

that finally kill the bacteria. (Lv et al., 2014). Unlike 

zwitterionic eukariotic membranes, cathelicidin attaches 

to cell membranes that contain lipopolysaccharide 

(Gram-negative) or teichoic acid (Gram-positive) with a 

negative charge. With the contact between the capsule 

membrane and the protein capsid, cathelicidin also 

exhibits antiviral properties (Steinbuch and Fridman, 

2016). Cathelicidin binds to the bacterial membrane in 

oligomeric forms, altering the subsequent contact and 

permeabilization manner. Because the monomeric 

peptide is less susceptible to sequestration by serum or 

medium components, as well as components of the 

bacterial outer cell wall, this has a significant impact on 

antibacterial action. In staphylococcus infection and 

tuberculosis, cathelicidin can bind to lipoteikoic acid and 

lipoarabinomannan, preventing macrophage activation. 

In some circumstances, resistant bacteria's protolithic 

enzymes can destroy cathelicidin and other antimicrobial 

peptides (Rowe-Magnus et al., 2019). 

 

Among the pneumonia infection associated/related genes 

(PIAGs), Carcinoembryonic antigen related cell adhesion 

molecule 8 (CEACAM8) was highly upregulated and has 

interaction with Cathelicidin Antimicrobial Peptide 

(CAMP) which is also the highest upregulated among 

staphylococcus infection associated genes (SIAGs). The 

significant increase in the expression of CEACAM8 

suggests the it may have a role in the interaction of 

staphylococcus aureus with neutrophils (Sarantis and 

Gray-Owen, (2012). CEACAM molecules are membrane 

glycoproteins that mediate intercellular interactions that 

influence cellular proliferation, immune cell activation, 

apoptosis, and tumor suppression. To establish a close 

interaction with host cells and tissues, a vast number of 

bacterial pathogens target cell adhesion molecules. 

Specific bacterial surface proteins typically identify 

members of the integrin, cadherin, and immunoglobulin-

related cell adhesion molecule (IgCAM) families. 

Following cytoskeletal rearrangements triggered by 

receptor clustering, binding might cause bacterial 

internalization. Furthermore, signals from occupied 

receptors can cause cellular responses such as gene 

expression events, which affect the infected cell's 

phenotypic (Mix et al., 2021). 
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CONCLUSION 
 

The molecular mechanism of infection and the 

involvement of the host defense against pneumonia 

induced by staphylococcus aureus was critically 

examined. However, due to the fact that the study was 

carried out on pediatric patients, the results found may 

not be generalised on other age groups. There is a need 

for a comparative study to compare and contrast the 

mechanisms involved in other members of the 

population.  
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