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INTRODUCTION 

The concept of a cluster of interconnected metabolic 

disturbances first emerged between 1910 and 1920.
[1]

 

Since that time, various health organizations have 

proposed numerous definitions of metabolic syndrome 

(MetS), but a universally accepted definition remains 

elusive. Despite these variations, it is evident that MetS 

represents a clinical condition marked by significant 

heterogeneity, typically characterized by a combination 

of obesity (particularly abdominal obesity), 

hyperglycemia, dyslipidemia, and/or hypertension.
[2,3,4,5,6]

 

Obesity is defined by an abnormal or excessive 

accumulation of fat, primarily resulting from a chronic 

imbalance between energy intake and expenditure.
[7,8]

 

The surplus energy is chiefly stored in adipose tissue as 

triglycerides (TG).
[9]

 

 

Dyslipidemia is characterized by elevated serum TG 

levels, increased low-density lipoprotein cholesterol 

(LDL-c) particles, and decreased high-density 

lipoprotein cholesterol (HDL-c) levels.
[10]

 It is associated 

with conditions such as hepatic steatosis
[11]

, pancreatic β-

cell dysfunction
[12]

, and an increased risk of 

atherosclerosis
[13]

, among other issues. Hypertension, 

another key modifiable feature of MetS, is defined by a 

resting systolic blood pressure (SBP) ≥ 140 mmHg, a 

diastolic blood pressure (DBP) ≥ 90 mmHg, or the use of 

antihypertensive medication.
[14]

 It often involves 

narrowed arteries and is recognized as a major risk factor 

for cardiovascular and renal diseases, including heart 

disease, stroke, and myocardial infarction.
[13,15,16,17]

 

Hyperglycemia, along with insulin resistance and type 2 
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ABSTRACT 

Background: Metabolic Syndrome (MetS) encompasses a cluster of interrelated metabolic disorders, including 

obesity, hyperglycemia, dyslipidemia, and hypertension. The condition has become increasingly prevalent globally, 

correlating with lifestyle factors such as poor dietary habits and sedentary behavior. MetS contributes to serious 

health complications, including cardiovascular diseases and type 2 diabetes. Aim: This review aims to evaluate the 

role of various dietary patterns and bioactive compounds in preventing and managing MetS, using evidence-based 

approaches. Methods: We conducted a comprehensive literature review, focusing on the impact of energy-

restricted diets, omega-3 fatty acids, low glycemic index/load diets, total antioxidant capacity, moderate-high 

protein diets, high meal frequency patterns, Mediterranean diet, and specific nutrients such as vitamin C and 

hydroxytyrosol on MetS. Results: Energy-restricted diets effectively reduce weight and improve metabolic 

markers, including lowering LDL cholesterol and plasma triglycerides. Omega-3 fatty acids show moderate 

evidence in reducing cardiovascular risks and inflammation. Low glycemic index/load diets help stabilize blood 

glucose levels, while diets high in antioxidants improve oxidative stress and inflammatory responses. Moderate-

high protein diets may enhance satiety and metabolic outcomes, though results are mixed. The Mediterranean diet 

is consistently beneficial, associated with reduced risks of type 2 diabetes and cardiovascular diseases. Bioactive 

compounds like vitamin C and hydroxytyrosol offer antioxidant and anti-inflammatory benefits. Conclusion: 

Dietary interventions play a crucial role in managing MetS. While energy-restricted and Mediterranean diets show 

significant benefits, the effectiveness of other dietary patterns varies. Personalized nutrition strategies incorporating 

bioactive compounds could enhance MetS management and prevention. 
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diabetes mellitus, is marked by impaired glucose uptake 

by cells, leading to elevated plasma glucose levels, 

glycosuria, and ketoacidosis.
[18]

 This condition causes 

various forms of tissue damage that reduce life 

expectancy, including cardiovascular diseases (CVD), 

atherosclerosis, hypertension
[19]

, β-cell dysfunction
[12]

, 

kidney disease
[20]

, and blindness.
[21]

 Diabetes is currently 

one of the leading causes of death in developed 

countries.
[22]

 

 

Additionally, oxidative stress and low-grade 

inflammation are critical mechanisms in the etiology and 

development of MetS.
[23]

 Oxidative stress is defined as 

an imbalance between pro-oxidants and antioxidants in 

the body.
[24]

 It plays a significant role in atherosclerosis 

through mechanisms such as the oxidation of LDL-c 

particles
[25]

 and the impairment of HDL-c functions.
[26]

 

Inflammation, an immune response to injury, is believed 

to be a major mechanism in the pathogenesis and 

progression of obesity-related disorders, linking 

adiposity, insulin resistance, MetS, and CVD.
[27]

 The 

prevalence of MetS varies widely globally and depends 

on the definition used, but there has been a marked 

increase in cases over the past 40–50 years.
[28]

 The 

syndrome is more common in developed countries, 

among sedentary individuals, smokers, those with lower 

socioeconomic status, and people with poor dietary 

habits.
[29,30]

 Given these concerns, there is significant 

interest in identifying effective strategies for detecting, 

treating, and managing MetS and its associated 

comorbidities. Due to its heterogeneous nature, 

addressing the various factors involved in its 

development is complex. This review examines different 

dietary patterns and bioactive compounds that have been 

identified as effective in managing MetS. 

 

Dietary Pattern 

Energy-Restricted Diets 
Energy-restricted diets are among the most prevalent and 

investigated strategies for addressing excess weight and 

associated comorbidities. These diets involve 

personalized plans that provide fewer calories than the 

total energy expended by an individual.
[31]

 A hypocaloric 

diet creates a negative energy balance, leading to weight 

loss as the body mobilizes fat from various 

compartments through lipolysis to meet energy 

needs.
[32,33]

 For individuals who are overweight or obese, 

which is common among those with metabolic syndrome 

(MetS), weight loss is crucial as it is linked to 

improvements in conditions such as abdominal obesity 

(visceral fat), type 2 diabetes, cardiovascular disease 

(CVD), and inflammation.
[32,33,34,35,36]

 Additionally, low-

grade inflammation, a common feature of MetS and 

obesity, can be mitigated by hypocaloric diets. For 

instance, obese individuals on a reduced-calorie diet 

have shown decreased plasma inflammatory markers, 

such as interleukin (IL)-6.
[34]

 Thus, caloric restriction 

may ameliorate the systemic pro-inflammatory state in 

these individuals.  

 

Weight reduction is also associated with enhancements in 

cellular insulin signaling, increased peripheral insulin 

sensitivity, and improved insulin secretory 

responses.
[32,36]

 Individuals with excess body weight at 

risk for type 2 diabetes may experience better plasma 

glucose levels and reduced insulin resistance from a 

hypocaloric regimen. Furthermore, various intervention 

trials have linked energy-restricted diets to a decreased 

risk of developing CVD. Obese participants on 

hypocaloric diets have demonstrated improvements in 

lipid profiles, including reductions in LDL cholesterol 

and plasma TG levels, and decreases in both systolic and 

diastolic blood pressure.
[35,37]

 Among nutritional 

interventions, a reduction of 500–600 kcal per day is a 

well-documented hypocaloric strategy effective for 

weight loss.
[38,39]

 However, sustaining weight loss 

presents a challenge, as many individuals can adhere to a 

diet for a few months but struggle to maintain these 

habits long-term.
[40,41]

 

 

Diets Rich in Omega-3 Fatty Acids 
Eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA) are long-chain omega-3 polyunsaturated fatty 

acids (n-3 PUFAs) essential for human health. These 

fatty acids are primarily sourced from fish and algal oils, 

though they can also be synthesized from α-linolenic 

acid.
[40]

 Moderate evidence supports the role of n-3 

PUFAs, particularly EPA and DHA, in the prevention 

and management of conditions associated with MetS.
[42]

 

These fatty acids are known to lower the risk of 

developing CVD and cardiometabolic disorders, as well 

as reducing CVD-related mortality.
[42]

 The beneficial 

effects are likely due to their ability to lower plasma TG 

levels.
[43]

 Moreover, studies have indicated that increased 

dietary n-3 PUFAs can reduce levels of pro-

inflammatory cytokines such as IL-6 and tumor necrosis 

factor-alpha (TNFα), and plasma C-reactive protein 

(CRP).
[44]

 These effects are likely mediated by resolvins, 

maresins, and protectins, which are anti-inflammatory 

metabolic products of EPA and DHA.
[44]

 

 

Although some studies have suggested that n-3 PUFA 

consumption may improve or prevent type 2 diabetes, 

other studies have reported contrary results.
[44]

 Therefore, 

definitive conclusions in this area are still uncertain. The 

European Food Safety Authority advises a daily intake of 

250 mg of EPA + DHA for general cardiovascular 

disease prevention
[45]

, which can be achieved by 

consuming 1–2 servings of fatty fish per week.
[45]

 

 

Diets Based on Low Glycemic Index/Load 
In recent years, there has been increased focus on the 

quality of carbohydrate (CHO) intake.
[46]

 The glycemic 

index (GI) is employed as a measure of CHO quality, 

ranking carbohydrate-containing foods on a scale from 0 

to 100 based on their impact on postprandial glucose 

levels.
[47]

 Foods with a higher GI cause a more rapid 

increase in postprandial serum glucose and a swift 

insulin response. This quick insulin response can lead to 

rapid hypoglycemia, which may be linked to increased 
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hunger and subsequent higher caloric consumption.
[47]

 

The glycemic load (GL) is calculated by multiplying the 

GI by the amount of CHO in a serving.
[48]

 

A hypothesis suggests that MetS may result from chronic 

consumption of high GI foods, among other unhealthy 

dietary practices.
[49]

 Diets rich in high GI carbohydrates 

have been associated with hyperglycemia, insulin 

resistance, type 2 diabetes, hypertriglyceridemia, CVD, 

and obesity
[47,50,51]

, all of which are directly related to 

MetS. Conversely, a low GI diet is associated with 

slower CHO absorption and more stable blood glucose 

levels, indicating improved glycemic control.
[46]

 In 

individuals with type 2 diabetes, low GI diets are linked 

to reductions in glycated hemoglobin (HbA1c) and 

fructosamine levels, which are critical biomarkers for 

diabetes management.
[52,53]

 Consequently, dietary 

recommendations for MetS management often include 

limiting high GI carbohydrates, particularly from ―ready-

to-eat processed foods‖ such as sweetened beverages, 

soft drinks, cookies, cakes, candy, juice drinks, and other 

foods high in added sugars.
[54]

 

 

Diets with High Total Antioxidant Capacity 
Total antioxidant capacity (TAC) of a diet is an indicator 

of diet quality, representing the cumulative antioxidant 

activities of all antioxidants present in the food.
[55]

 These 

antioxidants help neutralize free radicals and other 

reactive species produced within the body.
[56]

 Given that 

oxidative stress is a significant physiological condition 

associated with MetS, dietary antioxidants are crucial for 

the prevention and management of this disorder.
[57]

 Diets 

rich in spices, herbs, fruits, vegetables, nuts, and 

chocolate have been linked to a reduced risk of diseases 

related to oxidative stress.
[58,59,60]

 Furthermore, several 

studies have investigated the impact of dietary TAC on 

individuals with MetS or related conditions.
[61,62]

 The 

Tehran Lipid and Glucose Study demonstrated that high 

TAC has favorable effects on metabolic disorders and 

helps prevent weight and abdominal fat gain.
[61]

 

Similarly, research conducted at our institutions has 

shown that higher TAC intake correlates with improved 

body weight, oxidative stress biomarkers, and other 

MetS characteristics.
[63,64,65]

 In line with these findings, 

the World Health Organization (WHO) recommends 

consuming at least 400 grams of fruits and vegetables 

(high TAC foods) daily for the general population.
[66]

 

Additionally, using spices in cooking is advised to boost 

TAC intake, enhance flavor, and reduce salt 

consumption.
[67]

 

 

Moderate-High Protein Diets 
The typical macronutrient distribution for weight loss 

diets has been established as 50%–55% of total caloric 

intake from carbohydrates (CHO), 15% from proteins, 

and 30% from lipids.
[57,68]

 However, given the challenge 

many individuals face in sustaining weight loss over 

time
[69,70]

, research has explored increasing protein intake 

(>20%) at the expense of carbohydrates.
[71,72,73,74,75,76,77]

 

Two primary mechanisms have been proposed to explain 

the potential benefits of moderate-high protein diets: 

increased diet-induced thermogenesis and enhanced 

satiety.
[73,78]

 Thermogenesis is heightened due to the 

energy required for processes such as peptide bond 

synthesis, urea production, and gluconeogenesis, which 

demand more energy than lipid or CHO metabolism.
[75]

 

The satiety effect may be attributed to elevated levels of 

appetite-regulating hormones such as insulin, 

cholecystokinin, and glucagon-like peptide 1.
[79]

 

 

Other reported benefits of moderate-high protein diets 

include improved glucose homeostasis
[80]

, potential 

reductions in blood lipid levels
[81]

, decreased blood 

pressure
[82]

, preservation of lean body mass
[83]

, and a 

lower risk of cardiometabolic diseases.
[84,85]

 However, 

some studies have failed to find benefits associated with 

high protein diets.
[76]

 These discrepancies may be due to 

variations in protein types, amino acid compositions
[80]

, 

and study populations.
[85]

 Consequently, further research 

is necessary to standardize these findings. When 

implementing a hypocaloric diet, a slight increase in 

protein intake is essential to meet the protein energy 

requirements, which are set at 0.83 g/kg/day for 

isocaloric diets and likely need to be at least 1 g/kg/day 

for energy-restricted diets.
[86]

 

 

High Meal Frequency Pattern 
Increasing meal frequency in weight loss and weight 

control interventions has gained popularity among 

professionals.
[87,88]

 This approach involves distributing 

total daily energy intake into more frequent, smaller 

meals. However, strong evidence supporting this practice 

is lacking.
[89]

 While some studies report an inverse 

relationship between the number of daily meals and body 

weight, body mass index (BMI), fat mass percentage, or 

metabolic diseases like coronary heart disease or type 2 

diabetes
[71,88,90,91,92]

, other studies have found no such 

associations.
[93,94,95]

 Several mechanisms have been 

proposed to explain the potential benefits of higher meal 

frequency on weight and metabolic management. One 

hypothesis suggests increased energy expenditure; 

however, studies have found no significant difference in 

total energy expenditure across varying meal 

frequencies.
[96,97]

 Another hypothesis posits that more 

frequent meals could enhance fat oxidation, though 

consensus is lacking.
[89,98]

 Additionally, it is suggested 

that more frequent meals might stabilize plasma glucose 

levels and reduce insulin secretion, potentially aiding 

appetite control. These effects have been observed in 

individuals with overweight or high glucose levels, but 

results in normal-weight or normoglycemic individuals 

remain inconsistent.
[93,99,100,101]

 

 

The Mediterranean Diet 
The Mediterranean Diet (MedDiet) was first 

characterized by Ancel Keys, who noted that countries 

around the Mediterranean Sea, with their distinctive 

dietary patterns, exhibited lower risks of coronary heart 

disease [102,103]. The traditional MedDiet emphasizes a 

high intake of extra-virgin olive oil and plant-based 

foods (such as fruits, vegetables, cereals, whole grains, 
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legumes, nuts, seeds, and olives), moderate consumption 

of dairy products, fish, and red wine, and low intake of 

sweets and red meat.
[104]

 

Extensive literature supports the health benefits of the 

MedDiet. High adherence to this dietary pattern has been 

associated with reduced mortality and morbidity from 

various causes.
[105]

 The MedDiet is also considered 

effective in preventing and treating MetS and related 

comorbidities.
[106,107,108]

 Recent meta-analyses have 

found that adherence to the MedDiet is linked to a 

reduced risk of type 2 diabetes and improved glycemic 

control in individuals with the disorder.
[107,109,110]

 

Additionally, the MedDiet is positively correlated with a 

lower risk of developing cardiovascular 

diseases
[111,112,113,114]

, with studies showing improvements 

in lipid profiles, including reductions in total cholesterol, 

LDL-c, and triglycerides, and increases in HDL-

c.
[111,112,113,114,115]

 Furthermore, adherence to the MedDiet 

has been associated with significant reductions in body 

weight and waist circumference, indicating its potential 

effectiveness in obesity management.
[108,116,117]

 The high 

fiber content of the MedDiet, which promotes satiety and 

aids in weight control, as well as its rich antioxidants and 

anti-inflammatory nutrients such as n-3 fatty acids, oleic 

acid, and phenolic compounds, are considered key 

contributors to its beneficial effects.
[118]

 For these 

reasons, maintaining the MedDiet in Mediterranean 

countries and promoting its adoption in countries with 

less healthy dietary patterns should be prioritized. 

 

Single Nutrients and Bioactive Compounds 
Recent research into the molecular actions of nutritional 

bioactive compounds aims to develop more personalized 

strategies within the realm of molecular nutrition, 

particularly for Metabolic Syndrome (MetS). Flavonoids 

and antioxidant vitamins are among the most extensively 

studied compounds, noted for their potential benefits 

including antioxidant, vasodilatory, anti-atherogenic, 

antithrombotic, and anti-inflammatory effects.
[119]

  

 

Ascorbate 
Vitamin C (ascorbic acid or ascorbate) is an essential 

water-soluble antioxidant found in fruits (especially 

citrus) and vegetables (such as peppers and kale).
[120]

 It is 

renowned for its antioxidant and anti-inflammatory 

properties, contributing to the prevention and treatment 

of cardiovascular disease (CVD) and type 2 

diabetes.
[121,122,123]

 Ascorbate primarily exerts its 

antioxidant effect by neutralizing free radicals and other 

reactive oxygen and nitrogen species, thereby preventing 

the oxidation of molecules like LDL-c.
[122]

 It can also 

regenerate other antioxidants, such as tocopherol.
[124]

 

Additionally, ascorbate is associated with reduced 

inflammation, which is significant for individuals with 

MetS, who often experience low-grade 

inflammation.
[27,125]

 Vitamin C supplementation has been 

linked to improved endothelial function, potentially 

lowering blood pressure.
[121,126]

 These effects are thought 

to arise from enhanced endothelial nitric oxide synthase 

(eNOS) activity and reduced HDL-c glycation.
[127]

 

Moreover, ascorbate may improve insulin sensitivity and 

glucose control in people with type 2 diabetes, likely 

through optimization of insulin secretion by pancreatic 

islet cells and increased expression of muscle sodium-

dependent vitamin C transporters (SVCTs).
[123,128]

 

However, most people obtain sufficient ascorbic acid 

through their diet (recommended intake: 95–110 mg/day) 

and do not require supplementation. Excessive vitamin C 

intake can lead to oxidative damage.
[130,131]

 

 

Hydroxytyrosol 
Hydroxytyrosol (3,4-dihydroxyphenylethanol) is a 

phenolic compound predominantly found in olives.
[132]

 It 

is recognized as a powerful antioxidant, scavenging free 

radicals, breaking radical chains, and chelating 

metals.
[133]

 Hydroxytyrosol inhibits LDL-c oxidation by 

macrophages and is the only phenol officially recognized 

by the European Food Safety Authority (EFSA) as a 

protector of blood lipids from oxidative damage.
[135] 

This 

compound also exhibits anti-inflammatory effects, 

possibly by suppressing cyclooxygenase activity and 

inducing eNOS expression.
[136]

 Hydroxytyrosol's 

cardiovascular protective effects include anti-atherogenic 

properties through the reduction of vascular cell adhesion 

protein 1 (VCAM-1) and intercellular adhesion molecule 

1 (ICAM-1)
[132,137]

, potentially by inactivating 

transcription factors and enzymes such as NFκB, AP-1, 

and NAD(P)H oxidase.
[138,139]

 Additionally, it has 

antidyslipidemic effects, lowering LDL-c, total 

cholesterol, and triglycerides while increasing HDL-

c.
[138]

 Despite its benefits, most studies on 

hydroxytyrosol have involved olive phenol mixtures, 

suggesting a potential synergistic effect.
[140]

 

 

Quercetin 
Quercetin, a prevalent flavanol found in vegetables, 

fruits, green tea, and red wine, often appears as 

glycosides like rutin.
[141]

 It is known for its antioxidant 

properties, inhibiting lipid peroxidation and enhancing 

antioxidant enzymes such as superoxide dismutase 

(SOD), catalase (CAT), and glutathione peroxidase 

(GPX).
[142]

 Quercetin also has anti-inflammatory effects, 

mediated by attenuating tumor necrosis factor α (TNF-

α), NFκB, mitogen-activated protein kinases (MAPK), 

and reducing gene expression of IL-6, IL-1β, IL-8, and 

MCP-1.
[143]

 In terms of obesity and weight management, 

quercetin may inhibit adipogenesis by activating AMP-

activated protein kinase (AMPK) and decreasing 

expression of adipogenic factors such as CCAAT-

enhancer-binding protein-α (C/EBPα), peroxisome 

proliferator-activated receptor gamma (PPARγ), and 

sterol regulatory element-binding protein 1 (SREBP-

1).
[141,144]

 It may also act as a PPARγ agonist, improving 

insulin-stimulated glucose uptake in adipocytes, and 

ameliorate hyperglycemia by inhibiting glucose 

transporter 2 (GLUT2) and phosphatidylinositol-3-kinase 

(PI3K).
[142,145]

 Quercetin's potential to reduce blood 

pressure is noted, though mechanisms remain unclear. It 

may increase eNOS activity, contributing to improved 
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endothelial function and platelet aggregation 

inhibition
[146,147]

, but findings are inconsistent.
[148]

 

 

 

Resveratrol 
Resveratrol (3,5,4′-trihydroxy-stilbene) is a phenolic 

compound found in red grapes and their derivatives (e.g., 

red wine, grape juice).
[149]

 It exhibits antioxidant and 

anti-inflammatory properties and has been linked to 

cardioprotective, anti-obesity, and antidiabetic 

effects.
[150,151,152,153,154,155,156]

 Resveratrol's antioxidant 

effects involve scavenging hydroxyl, superoxide, and 

metal-induced radicals and reducing reactive oxygen 

species (ROS).
[150]

 Its anti-inflammatory effects are 

mediated by inhibiting NFκB signaling and reducing 

proinflammatory cytokines such as IL-6, IL-8, TNF-α, 

MCP-1, and eNOS, and by inhibiting cyclooxygenase 

(COX).
[152]

 In diabetes management, resveratrol has 

shown significant improvements in fasting glucose 

levels, insulin concentrations, glycated hemoglobin, and 

Homeostasis Model Assessment Insulin Resistance 

(HOMA-IR).
[153,154]

 Cardioprotective effects include 

enhanced endothelial function through increased nitric 

oxide (NO) production via activation of eNOS, Sirt 1, 

and AMPK.
[155]

 Resveratrol also stimulates NF-E2-

related factor 2 (Nrf2) and reduces expression of 

adhesion proteins like ICAM-1 and VCAM-1.
[152]

 

Resveratrol's role in obesity prevention is linked to 

improved energy metabolism, increased lipolysis, and 

decreased lipogenesis
[157]

, although further research is 

needed to confirm these effects. 

 

Tocopherol 
Tocopherols, commonly known as vitamin E, comprise a 

group of eight fat-soluble phenolic compounds, with 

primary dietary sources including vegetable oils, nuts, 

and seeds.
[130,158]

 Vitamin E has long been associated 

with potential preventive effects on various metabolic 

diseases, primarily due to its role as a potent antioxidant. 

It acts by scavenging lipid peroxyl radicals through 

hydrogen donation, which helps inhibit the peroxidation 

of membrane phospholipids and prevents free radical 

generation in cell membranes.
[159,160]

 Supplementation 

with α-tocopherol or γ-tocopherol, two of the vitamin E 

isoforms, has been shown to influence inflammation by 

reducing C-reactive protein (CRP) levels.
[161]

 

Additionally, tocopherols may contribute to anti-

inflammatory effects through inhibition of 

cyclooxygenase (COX) and protein kinase C (PKC) and 

by reducing cytokines such as IL-8 and plasminogen 

activator inhibitor-1 (PAI-1).
[162,163]

 However, recent 

clinical trials have produced mixed results regarding the 

benefits of vitamin E. Some studies have not observed 

the expected benefits and, in some cases, have found 

potentially harmful effects.
[164]

 These discrepancies may 

be attributed to the loss of antioxidant capacity when 

vitamin E is ingested, which could occur due to various 

mechanisms.
[162]

 

 

Anthocyanins 

Anthocyanins are water-soluble polyphenolic compounds 

that impart red, blue, and purple colors to a variety of 

fruits, vegetables, and other foods, including berries, 

black currants, black grapes, and red cabbage.
[165,166,167]

 

They are among the most abundant polyphenols in the 

diet and are also found in teas, honey, nuts, and 

cocoa.
[168]

 These compounds are recognized for their 

high antioxidant capacity, as they can inhibit or reduce 

free radicals by donating or transferring electrons from 

hydrogen atoms.
[167]

 Clinical studies suggest that 

anthocyanins may help prevent type 2 diabetes by 

enhancing insulin sensitivity, although the exact 

mechanisms remain unclear. It is proposed that 

anthocyanins may improve glucose uptake by muscle 

and adipocyte cells in an insulin-independent manner.
[169]

 

Anthocyanins have also shown potential in preventing 

cardiovascular disease (CVD) by improving endothelial 

function. They can enhance brachial artery flow-

mediated dilation and increase HDL-c levels while 

decreasing serum VCAM-1 and LDL-c 

concentrations.
[170,171,172,173]

 Furthermore, anthocyanins 

may exert anti-inflammatory effects by reducing pro-

inflammatory molecules such as IL-8, IL-1β, and 

CRP.
[172,174]

 Most studies have utilized anthocyanin-rich 

extracts rather than purified anthocyanins, leaving the 

possibility of a synergistic effect with other polyphenols. 

 

Catechins 
Catechins are polyphenolic compounds found in various 

foods, including fruits, vegetables, chocolate, wine, and 

tea.
[175]

 Among them, epigallocatechin 3-gallate (EGCG), 

found in tea leaves, is the most studied.
[176]

 Catechins are 

associated with anti-obesity effects through mechanisms 

such as increasing energy expenditure and fat oxidation 

while reducing fat absorption. These effects are thought 

to be mediated by catechol-O-methyltransferase and 

phosphodiesterase inhibition, which stimulate the 

sympathetic nervous system and activate brown adipose 

tissue.
[177]

 Fat oxidation is facilitated by upregulation of 

acyl-CoA dehydrogenase and peroxisomal β-oxidation 

enzymes.
[178,179]

 Catechins have also been linked to a 

lower risk of cardiovascular disease by improving lipid 

biomarkers, such as increasing HDL-c and decreasing 

LDL-c and total cholesterol.
[180]

 Additionally, catechins 

have shown antidiabetic effects by lowering fasting 

glucose levels and improving insulin sensitivity.
[175,178]

 

 

CONCLUSION 

Metabolic Syndrome (MetS) represents a significant 

public health challenge due to its association with 

obesity, type 2 diabetes, cardiovascular diseases, and 

other serious health issues. This review underscores the 

importance of dietary interventions in managing and 

preventing MetS. Energy-restricted diets are highlighted 

for their effectiveness in inducing weight loss and 

improving metabolic parameters. Such diets not only 

reduce body fat but also lead to improvements in lipid 

profiles, blood pressure, and insulin sensitivity, thereby 

addressing several key components of MetS. Diets rich 

in omega-3 fatty acids, particularly eicosapentaenoic acid 
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(EPA) and docosahexaenoic acid (DHA), provide 

moderate evidence for cardiovascular risk reduction and 

inflammation control, though further research is needed 

to solidify these benefits for type 2 diabetes prevention. 

Low glycemic index/load diets improve glycemic control 

and are beneficial for managing blood glucose levels in 

individuals with type 2 diabetes, demonstrating a 

positive effect on metabolic health. The Mediterranean 

diet consistently emerges as a highly effective dietary 

pattern for MetS management. It is associated with 

reduced mortality, lower risk of cardiovascular diseases, 

and improved metabolic outcomes. The high content of 

antioxidants, fiber, and healthy fats in the Mediterranean 

diet contributes to its success in managing obesity and 

associated metabolic disturbances. Bioactive compounds, 

such as vitamin C and hydroxytyrosol, also play 

significant roles. Vitamin C’s antioxidant properties 

support cardiovascular health and glucose control, while 

hydroxytyrosol’s antioxidant and anti-inflammatory 

effects offer protection against oxidative damage and 

dyslipidemia. In summary, adopting a comprehensive 

approach that includes energy restriction, consumption of 

omega-3 fatty acids, low glycemic index foods, 

antioxidant-rich diets, and the Mediterranean dietary 

pattern can significantly impact MetS management. 

Personalized nutrition strategies that consider individual 

dietary needs and health conditions are essential for 

effective MetS prevention and treatment. 
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 دور التغذية في الىقاية من وإدارة متلاسمة الأيض: مقاربات قائمة على الأدلة

 :ملخصال

ظغػ : رشًم يزلاصيخ الأَط يجًىػخ يٍ الاظطشاثبد الأَعُخ انًزشبثكخ، ثًب فٍ رنك انسًُخ، اسرفبع انسكش فٍ انذو، اظطشاة انذهىٌ، واسرفبع الخلفية

ب، يًب َزًبشً يغ انؼىايم انًشرجطخ ثًُػ انحُبح يثم انؼبداد انغزائُخ انسُئخ وقهخ انُشبغ انجذٍَ. رسهى يزلاصيخ انذو. أصجحذ انحبنخ أكثش اَزشبسًا ػبنًًُ 

 .2الأَط فٍ يعبػفبد صحُخ خطُشح، ثًب فٍ رنك الأيشاض انقهجُخ انىػبئُخ وداء انسكشٌ يٍ انُىع 

خ وانًشكجبد انجُىنىجُخ انُشطخ فٍ انىقبَخ يٍ وإداسح يزلاصيخ الأَط، ثبسزخذاو يقبسثبد رهذف هزِ انًشاجؼخ إنً رقُُى دوس أًَبغ انزغزَخ انًخزهف الهذف:

 .قبئًخ ػهً الأدنخ

، حًُبد يُخفعخ انًؤشش 3-أجشَُب يشاجؼخ شبيهخ نلأدثُبد، يغ انزشكُض ػهً رأثُش انحًُبد انًقُذح نهطبقخ، الأحًبض انذهُُخ أويُغب الطزق:

ًٍ، انسؼخ الإجًبنُخ نًعبداد الأكسذح، انحًُبد انؼبنُخ انجشورٍُ، أًَبغ رُبول انىججبد انًزكشسح، انُظبو انغزائٍ انًزىسطٍ، انجلاَسًٍُ/انزحًُم انجلاَسُ

 .وهُذسوكسٍ رُشوسىل ػهً يزلاصيخ الأَط C وانًىاد انغزائُخ انًحذدح يثم فُزبيٍُ

وانذهىٌ انثلاثُخ فٍ  LDL ًؤششاد الأَعُخ، ثًب فٍ رنك خفط يسزىَبد انكىنُسزشول: انحًُبد انًقُذح نهطبقخ فؼبنخ فٍ رقهُم انىصٌ ورحسٍُ انالنتائج

أدنخ يزىسطخ ػهً رقهُم يخبغش الأيشاض انقهجُخ والانزهبثبد. رسبػذ انحًُبد يُخفعخ انًؤشش  3-انجلاصيب. رىفش الأحًبض انذهُُخ أويُغب

ٍ انذو، ثًُُب رحسٍ انحًُبد انغُُخ ثًعبداد الأكسذح يٍ الاسزجبثخ نلأكسذح والانزهبثبد. قذ انجلاَسًٍُ/انزحًُم انجلاَسًٍُ فٍ اسزقشاس يسزىَبد انسكش ف

يهحىظخ، ثًب فٍ رنك  رؼضص انحًُبد انؼبنُخ انجشورٍُ انشجغ وانُزبئج الأَعُخ، ػهً انشغى يٍ أٌ انُزبئج غُش يزسقخ. َشرجػ انُظبو انغزائٍ انًزىسطٍ ثفىائذ

وهُذسوكسٍ رُشوسىل فىائذ يعبدح  C والأيشاض انقهجُخ انىػبئُخ. رقذو انًشكجبد انجُىنىجُخ انُشطخ يثم فُزبيٍُ 2ٍ انُىع رقهُم يخبغش يشض انسكشٌ ي

 .نلأكسذح ويعبدح نلانزهبثبد

غزائٍ انًزىسطٍ فىائذ كجُشح، رزفبود : رهؼت انزذخلاد انغزائُخ دوسًا حُىَبً فٍ إداسح يزلاصيخ الأَط. ثًُُب رظُهش انحًُبد انًقُذح نهطبقخ وانُظبو انالاستنتاج

 .صيخ وانىقبَخ يُهبفؼبنُخ الأًَبغ انغزائُخ الأخشي. ًَكٍ أٌ رؼضص اسزشارُجُبد انزغزَخ انشخصُخ انزٍ رشًم انًشكجبد انجُىنىجُخ انُشطخ يٍ إداسح انًزلا

انسًُخ، اسرفبع انسكش فٍ انذو، اظطشاة انذهىٌ، اسرفبع ظغػ انذو، : يزلاصيخ الأَط، أًَبغ انزغزَخ، انًشكجبد انجُىنىجُخ انُشطخ، الكلمات المفتاحية

 انُظبو انغزائٍ انًزىسطٍ.


