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INTRODUCTION 

Antibiotic resistance is a global health concern.
[1]

 

Antimicrobial Peptides (AMPs) are promising candidates 

to cope with it.
[2]

 The mode of action of these AMPs 

shows an analogy with the traditional antibiotics. They 

have strong anti-pathogenic effects with no chance of 

developing resistant pathogens.
[3]

 AMPs are 

evolutionarily conserved proteins synthesized in all 

living beings from prokaryotic bacteria to human 

beings.
[4]

 As insects represent the highest number of 

species in the kingdom Animalia, they synthesize large 

amounts of AMPs as well. Diptera, Hymenoptera, 

Coleoptera, and Lepidoptera are the insect orders that are 

of great importance for synthesizing large amounts of 

AMPs.
[5]

 

 

Hermetia illucens (Linnaeus, 1758) or black soldier fly 

(BSF) is one of the most appealing insects for extracting 

AMPs. The natural habitat of black soldier fly larvae 

(BSFL) is decaying organic waste, full of pathogens like 

bacteria, viruses, fungi, etc. This is the reason for the 

production of large concentrations of AMPs in them for 

protection against pathogens. They are the important 

component of BSFL innate immunity and provide the 

first line of defense during infections. They possess 

antibacterial, antifungal, antiviral, and antitumor 

effects.
[6]

 The majority of AMPs in BSF comprise 22 to 

50 amino acids.
[7]

 They are synthesized in their fat body 

and hemocytes and released in hemolymph during 

infection.
[8]

 This review summarizes the basics of AMPs 

in BSFL, their classification, their mechanism of action, 

and their medical importance. 

 

Antimicrobial peptides of black soldier fly larvae 
BSF, a non-pest dipteran, belonging to the Stratiomyidae 

family is a South American native insect. Nowadays, 

their ecological ranges have also been extended to 

tropical and temperate world regions, and are considered 

a cosmopolitan species.
[9]

 The saprophytic black soldier 

fly larvae (BSFL) are around 20 mm long and 6 mm 

wide, whereas the adult is 13–20 mm long and resembles 

a black wasp.
[10]

 Adult flies do not spread ailments 

because they lack mouthparts and stingers.
[11]

 Numerous 

studies have shown that this is an insect of extreme 

importance since it is used in aquaculture, livestock, and 

poultry feed
[12]

, as well as in waste management
[13]

, 

agriculture
[14]

, pharmaceutical
[15]

, and the food sector.
[16]

 

They have a short life cycle, rapid growth, and 
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reproduction rate under optimal conditions. These 

attributes make them an important source of insect-based 

APMs to be used as antibiotics.
[17]

 

 

The BSF genome synthesizes 50 AMPs, which is the 

largest number among all insect species.
[18]

 BSFL 

produces AMPs only after activation of innate immunity 

by any pathogen infection. Under normal circumstances, 

the hemolymph of BSF contains minimal amounts of 

AMPs.
[19]

 Injection of live or attenuated microbes to 

BSFL induces AMP expression. To date, different 

bacteria have been utilized for producing AMPs in 

BSFL. These include Staphylococcus aureus, 

Lactobacillus casei, Escherichia coli, Bacillus subtilis, 

Xanthomonas oryzae and Micrococcus luteus.
[20]

 In 

addition, If BSFL is treated with thermal injury, large 

quantities of AMPs are produced due to the activation of 

innate immunity. Other methods that induce AMP 

expression in BSFL include thermal injury, stab wounds, 

or treatment with HCL or heat, etc.
[21]

 

 

Classification of BSFL AMPs 
There are five major categories of BSFL-derived AMPs. 

These include defensins, attacins,  diptericins, cecropins, 

and knottin-like proteins, etc.
[22]

  Both defensin and 

cecropins have structural similarities and these AMPs 

have been widely studied as compared to other AMPs to 

date. The structure of AMPs can be classified as α-helix, 

β-sheets, linear peptides with α- or β- elements, or a mix 

of both α- or β-structures.
[23]

 

 

Cecropins 
In 1974, cecropia AMPs were first isolated from the 

hemolymph of pupae of Samia cynthia or giant silk 

moth. Then in 1980, these were also detected from the 

hemolymph of pupae of Hyalophora cecropia or 

Cecropia moth. After the discovery of these AMPs in 

cecropia moth, insects gained attention for AMP 

isolation. These represent the most abundant class of 

insect AMPs.
[24]

 They consist of 35 to 37 amino acids 

and possess an α-helical structure with no cysteine amino 

acid. In the BSFL genome, 7 genes encode for cecropins. 

Their mode of action involves lysis of bacterial cell 

membranes and reduction of uptake of proline. To date, 

they have been isolated from various insects, the adrenal 

glands of cattle, and the intestines of pork.
[25]

 

 

These cationic AMPs are active against gram-positive as 

well as gram-negative bacteria. The gram-positive 

bacteria include Bacillus and Staphylococcus species. 

However, gram-negative bacteria include Salmonella 

typhimurium, E. coli, Pseudomonas aeruginosa, and 

Klebsiella pneumonia. They also have antifungal action 

against Candida albicans. The cecropin-like peptide 1 

(CLP1) is 50 times more effective than against 

Ampicillin.
[26]

 

 

The two cecropins i.e. Hill-Cec1 and Hill-Cec10 show 

strong antibacterial effects against P. aeruginosa strains, 

which are considered as the primary pathogens causing 

nosocomial infections. These cecropin AMPs can 

inactivate P. aeruginosa within 30 minutes. These have a 

fast mechanism of action of disrupting cell membranes, 

are less cytotoxic, highly active. Due to the strong 

antibacterial activity of these AMPs against P. 

aeruginosa, these can be utilized as a promising 

antipseudomonal drug for treating infections of the lungs 

or skin.
[27]

 

 

Defensins 

In BSFL, these are expressed by hemocytes or epithelial 

cells. These are the most common class of insect AMPs 

and are found to be present in various plants, animals, 

fungi, and insects. These cationic AMPs comprise 34 to 

43 amino acids.
[28]

 Their cationic nature is mainly due to 

cysteine, arginine, and lysine amino acids. However, 

cysteine is dominant in these antimicrobial proteins. 

These contain three disulfide bridges with 3 to 4 kDa 

molecular weight.
[29]

 Their mode of action is similar to 

that of attacins. It involves the induction of necrosis in 

bacterial cell membranes (especially gram-positive), 

resulting in membrane pores and ultimately resulting in 

bacterial cell death due to the leakage of inside content 

through these pores.
[30]

 

 

To date, 26 genes have been reported in BSFL encoding 

for defensins. These are effective against bacteria, fungi, 

protozoa, and yeast.
[31]

 Other functions involve 

antifungal effects, wound healing, canine coat color 

expression, immunological regulation through interaction 

with melanocortin receptors, and maturation of 

mammalian sperm.
[32]

 Hidefensin-1 is one of the most 

common and widely studied defensin AMP, with 

inhibitory action against S. pneumoniae and E. coli.
[33]

 

 

Attacins 
These were reported for the first time in a giant silk moth 

(Hyalophora cecropia). These are glycine-rich (14-22%) 

and other amino acids include aspartate, phenylalanine, 

alanine, and threonine.
[34]

 In BSFL, 6 genes encode for 

attacins. They attach to lipopolysaccharides, part of the 

gram-negative bacterial outer membrane. After 

attachment, they inhibit the synthesis of the outer 

membrane of gram-negative bacteria, facilitating 

lysozymes and cecropins entry to the inside of bacterial 

cells. In addition, they protect against fungi and tumor 

cells.
[35]

 

 

Diptericins 
These glycine-rich AMPs were first identified in the 

blowfly (Phormia terranova). Their antipathogenic 

characteristics are more active against gram-negative 

bacteria. BSFL genome carries 10 AMPs encoding 

genes. The largest diptericin peptide in BSFL is reported 

to be Hiditericin-1. Their mode of action is not fully 

understood yet.
[36]

 

 

Knottin-like proteins 
These are disulfide-rich AMPs with an inhibitor cysteine 

knot and three interlinked disulfide bridges. These have 
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insecticidal, cytotoxic, and anti-protease activity. In 

BSFL, 4 genes are associated with synthesizing these 

peptides. They have been isolated from several insects, 

spiders, and cone snails.
[37]

 

 

Mechanism of Action of Antimicrobial Peptides 
AMPs target lipids of bacterial plasma membranes. As 

cationic, AMPs attach with anionic components of 

bacterial cells (Lipopolysaccharides, lipoteichoic acids, 

and teichoic acids). Eventually, they damage the 

bacterial cells' integrity by forming transmembrane 

pores.
[38]

 These pores cause the leakage of cellular 

content to the outside environment. In gram-positive 

bacteria, AMPs attack the peptidoglycan layer. However, 

in the case of gram-negative bacteria, they target 

phosphate groups and phospholipids of their 

lipopolysaccharides (LPS).
[39]

 Additionally, when LPS is 

released into the intercellular space of host cells, it binds 

to toll receptors, activating the immune system and 

ultimately causing sepsis.
[40]

 

 

This bacterial membrane lysis involves 4 different 

mechanisms, 1) toroidal pore model, 2) carpet-like 

model, 3) barrel-stave model, and 4) unstructured ring 

pores.
[41]

 In the toroidal pore model, pores are formed as 

AMPs damage the lipid bilayer of the bacterial 

membrane, resulting in bacterial cytoplasmic leakage.
[42]

 

The carpet-like model is associated with higher numbers 

of AMPs, which lyse the bacterial plasma membrane in a 

carpet-like mode. Cecropin AMPs exhibit this 

mechanism against pathogens. For example, large 

amounts of cecropins accumulate at the outer lipid 

bacterial membrane and form a carpet-like structure. 

This carpet-like structure acts like a detergent and results 

in the dissolving of the lipid bilayer, ultimately causing 

bacterial cell death.
[43]

 

 

In the barrel stave model, AMPs attach with cell envelop, 

penetrate to the hydrophobic lipid bilayer, and result in 

intracellular content leakage of pathogenic cells. 

Amphotericin B and Cerototoxins AMPs show this 

mechanism of action.
[44]

 However, the unstructured ring 

pore model involves the formation of transmembrane 

pores in the form of rings. In this mechanism, AMPs 

arrange in the form of rings at different angles attach to 

the pathogen’s outer membrane and ultimately cause cell 

death.
[45]

 Other than membranolytic effects, AMPs 

impair the intracellular metabolism of pathogenic cells. 

Pyrrhocoricin and drosocin AMPs damage the 

chaperone, which ultimately results in the failure of 

protein folding in pathogenic cells.
[46]

 

 

Medical value of BSFL-derived AMPs 

The peptides have the potential to be utilized in the 

pharmaceutical and biological domains, providing a 

novel approach to address the problem of antibiotic 

resistance. AMPs are specific in action, as they don’t 

cause damage to normal eukaryotic host cells due to the 

presence of sphingomyelin and zwitterionic 

phosphatidylcholine on their neutral cell surfaces.
[47]

 The 

antimicrobial evaluation of most of the BSF-derived 

AMPs has not yet been completely explored, but many 

studies demonstrated that they have promising effects 

against a wide range of infections.
[48]

 

 

BSFL-extracted AMPs has the potential as an insect-

based antibiotic, as the hemolymph extracted from 

BSFL, which were immunized with Lactobacillus casei 

provide good results against Shigella dysenteriae and 

Klebsiella pneumoniae in vitro.
[49]

 Another study 

presented that the BSFL extract exhibits a strong 

antimicrobial action against methicillin-resistant bacteria, 

such as Staphylococcus aureus and Pseudomonas 

aeruginosa. Hence, it can be a potent antibiotic agent for 

antibiotic-resistant bacterial strains.
[50]

 The methanolic 

extract of hemolymph obtained from mature BSFL, also 

shows strong antibacterial effects against Micrococcus 

flavus, M. luteus, S. aureus, Klebsiella pneumoniae, 

Shigella sonnei, Neisseria gonorrhoeae, Salmonella 

typhimurium, P. aeruginosa, and E. coli.
[51]

 

 

Hidiptericin-1 and Hidefensin-1 AMPs provide 

pathogenicity against Escherichia coli and Streptococcus 

pneumonia
[52]

, while Hill-Cec1 and Hill-Cec10 AMPs 

are toxic against Pseudomonas aeruginosa and 

Klebsiella pneumonia.
[53]

 Three AMPs (Hidefensin-1, 

Hidiptericin-1, and HiCG13551) encoded by the BSFL 

genome enhance resistance against entomopathogenic 

infections in silkworms. Hence, BSFL-derived AMPs 

have a huge potential for controlling silkworm fungal 

infections.
[54]

 

 

Recently, an extract of AMP named defensin-like 

peptide 4 (DLP4) was isolated from the hemolymph of 

BSF larvae. Methicillin-resistant Staphylococcus aureus 

(MRSA)-infected mice treated with DLP4 at doses 

ranging from 3 mg/kg to 7.5 mg/kg had an 80–100% 

survival rate. This discovery proved that DLP4 is a novel 

potential antimicrobial peptide (AMP) with promise 

against infections caused by MRSA. When added to 

feed, protein derived from the BSF considerably lowers 

the incidence of diarrhea in breeding animals and 

enhances their growth performance.
[55]

  For many years, 

BSF AMPs have been the focus of intense research. It is 

anticipated that these compounds would be able to 

partially or completely prevent the horizontal transfer of 

resistance genes in the environment and replace 

antibiotics in poultry feed.
[56]

 

 

Defensin-like peptides 2 and 4 (DLP2 and DLP4) lower 

the bacterial burden in the kidneys and spleen by over 

95%, decrease proinflammatory cytokine levels in the 

blood, enhance anti-inflammatory cytokine levels, and 

heal lung and splenic injuries. DLP2 and DLP4 isolated 

from Hermetia illucens appear to be good options for 

treating staphylococcal infections. As a result, studies on 

AMPs from Hermetia illucens may be crucial in the field 

of biomedicine.
[57]

 After feeding different insect meals 

including giant mealworm, yellow mealworm, house fly 
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larvae, etc. to diarrhea-affected piglets, the symptoms 

were decreased.
[58]

 

 

BSFL were inoculated with attenuated E. coli during 

their late larval stage and after some hours, hemolymph 

was collected from them. This BSFL-extracted 

hemolymph was evaluated against E. coli and MRSA. 

The results showed the greatest antimicrobial activity in 

vitro. It was concluded that, if BSFL are immunized with 

live or attenuated bacteria during their late instar stage, it 

will lead to better production or extraction of anti-

pathogenic AMPs from BSFL.
[59]

 BSFL is also capable 

of being utilized for the synthesis of anti-Helicobacter 

pylori antibiotic drugs. The extraction of anti-H.  pylori 

AMPs from BSFL are enhanced about 3 to 5 times if 

they are pre-immunized with E. coli.
[60]

 

 

CONCLUSION 

BSF is an insect of great medicinal, nutritional, and 

environmental importance. The most important bio-

active molecules, i.e. AMPs protect BSFL against 

various pathogens. These AMPs carry the potential to 

replace traditional antibiotics. There is no possibility of 

pathogens to develop resistance against them. These can 

be easily extracted through the hemolymph of BSFL 

with the help of micro-injection. Several studies have 

concluded that BSFL-based AMPs have a broad 

spectrum of anti-pathogenic effects both in vitro and in 

vivo studies. Further research is needed to better 

understand their mode of action, more effective methods 

of stimulating their production in BSFL, the cascade of 

reactions that result in their production, more efficient 

ways of their extraction through BSFL-hemolymph, and 

identification of novel AMPs from BSFL. 
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