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INTRODUCTION 

Contemporary pharmaceutical research encounters 

significant obstacles with diminishing productivity in 

drug development and a persistent discrepancy between 

therapeutic requirements and existing treatments.
[1-4]

 The 

approval rate of new drugs per dollar invested in research 

and development has been on a downward trajectory, 

with recent investigations indicating that the process to 

bring a new drug to market now spans over 15 years and 

costs upwards of $1 billion.
[2, 4]

 This trend can be 

attributed, in part, to substantial attrition rates; only 

about 10% of compounds advancing to Phase II clinical 

trials ultimately receive approval
[6]

, with most failures 

stemming from safety issues or inadequate efficacy.
[7, 8]

 

Amidst this declining productivity, there exists an urgent 

demand for treatments addressing rare diseases. The 

National Organization for Rare Disorders reports 

approximately 7,000 rare diseases that collectively 

impact around 10% of the population in developed 

countries; however, only a small fraction of these 

conditions have accessible pharmacological therapies.
[9]

 

Given the current expenses associated with research and 

development, creating novel therapies for each rare 

disease is impractical. These challenges highlight the 

necessity for innovative strategies to identify new 

therapeutic avenues and to enhance understanding of 

drug mechanisms and adverse effects related to 

investigational compounds. 

 

In this context, advancements in genomics and 

computational methodologies offer new avenues for 

research and drug development. A wealth of data—

including gene expression profiles, drug-target 

interactions (DTI), protein interaction networks, 

electronic health records, clinical trial documentation, 

and adverse drug event reports—is rapidly accumulating 

and becoming increasingly standardized and 

accessible.
[11, 12] 

However, this data often presents 

complexities due to its high dimensionality and inherent 

noise, posing both challenges and opportunities for the 

development of computational methods that can integrate 

these datasets to expedite drug discovery and uncover 

new insights into drug mechanisms, side effects, and 

interactions. 

 

Computational pharmacology represents an expanding 

set of methodologies designed to specifically tackle these 

challenges. This review will focus on three primary 

objectives within the field of computational 

pharmacology. First, we will explore the prediction of 
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DTIs, which are essential for understanding drug 

functionality and often serve as a crucial foundation for 

subsequent research in computational pharmacology. 

Secondly, we will examine methodologies aimed at 

predicting or elucidating potential adverse effects or drug 

reactions, as a deeper understanding of off-target effects 

could significantly reduce therapeutic failures resulting 

from unintended physiological responses. Lastly, we will 

address techniques for drug repurposing, which involves 

identifying new therapeutic applications for existing 

medications. This review will also highlight 

computational pharmacology methods that synthesize 

data from multiple sources or across numerous 

compounds. Such integration can minimize noise and 

enhance the predictive capability of high-dimensional 

datasets.
[14-19]

 Data integration across various compounds 

can facilitate novel inquiries, such as determining how 

information about one drug may inform our 

understanding of another. For instance, similarity-based 

approaches (often referred to as guilt-by-association) 

evaluate whether "similar" drugs may share common 

targets or exhibit analogous side effects or therapeutic 

indications.
[20-24][25][26-29]

 We will begin by examining the 

quantification and measurement of various dimensions of 

pharmacological space, including a discussion of key 

databases and resources. Following this, we will provide 

an overview of three applications of computational 

pharmacology: predicting DTIs, forecasting and 

interpreting side effects, and drug repurposing. Finally, 

we will discuss the importance of data integration in 

computational pharmacology and outline potential future 

directions within the discipline. 

 

The resources that facilitate computational pharmacology 

and drug repurposing include several databases, each 

serving specific purposes. For general compound 

information, PubChem contains over 60 million 

compound structures and related data, while ChEMBL 

features over 1 million such entries. DrugBank provides 

binary DTI information for more than 7,000 drugs, and 

BindingDB offers detailed binding affinity data. The 

SEA and DR. PRODIS databases are valuable for 

predicted DTIs, employing different methodologies to 

yield insights. Cmap v2 compiles data on drug-induced 

transcriptional alterations across 1,309 compounds, while 

LINCS provides extensive profiles from chemical and 

genetic perturbations. The Cancer Genome Atlas 

(TCGA) encompasses RNAseq and microarray data 

across more than 30 cancer types. The Gene Expression 

Omnibus (GEO) archives diverse high-throughput 

genomic data. Phenotypic drug screens, including those 

from NPC (NCGC) and PD2, document results from 

extensive testing of approved compounds against various 

assays. Pharos connects drugs, targets, and diseases, 

while ClinicalTrials.gov offers a registry of clinical 

studies worldwide. SIDER provides information about 

adverse drug events and side effects from marketed 

compounds, whereas Offsides and FAERS report 

additional side effects and adverse events not typically 

listed. Lastly, the DvD pipeline enables dynamic 

comparisons between drug and disease gene expression 

data, enhancing the capability for signature-matching 

repositioning. 

 

Quantifying And Representing Drug Space 

The characteristics of a drug or drug-like compound and 

its interactions with the human body can be quantified 

and described in various ways, enabling downstream 

analyses and predictions. The physicochemical properties 

of a drug, such as chemical structure, melting point, and 

hydrophobicity, can be quantified. Interactions between 

compounds and biological targets can be assessed using 

measures of binding and kinetic activities. Furthermore, 

downstream biological perturbations can be quantified 

by measuring changes in cellular states or gene 

expression. Drugs can also be represented through 

categorical metadata, including diseases and conditions 

for which a drug is indicated, side effects, or known 

physiological interactions with other drugs. Such 

quantitative measures and metadata can be transformed 

into numerical representations, allowing for analysis to 

discover patterns and relationships between compounds 

and to generate new hypotheses. 

 

Chemical Structure 

Different methods exist for representing the chemical 

structure of small molecule compounds. For example, the 

three-dimensional geometry of atoms and their electronic 

structures can be utilized in simulation-based analyses, 

such as molecular docking. Alternatively, the chemical 

structure can be codified into a character string or line 

notation like SMILES, which is derived from printing the 

atomic symbols during a depth-first tree traversal of the 

chemical graph.
[30]

 The InChI string (International 

Chemical Identifier), which encodes various layers of 

information such as atoms, bonds, electronic charge, and 

tautomers, is a more recently introduced option.
[32]

 While 

SMILES is generally considered more human-readable, 

InChI can capture more detailed information and, unlike 

SMILES, is unique, making database mapping easier.
[33]

 

Although these character string representations can be 

analyzed algorithmically, they are variable-length and 

non-numeric, which can complicate analyses. To address 

this issue, fixed-length binary fingerprints have been 

developed
[34, 35]

, where each bit may correspond to the 

presence or absence of a specific atom, moiety, aromatic 

ring, etc. The distance between two chemical structures 

can then be easily quantified, for example, using the 

Tanimoto coefficient (Tc), which represents the Jaccard 

similarity (|A∧B|/|A∨B|) of the two fingerprints. Both 

PubChem
[36]

 and ChEMBL
[37]

 are widely used databases 

of chemical compounds containing chemical structure 

and many other properties, with information on over 60 

million and 1 million compounds, respectively. 

 

Drug–Target Interactions 

A drug–target interaction (DTI) can be assessed through 

various experimental techniques, such as direct binding 

or competition binding assays
[23]

, and can be summarized 

using a dose–response curve that plots a readout 
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corresponding to the amount of protein–ligand 

complexes formed relative to the logarithm of ligand 

(drug) concentration. A significant interaction typically 

yields a sigmoidal curve, with the inflection point and 

height of the curve characterizing the compound's 

potency and efficacy against the target, respectively. This 

inflection point is referred to as either the EC50 or IC50 

value, indicating the half-maximal effective or inhibitory 

concentration, depending on whether the curve is 

increasing or decreasing with concentration. Although 

EC50/IC50 values can vary based on experimental 

conditions (e.g., target concentration), they can 

sometimes be related to the binding affinity, denoted by 

Ki, which represents the intrinsic strength of the 

interaction.
[38]

 

 

Public databases provide various levels of DTI 

information. Binary-level information, indicating the 

presence or absence of an interaction, is available in 

DrugBank
[39]

 for several thousand drugs, representing 

over 4,000 unique targets. This information can be 

organized into a binary target interaction profile vector 

for each drug, with a length equal to the number of 

targets. Alternatively, more detailed, experimentally 

determined binding data for hundreds of thousands of 

drugs and drug-like compounds are captured in databases 

such as ChEMBL
[37]

, PubChem Bioassay
[36]

, and 

BindingDB.
[40]

 

 

Drug Perturbations of Gene Expression 

Genome-wide mRNA expression levels can be employed 

as a proxy for measuring chemical perturbations of 

cellular states by comparing expression levels in cellular 

samples with and without exposure to a chemical 

compound. Each perturbation can be represented as an 

expression profile, where each gene is assigned a value 

corresponding to the degree of up- or down-regulation 

relative to a control (e.g., the difference in mean 

expression values); alternatively, this can be further 

processed into a signature, defined here as the sets of 

significantly up- and down-regulated genes. Although 

less commonly used, one could also consider differential 

variance
[41]

 or drug-induced changes in gene–gene 

covariance, known as differential coexpression.
[42]

 

Several publicly available resources are noteworthy in 

this context. The Connectivity Map
[43]

 and its recent 

update utilizing the L1000 technology as part of the 

LINCS
[44]

 project have generated publicly accessible 

expression measurements from thousands of in vitro drug 

perturbations across multiple human cell lines. GEO
[45]

 

serves as a public gene expression repository with over 

one million samples, covering a wide range of 

experiments, including both drug and disease 

perturbations. Additionally, as part of a crowdsourcing 

initiative
[46]

 organized by the LINCS data integration and 

coordination center, over 900 drug-perturbation 

experiments have been extracted from GEO and 

processed into signatures that are freely available for 

download. Different metrics can be utilized to evaluate 

the similarity between two expression profiles and/or 

signatures
[47, 48]

, including correlation, cosine distance, 

and Gene Set Enrichment Analysis.
[43]

 

 

Cell and Animal Phenotypes 

Beyond molecular analysis, a compound‘s phenotypic 

impacts can be evaluated in cellular samples or animal 

models, such as assessing cytotoxicity in cancer cells
[49-

51]
 or monitoring sleep patterns in zebrafish.

[52]
 Until 

approximately 30 years ago, this was the primary method 

for drug discovery. Although rational (i.e., target-centric) 

drug discovery has largely supplanted this approach, 

phenotypic methods continue to be a vital source of new 

therapies, notably accounting for the majority of first-in-

class FDA approvals between 1998 and 2008.
[53]

 

Phenotypic screening is beneficial because it assesses a 

drug's effects within the intricate dynamics of biological 

systems, enabling the identification of compounds whose 

mechanisms may involve novel or multiple targets, 

thereby facilitating clinical translation.
[54]

 Within this 

paradigm, Zheng et al.
[54]

 discuss the trade-offs between 

cellular and animal models; while cell-based screens 

often allow for higher throughput, animal models enable 

exploration of more complex phenotypes. 

 

Typically, phenotypic screens are conducted on a one-

assay-at-a-time basis with a specific disease or outcome 

in focus. However, data from multiple screens can be 

aggregated to create a phenotypic profile for each 

compound. For instance, the Bioassay feature of 

PubChem
[55, 56]

 contains over 740 million data points 

from both biochemical and phenotypic screens, 

encompassing more than 1 million small molecules, with 

many compounds evaluated in hundreds or even 

thousands of assays. ChEMBL also includes bioassay 

data with over 12 million data points.
[37]

 Additionally, 

several publicly available resources contain 

comprehensive drug-by-phenotype matrices. One 

example is NPC-PD, which includes results from nearly 

2,500 clinically approved compounds screened across 35 

phenotypic assays targeting cardiovascular disease, 

diabetes, and cancer.
[57]

 The NIH Chemical Genomics 

Center has compiled a dataset of roughly 2,500 approved 

compounds screened in approximately 200 phenotypic 

and target-based assays, focusing on various cancers, 

malaria, nuclear receptors, and signaling pathways.
[58]

 

 

A notable category of cell-based phenotypic screens 

involves cancer cell line sensitivity studies
[49-51]

, where 

growth rates (or cell viability) are measured before and 

after drug exposure across a panel of cancer cell lines. 

For instance, the Cancer Therapeutic Response Portal
[49]

 

has assessed the sensitivity of 242 genetically 

characterized cancer cell lines to 354 small molecule 

probes and drugs. Similarly, the Genomics of Drug 

Sensitivity in Cancer database
[51]

 has evaluated 138 

anticancer drugs across 700 cell lines. The Cancer Cell 

Line Encyclopedia
[59]

 provides additional context, 

offering detailed genetic characterization of 1,000 cancer 

cell lines, which can be utilized to assess cell line 
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similarity and predict drug-perturbed growth rates in 

additional cell lines.
[60]

 

 

Side Effects and Adverse Drug Events 

A final example of potentially useful drug-related 

information is given by side effects and adverse drug 

events (ADEs). Similar to disease indications, side 

effects terms and adverse events are represented in 

structured ontologies such as MedDRA®. Several 

important resources organize complementary aspects of 

side effect information. First, SIDER
[76]

 (Side Effect 

Resource) is a public side-effect database with compiled 

information from FDA package inserts connecting 888 

drugs to 1,450 side-effect terms. Another resource is the 

OFFSIDES
[77]

 database, generated by analyzing over 

400,000 adverse effects not listed on the FDA's official 

drug label, and identifying an average of 329 off-label 

ADEs per drug. Finally, the FDA Adverse Event 

Reporting System (FAERS) is a database of information 

on adverse event and medication error reports submitted 

to the FDA by manufacturers, healthcare professionals, 

and the general public. Now that we have considered 

various ways to quantify and represent drug-related 

information, we will see how such information can be 

used in several different applications of computational 

pharmacology, starting with target prediction. 

 

Predicting Drug-Target Interactions 

At the most basic level, drugs exert their effects on 

biological systems by binding with protein targets and 

affecting their downstream activity. Knowledge of these 

interactions provides a key toward understanding and 

predicting higher-level information such as side effects, 

therapeutic mechanisms, and novel indications. 

However, there are still many gaps in our knowledge of 

which drugs bind to which targets. At the time of writing, 

DrugBank
[39]

 lists, on average, less than two targets per 

drug, whereas a recent article
[78]

 predicted that the true 

average number of targets per drug is a staggering 329. 

Even if this is a gross overestimation, it provides some 

indication that there are many more interactions than are 

currently known. Filling these gaps by experimentally 

testing all drugs against all possible protein targets is 

currently infeasible, and hence a variety of 

computational methods have been developed to predict 

likely interactions. De novo prediction, that is, based 

only on structure, is useful for virtual screening of large 

compound libraries, while other methods make use of 

related interactions to generate new predictions for 

compounds that have already been shown to have 

pharmacological activity. 

 

De Novo Structure-Based Prediction 

Molecular docking is a popular approach that uses three-

dimensional modeling and computer simulation to dock a 

candidate drug into a protein-binding pocket and then 

score the energetic favorability or likelihood of the pair's 

interaction.
[79, 80]

 This approach is advantageous in that it 

can provide structural insights into the nature of the 

interaction, which might enable further optimization of 

the compound's structure to increase binding affinity for 

its target. However, molecular docking depends on the 

existence of a reliable three-dimensional model of the 

protein, and for certain target classes such as membrane-

bound proteins, this often does not exist due to 

experimental limitations. Further, the approach is very 

computationally demanding, limiting its feasibility for 

large-scale, many-to-many DTI prediction tasks. While 

molecular docking is considered a target-based approach, 

as each compound is evaluated against the selected 

target's structure, one can alternatively take a ligand-

based approach, constructing a sort of abstract ‗pseudo-

drug‘ representation called a pharmacophore model, 

containing the chemical features deemed to be important 

for interaction with the chosen target.
[81]

 Compounds can 

then be aligned and scored against the model through a 

process that is much less computationally demanding 

than molecular docking. Pharmacophore models can be 

constructed from analysis of the target's binding pocket 

or, moving beyond the de novo prediction setting, could 

alternatively be derived using a set of positive and 

negative examples of compounds interacting with the 

target. Compared with molecular docking, this approach 

is more computationally efficient, and some studies 

indicate that it generally has better accuracy.
[82, 83]

 

Pharmacophore models are often used to screen large 

compound libraries (e.g., millions of compounds) in 

order to prioritize potential lead compounds for 

experimental follow-up, sometimes improving hit rates 

by an order of magnitude.
[84]

 However, the hit rate will 

naturally depend on the quality of the pharmacophore 

model, which can be sensitive to the specific compounds 

or algorithm used and hence prone to high false-positive 

and false-negative rates.
[81]

 

 

Learning from Related Interactions 
When existing compounds are known to interact with 

similar or identical targets, this information can serve as 

an additional resource for predicting novel interactions. 

This is achieved through the application of a guilt-by-

association (GBA) principle, which posits that analogous 

drugs may share target proteins, or that similar proteins 

might be influenced by the same drug. Recent studies 

substantiate this perspective by revealing that out of 

approximately 20,000 human proteins, there are only 

about 1,000 unique conformations of binding pockets.
[85]

 

This finding suggests that proteins possess numerous 

shared binding sites and consequently, common binding 

partners. Supporting the GBA methodology, Paolini et 

al.
[86]

 combined drug–target interaction (DTI) data from 

various sources to develop a bipartite DTI network, 

demonstrating that proteins within the same 

classification tend to have overlapping drug interaction 

partners. 

 

Several methodologies leverage knowledge of related 

interactions. One previously discussed approach is DTI-

based pharmacophore modeling. Another prevalent 

strategy
[87, 88]

 involves framing the issue as a binary 

classification task, utilizing supervised machine learning 
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models where the inputs consist of physicochemical 

characteristics of the drug and/or protein, and the output 

(whether known or predicted) indicates the presence or 

absence of an interaction. For instance, Nidhi et al.
[87]

 

employed a Naïve Bayes framework to predict targets 

solely based on chemical structure, achieving a 77% 

recall rate of known interactions among the top three 

predicted targets for each drug. Alternatively, DTI 

prediction can be approached as a regression challenge 

aimed at estimating binding affinities. Notable examples 

include the research conducted by Bock and Gough
[89]

, 

which utilized support vector regression to identify high-

affinity ligands for orphan G protein-coupled receptors 

(GPCRs), and the more recent study by Cao et al.
[90]

, 

where random forest regression applied to both drug and 

target features achieved area under the curve (AUC) 

values of up to 0.96. 

 

Recent investigations have also explored deep neural 

networks to forecast drug–target interactions based on 

chemical structures and known interactions.
[92, 93]

 For 

example, Ramsundar et al.
[92]

 integrated millions of data 

points representing both positive and negative DTI 

examples across over 200 distinct targets. They 

implemented a ‗multi-task‘ framework, treating the 

prediction for each target as an independent task 

requiring its own linear classifier, while all classifiers 

utilized the same feature representation optimized via the 

neural network. This deep-learning approach attained a 

maximum cross-validated AUC of 0.87 and illustrated 

that the multitask component of their method 

consistently yielded marginal enhancements 

(approximately a 0.01 increase in AUC) over a 

corresponding single-task analysis using the same 

dataset. It is noteworthy that the task-specific linear 

classifiers, along with the aforementioned machine 

learning models, exhibit similarities to pharmacophore 

models, as they all identify the structural features 

deemed most critical for interaction. 

 

The methodologies detailed above invoke the similarity 

principle in an implicit manner, for instance, by adjusting 

coefficients for drug and/or protein features, leading to 

similar predictions for drugs with comparable 

characteristics. However, several machine learning 

techniques have been developed that explicitly utilize a 

similarity-based framework, operating directly with 

similarity matrices between drugs and/or targets. A 

straightforward example is the nearest-neighbor 

approach
[21]

, where one might predict the likelihood of 

interaction between drug D and target T by assessing 

whether the drug ‗closest‘ to D interacts with T, or 

conversely, whether the target nearest to T interacts with 

D. In a similar context, Bleakley et al.
[20]

 proposed a 

more sophisticated method called bipartite local models, 

training distinct support vector machine (SVM) 

classifiers for each drug and target. In this model, user-

defined drug- and target-similarity matrices are input into 

the SVM algorithm, while known interactions serve as 

labels. Ding et al.
[21]

 provide a coherent and insightful 

review of similarity-based machine learning techniques, 

including experiments that benchmarked the 

performance of eight different algorithms in recovering 

known DTIs. Although their results did not identify a 

definitive winner, AUCs reached as high as 0.98 for ion 

channels, with significant variations across target classes, 

likely attributable to the differing amounts of available 

data for each class, complicating direct comparisons with 

the AUCs derived from the previously mentioned deep-

learning approach. 

 

While structural similarity of compounds is perhaps the 

most intuitive and well-supported metric employed for 

DTI prediction, other similarity concepts have also 

proven effective. For instance, Campillos et al.
[22]

 

developed a metric for assessing side effect similarity 

across a dataset of 746 marketed compounds, uncovering 

around 1,000 side-effect-driven drug–drug relationships 

and confirming 9 out of 20 subsequent DTI predictions 

through cell-based assays. Intriguingly, roughly one-

quarter of the identified drug pairs were both chemically 

dissimilar and had distinct therapeutic indications, 

suggesting that side effect information offers a somewhat 

orthogonal perspective on compound relationships that is 

still informative regarding target activity. Keiser et al.
[94]

 

introduced an alternative framework based on their 

similarity ensemble approach (SEA)
[23]

, wherein each 

target is represented by its known binding ligands 

(including endogenous ligands), and the similarity 

between the candidate drug and the ligand set is 

evaluated through a statistical framework developed by 

the authors.
[23]

 Out of 30 tested predictions, 23 were 

experimentally validated, including the activity of the 

drug DMT on serotonergic receptors, indicating a 

previously unrecognized mechanism of action for DMT. 

Another example employing a different notion of 

similarity is the network-based inference (NBI) 

method
[24]

, which utilizes known DTIs to predict new 

interactions; in this case, the drug similarity metric 

(though not explicit in the NBI framework) is based on 

target interaction profiles. 

 

A crucial consideration when applying any technique 

rooted in related interactions is the scarcity of high-

confidence negative examples. This limitation arises 

because it is challenging to ascertain whether a specific 

drug–target interaction is genuinely not feasible or if the 

interaction might occur under different biological 

conditions. Recent research
[91]

 sought to tackle this issue 

by developing an in silico approach to identify high-

confidence negative examples, demonstrating that the 

inclusion of such examples enhances predictive 

performance. DTI prediction remains a well-explored 

problem, encompassing numerous techniques that 

collectively utilize a range of data, including chemical 

structure, protein structure, side effect associations, 

ligand sets, and other drug–target interactions. While 

computational chemistry can facilitate the generation of 

de novo predictions and thereby investigate novel areas 

of pharmacological space, similarity-based 
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methodologies offer the benefit of improving accuracy as 

additional data become available. Many of these methods 

have exhibited a high degree of precision and have 

proven useful in virtual screening scenarios to prioritize 

compounds for high-throughput screening, as well as in 

identifying new targets for established drugs. The 

subsequent sections will illustrate how these techniques 

can also lay the groundwork for predicting side effects 

and discovering new therapeutic applications. 

 

Predicting and Explaining Side Effects and Adverse 

Events 
Ensuring drug safety is paramount for the success of 

pharmaceutical development. Enhancing the ability to 

model and anticipate drug side effects and adverse events 

is vital for optimizing drug discovery processes. Early 

detection of unwanted toxicity can avert unnecessary 

resource allocation towards non-viable drug candidates. 

Traditionally, safety screening relies on pre-clinical 

assessments using animal disease models. However, such 

methodologies are prohibitively expensive
[95]

 and 

introduce significant uncertainty regarding their 

translatability to humans
[96, 97]

, owing to genetic and 

environmental disparities. Computational methodologies 

can mitigate some of these challenges. In silico strategies 

possess the potential to forecast undesirable side effects 

at earlier stages in the drug development process, 

utilizing predicted drug–target interactions
[78, 98]

 or in 

vitro drug-induced alterations in gene expression.
[99]

 

Furthermore, Lum et al.
[100]

 propose that employing a 

computational systems biology approach could reduce 

translational uncertainties between animal models and 

human subjects by modeling the conserved responses of 

molecular networks across different species. 

 

Identifying novel side effect associations with approved 

drugs is another crucial objective, fitting within the 

domain of pharmacovigilance. Such associations may not 

be evident during clinical trials, often due to their 

infrequent occurrence or delays between medication 

initiation and symptom manifestation.
[101]

 Computational 

techniques are particularly advantageous in this context, 

as they can mine data related to a compound's post-

market usage and effects.
[25, 101, 102]

 

 

Target-Mediated Connections 
Certain protein targets have been identified as causally 

linked to adverse effects
[103, 104]

, and this knowledge can 

be utilized to associate drugs with these effects. For 

instance, Lounkine et al.
[98]

 employed the SEA 

method
[23]

, previously discussed, to assess the activity of 

656 marketed drugs on 73 proteins associated with side 

effects. They devised a method to identify predicted off-

targets that elucidated side effects more effectively than 

any established targets of a drug. This led to the 

prediction that abdominal pain resulting from the 

synthetic estrogen chlorotrianisene is mediated by its 

newly identified and validated interaction with the 

enzyme cyclooxygenase-1. Zhou et al.
[78]

 adopted a 

similar strategy, utilizing their FINDSITEcomb 

method
[105]

 to predict drug–target interactions (DTIs) for 

all drugs listed in DrugBank against the majority of 

proteins in the human proteome. By combining these 

predicted DTIs with known drug-side effect associations, 

they were able to link targets to side effects, even in 

cases where the targets lacked experimentally validated 

drug interactions. The authors introduced a ―killing 

index,‖ estimating the probability that a compound may 

lead to severe adverse effects such as death, stroke, or 

heart failure. They discovered that 44% of small 

molecules from DrugBank were predicted to possess a 

killing index greater than zero, whereas only 16% of 

FDA-approved drugs exhibited this characteristic, 

thereby validating their analysis and suggesting the 

killing index could serve as a useful filter for identifying 

investigational compounds during early drug 

development stages. 

 

Molecular Network Modeling: 

While the previously described approaches are founded 

on established links between targets and side effects, 

molecular network modeling can be employed to 

hypothesize novel connections and elucidate 

physiological mechanisms. This is illustrated by research 

from two groups aiming to clarify the fatal hypertensive 

response observed in some individuals taking the CETP 

inhibitor torcetrapib, which led to the drug's failure in 

Phase III clinical trials.
[106]

 Understanding the molecular 

mechanisms underlying this adverse response would help 

prevent similar occurrences in the future and determine 

whether other CETP inhibitors should continue to be 

explored. Chang et al.
[107]

 developed a framework 

utilizing structure-based target prediction alongside a 

technique called metabolic modeling
[108]

 to implicate 

targets in the hypertensive response, hypothesizing that 

the adverse effect stemmed from renal regulation of 

blood pressure through metabolite reabsorption and 

secretion. They identified a list of 41 metabolic proteins 

predicted to be off-targets of the drug using structure-

based target prediction. Subsequently, they constructed a 

renal metabolic network model encompassing 338 genes 

to simulate the phenotypic outcomes resulting from the 

inhibition of each target, yielding six out of 41 predicted 

to influence renal function. Two of these targets had 

existing literature supporting their connection to 

hypertension in humans, mice, or rats, while the 

remaining four represented novel hypotheses. Fan et 

al.
[109]

 also employed network analysis to investigate 

potential explanations for torcetrapib-induced 

hypertension. They constructed a context-specific human 

signaling network filtered by genes that were 

differentially expressed in adrenal carcinoma cells 

treated with torcetrapib, identifying several enriched 

signaling pathways previously linked to hypertension. 

 

Other Approaches 
A variety of alternative methodologies have been utilized 

to analyze or predict associations between drugs and 

adverse effects. Scheiber et al.
[110]

 connected specific 

chemical characteristics of drugs to 4210 adverse drug 
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event (ADE) terms by utilizing known drug–ADE 

associations in an extension of Naïve Bayes modeling, 

Similarly, Liu et al.
[111]

 employed causality analysis 

based on Bayesian network structure learning to establish 

connections between both chemical and biological 

attributes of drugs and ADEs, presenting a causally 

interpretable framework. As a final illustration, Vilar et 

al.
[25]

 utilized a guilt-by-association (GBA) approach on 

a substantial insurance claims database to estimate drug 

associations with four distinct ADEs: acute renal failure, 

acute liver failure, acute myocardial infarction, and upper 

gastrointestinal ulcers. The authors assessed various 

compound similarity metrics, including chemical 

structure, targets, Anatomical Therapeutic Chemical 

(ATC) codes, and other ADEs, concluding that the latter 

two metrics, informed by phenotypic associations, 

achieved the highest area under the precision-recall curve 

(AUPR) scores in three of the four ADEs evaluated. 

 

CONCLUSION 

The ongoing challenges within pharmaceutical research 

and development underscore the necessity for innovative 

strategies that can enhance drug discovery and delivery 

processes. The significant investment of time and 

resources required to bring a new drug to market—often 

exceeding $1 billion and taking over 15 years—

highlights the need for more efficient approaches. This 

review emphasizes drug repurposing as a pivotal strategy 

that can facilitate quicker access to therapeutic options 

while optimizing existing resources. Computational 

pharmacology serves as a cornerstone for drug 

repurposing efforts, enabling the integration and analysis 

of vast datasets to uncover novel therapeutic applications 

for existing drugs. The prediction of drug-target 

interactions (DTIs) is crucial, as it lays the groundwork 

for understanding drug functionality and efficacy. 

Furthermore, methodologies aimed at identifying 

potential adverse effects are essential for improving drug 

safety, thereby addressing the primary reasons for the 

high attrition rates observed in clinical trials. The 

potential for leveraging advancements in genomics, high-

throughput screening, and computational methods offers 

a promising landscape for drug discovery. By utilizing 

data from various sources—ranging from electronic 

health records to gene expression profiles—researchers 

can not only enhance the understanding of drug 

mechanisms and interactions but also expedite the 

identification of new therapeutic avenues for rare 

diseases. Given the multitude of rare conditions affecting 

a significant portion of the population, drug repurposing 

becomes a strategic priority to meet these unmet medical 

needs. In conclusion, continued investment in 

computational pharmacology, data integration, and 

collaborative research efforts will be essential to 

advancing drug repurposing initiatives. As we move 

forward, fostering a culture of innovation and 

collaboration in the pharmaceutical industry will be vital 

to overcoming existing barriers and improving patient 

care outcomes across diverse therapeutic areas. 
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