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INTRODUCTION 

Osteoarthritis (OA), recognized as the most common 

chronic joint condition, demonstrates an increasing 

prevalence with advancing age, significantly impacting 

the majority of individuals aged 65 and above.
[1,2]

 

According to findings from the Third National Health 

and Nutrition Examination Survey, approximately 37.4% 

of adults in the United States aged 60 years or older 

exhibit radiographic indications of OA.
[3]

 OA primarily 

affects joints such as the knees, hands, hips, and spine, 

serving as a leading musculoskeletal contributor to 

reduced mobility among the elderly population.
[4,5]

 

Numerous risk factors have been proposed in relation to 

OA, including genetic susceptibility, aging, obesity, and 

joint misalignment; however, the underlying mechanisms 

of OA pathogenesis remain largely elusive.
[6,7]

 The 

principal clinical manifestations encompass chronic pain, 

joint instability, stiffness, joint deformities, and 

radiographic narrowing of joint space.
[8,9]

 Management 

of osteoarthritis focuses on pain relief, stiffness 

reduction, functional capacity preservation, and quality 

of life enhancement.
[8]

 Current therapeutic approaches 

include low-impact aerobic exercise,
[10]

 weight 

reduction,
[11]

 acupuncture,
[12]

 glucosamine and 

chondroitin sulfate supplementation,
[13]

 and surgical 

interventions.
[14]

 Given that the specific molecular 

mechanisms implicated in OA pathogenesis are not well 

understood and there are currently no effective strategies 

to slow the progression of OA or prevent the irreversible 

deterioration of cartilage—other than total joint 

replacement surgery
[15]

 the economic impact of 

osteoarthritis is estimated to exceed $60 billion annually 

in the United States.
[16]

 This paper aims to summarize the 

critical molecular mechanisms associated with OA 

pathogenesis and offer new perspectives on potential 

molecular targets for the prevention and treatment of 

OA. 

 

Characteristics of articular cartilage 

Articular cartilage predominantly comprises tissue fluid, 

type II collagen (Col2), and proteoglycans. Notably, 

tissue fluid constitutes approximately 65–80% of the wet 
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mass of cartilage. This elevated fluid content facilitates 

the diffusion of nutrients and oxygen through the 

cartilage matrix to reach the resident cells. Type II 

collagen and proteoglycans make up about 15–22% and 

4–7% of the wet weight of cartilage, respectively.
[17]

 

Additionally, other types of collagen (such as types V, 

VI, IX, X, XI, XII, and XIV)
[18]

 and proteoglycans 

(including decorin, biglycan, fibromodulin, lumican, 

epiphycan, and perlecan)
[19]

 contribute to less than 5% of 

the normal cartilage composition. The sole cell type 

within articular cartilage, the articular chondrocyte, is 

responsible for the synthesis and maintenance of the 

extracellular matrix.
[20,21]

 The collagen/proteoglycan 

matrix features a highly dense network of collagen 

fibrils, predominantly composed of type II collagen 

(Col2) along with minor collagen types IX and XI, all 

embedded in gel-like, negatively charged 

proteoglycans.
[22]

 This hydrated matrix architecture 

endows articular cartilage with tensile strength and 

resilience, essential for maintaining optimal 

biomechanical function in joints.
[23]

 

 

As articular cartilage matures, chondrocytes sustain the 

tissue by producing matrix components (Col2 and 

proteoglycans) and matrix-degrading enzymes, with 

minimal turnover of both cells and matrix. The existing 

collagen network undergoes cross-linking, leading to the 

maturation of articular cartilage into a stable tissue 

capable of absorbing and responding to mechanical 

stress.
[24]

 Under physiological conditions, articular 

chondrocytes typically remain in a pre-hypertrophic 

stage of differentiation, allowing them to persist 

throughout postnatal life and uphold the normal 

structural integrity of articular cartilage.
[25]

 

 

Progression of osteoarthritis 

Articular cartilage can sustain damage due to both 

routine wear and tear and pathological processes, 

including abnormal mechanical loading or injury. In the 

initial phases of osteoarthritis (OA), the cartilage surface 

remains intact, but the molecular composition and 

organization of the extracellular matrix undergo 

alterations first.
[26]

 Articular chondrocytes, which possess 

limited regenerative capacity and exhibit low metabolic 

activity in healthy joints, display a transient proliferative 

response and an increase in matrix synthesis (including 

Col2 and aggrecan) in an effort to initiate repair 

prompted by pathological stimuli. This response is 

characterized by the cloning of chondrocytes, forming 

clusters and undergoing hypertrophic differentiation, 

which includes the expression of hypertrophic markers 

such as Runx2, ColX, and Mmp13. Further 

modifications in the composition and structure of 

articular cartilage stimulate chondrocytes to produce 

additional catabolic factors involved in cartilage 

degradation. As proteoglycans and the collagen network 

degrade,
[27]

 cartilage integrity is compromised. 

Subsequently, the articular chondrocytes undergo 

apoptosis, ultimately resulting in the complete loss of 

articular cartilage. The consequent reduction in joint 

space due to total cartilage loss leads to friction between 

bones, causing pain and restricted joint mobility. 

Additional OA manifestations, including subchondral 

sclerosis, bone eburnation, osteophyte formation, as well 

as muscle and tendon loosening and weakness, will also 

emerge. 

 

Molecular mechanisms related to oa pathogenesis 

The etiology of OA is multifactorial, encompassing 

genetic predisposition, aging, obesity, joint 

malalignment, and prior joint injuries or surgeries.
[6,7]

 

These factors can be categorized into mechanical 

influences, aging effects, and genetic factors. Research 

indicates that the loss of intact meniscus function 

contributes to OA in humans due to joint instability and 

abnormal mechanical loading.
[28,29]

 Recently, the 

meniscal ligamentous injury (MLI)-induced OA model 

has become an established murine model that accurately 

mimics clinical scenarios, facilitating the study of 

trauma-induced OA development and progression within 

defined genetic backgrounds.
[30]

 In this model, ligation of 

the medial collateral ligament, along with disruption of 

the meniscus from its anterior-medial attachment, can 

reproducibly induce OA over a three-month period. 

 

There are infrequent cases of OA associated with 

mutations in types II, IX, and XI collagen.
[31,32]

 

Furthermore, there is limited evidence to suggest that 

inflammatory cytokines—such as prostaglandins, TNF-α, 

interleukin-1, interleukin-6, and nitric oxide—play 

significant roles in vivo, despite being potent inducers in 

vitro.
[33]

 It is well established that genetic factors 

influence susceptibility to OA, and various studies have 

indicated that specific molecular mechanisms may be 

implicated in OA pathogenesis. 

 

Growth Factors and Osteoarthritis 

TGF-β 

Chondrocyte differentiation and maturation during 

endochondral ossification are tightly regulated by 

various key growth factors and transcription factors, 

including members of the transforming growth factor β 

(TGF-β) superfamily, fibroblast growth factors (FGFs), 

platelet-derived growth factor (PDGF), and parathyroid 

hormone-related protein (PTHrP).
[34–38]

 Growth factors 

have been extensively studied for their role in the 

pathogenesis of osteoarthritis (OA) and cartilage repair 

due to their capacity to enhance matrix synthesis.
[39]

 

 

TGF-β plays a crucial role in the regulation of 

chondrocyte hypertrophy and maturation. The inhibition 

of TGF-β signaling may represent a potential mechanism 

in OA development.
[40]

 There are three isoforms of TGF-

β: TGF-β1, TGF-β2, and TGF-β3, which bind to the type 

II receptor to activate the canonical TGF-β/Smad 

signaling cascade. In this canonical pathway, TGF-β 

binds to the type II receptor, leading to the 

phosphorylation of type I transmembrane 

serine/threonine kinase receptors. The activated type I 

receptor subsequently phosphorylates Smads 2 and 3 (R-
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Smads) at a conserved SSXS motif at their C-terminus. 

Once activated, R-Smads dissociate from the receptor 

complex and form a heteromeric complex with the 

common Smad, Smad4. This heteromeric Smad complex 

then translocates to the nucleus, where it associates with 

other DNA-binding proteins to regulate the transcription 

of target genes.
[41]

 

 

Loss of TGF-β signaling has been associated with 

cartilage damage, suggesting that the protective effects of 

TGF-β are diminished during OA progression. 

Additionally, TGF-β is implicated in early osteophyte 

formation.
[40]

 In mice, targeted disruption of the TGF-β1 

gene leads to diffuse and lethal inflammation around 

three weeks after birth, while the loss of TGF-β2 or 

TGF-β3 results in skeletal defects affecting the 

forelimbs, hindlimbs, and craniofacial bones, indicating 

the essential role of TGF-β in skeletogenesis.
[42]

 

 

Recent genetic manipulation of TGF-β signaling 

components further illustrates the critical role of TGF-β 

during OA development. Transgenic mice that 

overexpress the dominant-negative type II TGF-β 

receptor (dnTgfbr2) in skeletal tissues show articular 

chondrocyte hypertrophy with increased type X collagen 

expression, cartilage disorganization, and progressive 

degradation.
[43]

 Similarly, Smad3 knockout mice exhibit 

progressive articular cartilage degradation resembling 

human OA.
[44]

 To address embryonic lethality and 

redundancy, chondrocyte-specific Tgfbr2 conditional 

knockout mice (Tgfbr2 cKO or Tgfbr2Col2CreER mice) 

were generated, where the deletion of the Tgfbr2 gene is 

mediated by Cre recombinase driven by the chondrocyte-

specific Col2a1 promoter in a tamoxifen-inducible 

manner.
[45,46] 

These mice exhibit typical OA clinical 

features, including cell cloning, chondrocyte 

hypertrophy, cartilage surface fibrillation, vertical clefts, 

and severe articular cartilage damage, along with the 

formation of chondrophytes and osteophytes.
[47]

 The 

relationship between TGF-β and OA is further supported 

by the discovery that a single nucleotide polymorphism 

(SNP) in the human Smad3 gene is linked to the 

incidence of hip and knee OA in a cohort of 527 

patients.
[48]

 

 

The TGF-β pathway is recognized as a key signaling 

pathway in osteoarthritis; however, evidence exists for 

both protective and catabolic roles of TGF-β signaling. 

Zhen et al. provided new evidence using various OA 

models, demonstrating that TGF-β is involved in 

aberrant bone remodeling and cartilage degeneration in 

OA. Increased TGF-β activity in the subchondral bone 

may be a primary cause of OA, initiating pathology and 

suggesting that therapeutic targeting of this pathway 

could help prevent or alleviate the disease.
[49]

 Loss of 

TGF-β signaling in cartilage induces chondrocyte 

hypertrophy, ultimately leading to cartilage degeneration. 

Consequently, pharmacological activation of the TGF-β 

pathway has been proposed as a strategy to preserve 

articular cartilage integrity during osteoarthritis.
[50]

 

However, this strategy has several caveats; for instance, 

TGF-β signaling in chondrocytes appears to switch from 

the anabolic ALK5-Smad2/3 pathway to the catabolic 

ALK1-Smad1/5/8 pathway with aging, indicating that 

TGF-β supplementation in older individuals could 

potentially exacerbate cartilage destruction.
[34]

 

 

Growth Factors and Osteoarthritis (OA) 

Transforming Growth Factor Beta (TGF-β) 
Chondrocyte differentiation and maturation during 

endochondral ossification are tightly regulated by several 

key growth factors and transcription factors, including 

members of the transforming growth factor β (TGF-β) 

superfamily, fibroblast growth factors (FGFs), platelet-

derived growth factor (PDGF), and parathyroid 

hormone-related protein (PTHrP).
[34–38]

 Growth factors 

have been extensively studied for their role in the 

pathogenesis of OA and cartilage repair due to their 

ability to enhance matrix synthesis.
[39]

 TGF-β inhibits 

chondrocyte hypertrophy and maturation, suggesting that 

TGF-β signaling inhibition may contribute to OA 

development.
[40]

 The TGF-β superfamily includes three 

isoforms: TGF-β1, TGF-β2, and TGF-β3, which bind to 

type II receptors to activate the canonical TGF-β/Smad 

signaling pathway. In this pathway, TGF-β binding to the 

type II receptor phosphorylates type I transmembrane 

serine/threonine kinase receptors. This phosphorylation 

activates Smads 2 and 3 (R-Smad), leading to their 

dissociation from the receptor complex and formation of 

a heteromeric complex with Smad4. This complex then 

translocates to the nucleus to regulate target gene 

transcription.
[41]

 

 

Loss of TGF-β signaling is associated with cartilage 

damage, indicating the loss of its protective effects 

during OA progression. Additionally, TGF-β is 

implicated in early osteophyte formation.
[40]

 In 

experimental models, targeted disruption of the TGF-β1 

gene in mice leads to severe inflammation and skeletal 

defects, underscoring TGF-β's essential role in 

skeletogenesis.
[42]

 Recent genetic manipulations of TGF-

β signaling have revealed its critical role in OA. For 

example, transgenic mice that over-express a dominant-

negative type II TGF-β receptor exhibit articular 

chondrocyte hypertrophy, cartilage disorganization, and 

progressive degradation.
[43]

 Similarly, Smad3 knockout 

mice show progressive cartilage degradation that 

resembles human OA.
[44]

 Conditional knockout mice 

with chondrocyte-specific deletion of TGF-β receptor 2 

demonstrate clinical features of OA, such as chondrocyte 

hypertrophy and severe cartilage damage, further 

reinforcing the connection between TGF-β signaling and 

OA.
[45–47]

 Notably, a single nucleotide polymorphism in 

the human Smad3 gene has been associated with hip and 

knee OA incidence.
[48]

 The TGF-β pathway is recognized 

as pivotal in OA, but it exhibits both protective and 

catabolic roles. Research indicates that increased TGF-β 

activity in the subchondral bone may initiate OA 

pathology, suggesting that targeting this pathway could 

offer therapeutic opportunities.
[49]

 Loss of TGF-β 
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signaling promotes chondrocyte hypertrophy and 

cartilage degeneration, leading to the proposal that 

pharmacological activation of TGF-β signaling may help 

maintain articular cartilage integrity in OA.
[50]

 However, 

age-related signaling shifts from anabolic to catabolic 

pathways in chondrocytes complicate this strategy, 

potentially exacerbating cartilage destruction in older 

individuals.
[34]

 

 

Fibroblast Growth Factor (FGF-2 and FGF-18) 
Several other growth factors, including the fibroblast 

growth factor (FGF) signaling family, play critical roles 

in cartilage response to injury and OA development.
[51]

 

FGF-2, in particular, has been identified as having 

significant catabolic and anti-anabolic effects on human 

cartilage homeostasis.
[54]

 FGF-2 is released in high 

amounts during cartilage loading or injury, activating 

various signal transduction pathways (MAPKs), such as 

ERK, p38, and JNK.
[52]

 It can potently stimulate MMP-

13 expression, a major enzyme degrading type II 

collagen.
[55]

 Upon FGF-2 stimulation, the FGFR1-

Ras/PKCδ-Raf-MEK1/2-ERK1/2 pathway is activated, 

leading to the up-regulation of matrix-degrading 

enzymes (ADAMTS-5 and MMP-13) and down-

regulation of aggrecan expression.
[54,56–58]

 Notably, 

inhibiting PKCδ significantly reduces the detrimental 

effects induced by FGF-2, indicating the potential for 

developing specific inhibitors targeting this pathway to 

prevent or treat degenerative joint diseases.
[59]

 

 

FGF-18, another member of the FGF family, is crucial 

for cartilage growth, maturation, and functional tissue 

development in the musculoskeletal system.
[60,61]

 It has 

shown promise in enhancing cartilage regeneration and 

repair. Studies by Moore et al. demonstrate that FGF-18 

can stimulate chondrogenesis and repair damaged 

articular cartilage, enhancing proteoglycan synthesis and 

preventing apoptosis in in vitro models.
[65,66,67]

 This 

positions rhFGF18 as a strong candidate for therapeutic 

applications in cartilage repair after mechanical injuries. 

 

Wnt/β-Catenin Signaling and OA 
The canonical Wnt/β-catenin signaling pathway plays a 

significant role in OA progression, regulating various 

developmental processes in skeletal and joint patterning. 

Wnt binds to its receptor, Frizzled, and co-receptor 

LRP5/6, activating Disheveled (Dsh) and inhibiting 

GSK-3β, leading to β-catenin stabilization. Accumulated 

β-catenin translocates to the nucleus, where it binds to 

LEF-1/TCF to regulate target gene expression. In the 

absence of Wnt, β-catenin is degraded, preventing the 

expression of Wnt-responsive genes.
[68]

 In vitro studies 

indicate that over-expression of constitutively active β-

catenin results in loss of chondrocyte phenotype, 

characterized by decreased Sox9 and Col2 expression.
[68]

 

Genetic studies have linked variants in the sFRP3 

protein, which antagonizes Wnt binding, to hip OA, 

demonstrating how increased β-catenin levels contribute 

to aberrant articular chondrocyte hypertrophy.
[69–72]

 

Lories et al. showed that Frzb polymorphisms correlate 

with increased cartilage proteoglycan loss, highlighting 

Frzb's role in OA pathology.
[73]

 Frzb knockout mice 

exhibit greater susceptibility to chemically-induced 

OA.
[74]

 

 

Given the association of Wnt/β-catenin signaling with 

OA, researchers have developed chondrocyte-specific β-

catenin conditional activation (cAct) mice, which show 

elevated β-catenin expression and progressive cartilage 

degradation.
[75]

 Additional models further demonstrate 

that dysregulated β-catenin leads to cartilage 

degeneration.
[76]

 Conversely, inhibiting β-catenin can 

increase chondrocyte apoptosis and cartilage destruction, 

complicating the therapeutic targeting of this pathway.
[78]

 

Selective inhibitors of Wnt/β-catenin signaling, such as 

XAV939, have emerged, showing promise in delineating 

the roles of this pathway in cartilage degeneration and 

repair.
[79,80]

 Elevated levels of Wnt inhibitor Dickkopf-1 

(Dkk-1) correlate with reduced hip OA progression in 

elderly women, though its inhibition can provoke a bone-

forming OA phenotype.
[81,82]

 Future research is needed to 

clarify the roles of Wnt signaling components and their 

interactions in OA pathology. 

 

Indian Hedgehog (Ihh) and Hypoxia-Inducible Factor 

2 Alpha (HIF-2α) in Osteoarthritis (OA) 

Indian Hedgehog (Ihh) and OA 
The negative-feedback loop involving Ihh and 

parathyroid hormone-related protein (PTHrP) is essential 

for the differentiation of chondrocytes during 

endochondral bone development. Articular chondrocytes 

exhibit cellular transformations analogous to those seen 

in terminal growth plate chondrocyte differentiation in 

the context of OA.
[83]

 These findings imply that Ihh 

signaling could be crucial in the pathogenesis of OA. Ihh 

functions as a principal Hedgehog ligand in 

chondrocytes, binding to the Patched-1 (PTCH1) 

receptor to relieve its inhibitory effect on Smoothened 

(SMO). Subsequently, SMO activates the glioma-

associated oncogene homolog (Gli) transcription factor 

family, initiating the transcription of specific downstream 

target genes, which include members of the Ihh signaling 

pathway such as Gli1, Ptch1, and hedgehog-interacting 

protein (HHIP). 

 

Immunohistochemical investigations have revealed a 

positive correlation between Ihh signaling activation and 

the severity of OA in human knee joint tissues affected 

by OA, alongside heightened expression levels of GLI1, 

PTCH, and HHIP in surgically induced murine OA 

articular cartilage. In mice engineered to overexpress 

Gli2 or Smo specifically in chondrocytes, Ihh signaling 

activation led to the emergence of an OA-like phenotype 

characterized by elevated MMP13, ADAMTS5, and 

ColX levels. Conversely, deletion of the Smo gene or 

administration of a pharmacological Ihh inhibitor 

resulted in a reduction of OA severity induced by 

meniscal injury.
[84]
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Genetic analyses utilizing knockout mice demonstrated 

that the activation of Ihh downstream signaling pathways 

leads to a reduction in both the thickness of articular 

cartilage and the content of proteoglycans. In contrast, 

the inhibition of Ihh signaling was associated with an 

increase in cartilage thickness and proteoglycan 

levels.
[85,86]

 These observations are in line with findings 

that the upregulation of hedgehog (Hh) signaling in 

postnatal cartilage fosters chondrocyte hypertrophy and 

the degradation of cartilage.
[87]

 This indicates the 

potential for therapeutic strategies that target Ihh 

signaling to prevent or mitigate cartilage degeneration. 

However, the deletion of the Ihh gene is not a viable 

therapeutic approach, as it is lethal in animal models. 

RNA interference (RNAi) offers a method for 

downregulating Ihh without the severe adverse effects 

associated with chemical inhibitors.
[88]

 Future research 

must focus on developing a safe and efficient RNAi 

delivery system to modulate Ihh signaling for the 

prevention and treatment of OA.
[89]

 

 

HIF-2α and OA 
Hypoxia-inducible factors (HIFs), including HIF-1, HIF-

2, and HIF-3, are basic helix-loop-helix transcription 

factors that operate differently in normoxic versus 

hypoxic conditions.
[90–93]

 HIF-1α serves as an anabolic 

signal within articular cartilage by stimulating the 

synthesis of specific extracellular matrix 

components.
[94,95]

 In contrast, HIF-2α (encoded by 

EPAS1) acts as a potential catabolic regulator of articular 

cartilage, promoting its degeneration.
[96,97]

 Promoter 

assays indicate that NF-κB signaling may significantly 

enhance HIF-2α expression, which subsequently 

regulates the transcription of several catabolic genes, 

including Mmp13.
[96]

 Genetic screening utilizing the 

human osteoarthritic cartilage UniGene library suggests 

that HIF-2α may serve as a catabolic regulator of 

articular cartilage.
[97]

 According to the Japanese ROAD 

study, a functional SNP in the proximal promoter region 

of human EPAS1 was linked to knee osteoarthritis in a 

cohort of 397 patients.
[96,98]

 Supporting this, increased 

expression of HIF-2α was noted in OA patients 

exhibiting degenerative cartilage.
[96,97]

 Transgenic mice 

with chondrocyte-specific Epas1 expression displayed 

spontaneous development of an osteoarthritis phenotype, 

characterized by elevated MMP13 and ColX expression 

within articular cartilage. Moreover, Epas1 heterozygous 

deficient mice demonstrated resistance to cartilage 

degeneration following meniscus surgery.
[96,97]

 Therefore, 

HIF-2α appears to be a crucial transcription factor that 

targets various genes involved in the development of 

osteoarthritis. 

 

Nevertheless, the absence of vascularization in cartilage 

indicates that chondrocytes, the sole cell type present in 

this tissue, have likely evolved specific mechanisms to 

maintain tissue function in response to chronic hypoxia, 

such as enhancing the expression of cartilage matrix 

components.
[99–101]

 HIFs are critical for tissue-specific 

responses in chondrocytes. Utilizing RNA interference 

techniques, researchers have shown that HIF-2α plays a 

vital role in the hypoxic induction of cartilage matrix 

synthesis in human articular chondrocytes (HACs).
[99]

 

Additionally, key matrix genes like Col2a1, aggrecan, 

and Col9 are upregulated by hypoxia through the 

cartilage-specific transcription factor SOX9. Mutation of 

the hypoxia response element sequences negates this 

hypoxic induction. The specific contributions of HIFs to 

hypoxic chondrogenesis from mesenchymal stem cells 

(MSCs) merit further investigation. Interestingly, 

research by Hardingham and colleagues has indicated 

that human MSCs isolated from the infrapatellar fat pad 

exhibit enhanced chondrogenic differentiation under 

hypoxic conditions, with HIF-2α, rather than HIF-1α, 

being significantly upregulated in these cultures.
[102]

 

 

While HIF-2α presents a promising therapeutic target for 

the modulation of osteoarthritic cartilage degradation, 

caution is advisable. Many transcription factors function 

across various cell types, necessitating the localized 

targeting of OA-affected joints to avoid systemic side 

effects associated with potential inhibitors.
[103]

 

Furthermore, since HIF-2α expression is predominantly 

observed in the early stages of OA, therapeutic 

interventions should be initiated promptly upon the onset 

of OA symptoms.
[104]

 

 

Growth Differentiation Factor 5 (GDF-5) and 

Osteoarthritis (OA) 
Growth differentiation factor 5 (GDF-5), a member of 

the TGF-β superfamily, functions as an extracellular 

signaling molecule integral to bone and cartilage 

morphogenesis as well as joint formation.
[105,106]

 

Numerous studies have elucidated the critical roles of 

GDF-5 in various musculoskeletal processes, including 

endochondral ossification, synovial joint formation, 

tendon maintenance, and bone development.
[107,108]

 

Genetic defects in GDF-5 have been correlated with 

abnormal joint development and skeletal disorders in 

both humans and murine models.
[109–112]

 Specifically, 

mutations in the human GDF-5 gene are associated with 

a spectrum of skeletal anomalies.
[113]

 

 

Miyamoto et al. identified significant associations 

between common GDF-5 polymorphisms and OA, 

particularly highlighting the rs143383 variant, a T to C 

transition located in the 5′ untranslated region (5′UTR) 

of the gene.
[114]

 Further investigations have confirmed 

the functional relevance of rs143383, with the OA-

associated T-allele exhibiting reduced GDF-5 

transcription relative to the C-allele across various joint 

tissues.
[115,116]

 however, these findings have not been 

universally corroborated.
[117]

 Mouse models have 

significantly advanced the understanding of GDF-5's role 

in skeletogenesis and joint maintenance. For instance, 

brachypodism (bp) mice, which harbor a functional null 

allele of GDF-5 due to a frame-shift mutation, exhibit 

marked abnormalities in skeletal and bone 

development.
[118,119]

 Conversely, Gdf5Bp-J/+ mice 

appear phenotypically normal yet display a heightened 
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propensity for developing OA when subjected to 

stressors.
[120]

 These observations suggest that diminished 

GDF-5 levels in murine models contribute to OA 

pathogenesis. Additionally, GDF-5 deficiency in mice 

leads to biomechanical abnormalities in tendons, 

potentially due to alterations in type I collagen. One 

hypothesis posits that GDF-5 modulates the rate of 

endochondral bone growth by influencing the duration of 

the hypertrophic phase in growth plate chondrocytes.
[121]

 

While these findings substantiate the genetic correlation 

between GDF-5 and human OA, the variability in the 

frequency of associated alleles across different studies 

necessitates further exploration to identify functional 

variants through both biological and genetic assays. 

 

Several investigations have explored the therapeutic 

potential of GDF-5. Bobacz et al. demonstrated an 

increase in glycosaminoglycan (GAG) synthesis in both 

normal and OA chondrocytes exposed to GDF-5, as 

evidenced by elevated ACAN mRNA levels.
[122]

 

Similarly, Chubinskaya et al. reported increased GAG 

synthesis in alginate bead cultures of chondrocytes in the 

presence of GDF-5.
[123]

 However, Ratnayake et al. found 

that OA chondrocytes do not consistently respond 

predictably to exogenous GDF-5 treatment, suggesting 

that this variability may either stem from or contribute to 

the OA disease process.
[124]

 Addressing this 

unpredictability will be crucial for advancing GDF-5 as a 

potential therapeutic option to mitigate the genetic 

predispositions conferring OA susceptibility linked to 

this gene.
[124]

 

 

Matrix Metalloproteinase-13 (MMP-13), ADAMTS, 

and Osteoarthritis (OA) 
Matrix metalloproteinase-13 (MMP-13) is a substrate-

specific enzyme that predominantly targets collagen for 

degradation. In comparison to other matrix 

metalloproteinases (MMPs), MMP-13 expression is 

notably confined to connective tissues.
[125–128]

 MMP-13 

preferentially cleaves collagen type II (Col2), the most 

abundant protein in articular cartilage, as well as in other 

structures such as the nucleus pulposus, inner anulus 

fibrosus, and cartilage endplate of the intervertebral disc. 

This enzyme is also involved in the degradation of 

additional proteins in cartilage, including aggrecan, types 

IV and IX collagen, gelatin, osteonectin, and 

perlecan.
[129]

 MMP-13 is characterized by a markedly 

higher catalytic velocity over Col2 and gelatin compared 

to other MMPs, establishing it as the most potent 

peptidolytic enzyme among collagenases.
[130,131]

 

 

Clinical investigations have identified elevated MMP-13 

expression in patients exhibiting articular cartilage 

destruction, suggesting a direct relationship between 

increased MMP-13 levels and cartilage degradation.
[132]

 

Mmp13-deficient mice demonstrate no significant gross 

phenotypic abnormalities; the only observed alteration 

occurs in the architecture of the growth plate during early 

cartilage development.
[133,134]

 Conversely, transgenic 

mice with cartilage-specific overexpression of Mmp13 

exhibit spontaneous articular cartilage destruction 

characterized by excessive Col2 cleavage and loss of 

aggrecan.
[135]

 In Tgfbr2 conditional knockout (cKO) and 

β-catenin conditional activation mouse models, MMP-13 

expression is significantly upregulated.
[47-60]

 These 

findings suggest that MMP-13 deficiency does not 

impair articular cartilage function during postnatal and 

adult stages; however, aberrant upregulation of MMP-13 

is associated with cartilage degradation. Notably, 

deletion of the Mmp-13 gene has been shown to prevent 

articular cartilage erosion induced by meniscal injury.
[136]

 

 

The ADAMTS family consists of several large family 

members sharing distinct protein modules. Research 

indicates that expression levels of ADAMTS4 and 

ADAMTS5 significantly increase during OA 

development. Single knockout of the Adamts5 gene or 

double knockout of Adamts4 and Adamts5 genes 

effectively prevents cartilage degradation in both 

surgery-induced and chemical-induced murine knee OA 

models.
[137–139]

 In Tgfbr2 cKO, β-catenin, and Indian 

hedgehog (Ihh) activation mouse models, elevated 

ADAMTS5 levels are observed in articular cartilage 

tissue, underscoring the necessity of maintaining 

appropriate ADAMTS5 levels for normal articular 

cartilage function. Collectively, these findings highlight 

the significant roles of catabolic enzymes in OA 

progression, suggesting that targeting these enzymes may 

constitute a viable therapeutic strategy for decelerating 

articular cartilage degradation. Given the potential of 

MMP-13 and ADAMTS5 as targets for OA therapy, 

extensive studies have focused on their inhibition and 

regulatory mechanisms. Tissue inhibitors of 

metalloproteinases (TIMPs) are specific inhibitors that 

directly bind to MMPs and ADAMTS in chondrocytes, 

preventing the degradation of articular cartilage.
[140]

 A 

specific small molecule inhibitor of MMP-13 has 

demonstrated efficacy in attenuating OA severity in a 

meniscal injury-induced model.
[141]

 

 

In addition to proteinase inhibitors, the transcription 

factor Runt domain factor-2 (Runx2) emerges as a 

promising target for regulating MMP-13 and ADAMTS5 

in vivo. DNA sequence analyses of Mmp-13 and 

Adamts5 promoters have identified putative Runx2 

binding sites within the promoter regions of these genes. 

Furthermore, Runx2 exhibits an overlapping expression 

pattern with MMP-13 and ADAMTS5, predominantly 

localized in developing cartilage and bone, suggesting 

that Runx2 may play a critical role as a transcription 

factor regulating the tissue-specific expression of 

Mmp13 and Adamts5 in articular chondrocytes.
[142–144]

 

Thus, modulating Runx2 expression in vivo could 

represent an effective therapeutic approach. During bone 

development, the spatiotemporal expression patterns of 

Runx2 are regulated by cytokines and growth factors, 

including TGF-β, BMP, and FGF.
[145–148]

 Besides gene 

expression, Runx2 protein levels are subject to regulation 

through post-translational modifications, such as 

phosphorylation, ubiquitination, and acetylation.
[149–154]
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Additionally, microRNA regulation constitutes a vital 

mechanism influencing protein translation. MicroRNA-

140 (miR-140) has been implicated in OA pathogenesis, 

at least in part through its regulation of ADAMTS5 

mRNA expression. MiR-140 knockout mice exhibit 

increased susceptibility to age-related OA progression, 

whereas overexpression of miR-140 in chondrocytes 

confers protection against OA development.
[155–157]

 

 

CONCLUSION 

Osteoarthritis (OA) represents a multifactorial 

degenerative disease of the joints characterized by a 

progressive deterioration of articular cartilage, 

subchondral bone changes, and synovial inflammation. 

As discussed, the molecular mechanisms underlying OA 

are complex and involve a myriad of biochemical 

pathways and cellular processes. This review highlights 

critical insights into the role of molecular players, 

particularly transforming growth factor-beta (TGF-β), in 

the pathogenesis of OA. The multifaceted nature of OA 

emphasizes the importance of addressing both 

mechanical and biological factors in its management. 

The dysfunction of chondrocytes, primarily driven by an 

imbalance in anabolic and catabolic signals, leads to the 

degradation of the extracellular matrix, a hallmark of OA 

progression. The loss of TGF-β signaling, which 

typically inhibits chondrocyte hypertrophy and maintains 

cartilage integrity, is especially noteworthy. As this 

pathway is found to switch from protective to catabolic 

roles with aging, this has significant implications for 

therapeutic interventions, suggesting that a nuanced 

approach may be necessary for older populations. 

Moreover, the identification of genetic predispositions 

and the impact of mechanical stresses underscore the 

necessity for personalized treatment strategies that 

consider individual risk factors. Current management 

strategies, including pharmacological interventions and 

lifestyle modifications, primarily target symptom relief 

rather than halting disease progression. This highlights 

an urgent need for further research into molecular 

therapies that could potentially modify disease trajectory. 

Future research should focus on exploring the potential 

of emerging biologics that target specific pathways 

implicated in OA, including the TGF-β signaling 

cascade. The development of disease-modifying 

osteoarthritis drugs (DMOADs) could revolutionize OA 

management by preserving cartilage health and 

improving joint function, ultimately enhancing the 

quality of life for millions affected by this debilitating 

condition. As we move forward, a deeper understanding 

of OA’s molecular pathogenesis will be crucial in 

developing effective and targeted therapies. 
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 مقبلة‏مراجعة‏-هشبشة‏العظبم:‏التحقيك‏في‏آليبت‏التسبب‏الجزيئي‏

 :الملخص

أمثز اضطزاببث اىَفبصو اىَشٍْت  (OA) : حؼُذ ٕشبشت اىؼظبًخلفية 

ب. ٍغ ارحفبع  56شٞ٘ػًب، ٗخبصتً بِٞ الأفزاد اىذِٝ حخدبٗس أػَبرٌٕ  ًٍ ػب

حَثو ححذٝبً  ٍؼذه الإصببت ٗاىخأثٞز الاخخَبػٜ ٗالاقخصبدٛ اىنبٞز، لا حشاه

مبٞزًا فٜ ٍدبه اىزػبٝت اىصحٞت ىنببر اىسِ. حخَٞش ٕشبشت اىؼظبً ببلأىٌ 

اىَشٍِ، اىخٞبس، ٗقيت اىحزمت، بَْٞب حزمش خٞبراث اىؼلاج اىحبىٞت بشنو 

رئٞسٜ ػيٚ حخفٞف الأػزاض بذلاً ٍِ ٍؼبىدت اٟىٞبث اىفسٞ٘ى٘خٞت 

 .اىَزضٞت الأسبسٞت

ح٘ضٞح اٟىٞبث اىدشٝئٞت اىخٜ حإدٛ ئىٚ حٖذف ٕذٓ اىَزاخؼت ئىٚ  الهدف: 

ّش٘ء ٕشبشت اىؼظبً، ٍَب ٝسيط اىض٘ء ػيٚ الإٔذاف اىؼلاخٞت اىَحخَيت 

 .ىي٘قبٝت ٗاىؼلاج

حٌ ئخزاء ٍزاخؼت شبٍيت ىلأدبٞبث اىؼيَٞت شَيج دراسبث حذٝثت  الطرق: 

ح٘ه بٞ٘ى٘خٞب اىخلاٝب ٗاىدشٝئبث اىغضزٗفٞت اىَفصيٞت، ٗدٗر ػ٘اٍو 

 .خؼذاداث اىدْٞٞت، ٗاىؼ٘اٍو اىَٞنبّٞنٞت فٜ حط٘ر ٕشبشت اىؼظبًاىَْ٘، الاس

حنشف اىْخبئح أُ اىغضزٗف اىَفصيٜ ٝخضغ ىخغٞزاث ٕٞنيٞت  النتبئج: 

ٗحزمٞبٞت مبٞزة خلاه حقذً ٕشبشت اىؼظبً. حشَو اىلاػبِٞ اىدشٝئِٞٞ 

، اىذٛ ٝإثز ػيٚ سي٘ك (TGF-β) اىزئٞسِٞٞ ػبٍو اىَْ٘ اىَح٘ه بٞخب

غضزٗفٞت ٗحنِ٘ٝ اىَصف٘فت، ٗػذة سٞخ٘مْٞبث اىخٖببٞت حشٝذ ٍِ اىخلاٝب اى

حذٕ٘ر اىغضزٗف. حسبٌٕ اىؼ٘اٍو اىدْٞٞت ٗالإصبببث اىسببقت ىيَفبصو 

 .أٝضًب فٜ الاسخؼذاد ىلإصببت ٗحقذً ٕشبشت اىؼظبً

ٝ٘فز فٌٖ اىخسبب اىدشٝئٜ ىٖشبشت اىؼظبً رؤٙ ح٘ه  الخلاصة: 

حغٞٞز حقذً اىَزض. اسخٖذاف  اسخزاحٞدٞبث ػلاخٞت خذٝذة حٖذف ئىٚ

ٗآىٞبث الإشبرة  TGF-β ٍسبراث خشٝئٞت ٍحذدة، لا سَٞب حيل اىخٜ حشَو

اىَزحبطت بٔ، ٝ٘فز فزصت ىخط٘ٝز حذخلاث فؼبىت ىيحفبظ ػيٚ صحت 

 .اىَفبصو

، اىخلاٝب TGF-βٕشبشت اىؼظبً، اٟىٞبث اىدشٝئٞت،  الكلمبت‏المفتبحية: 

 .اف اىؼلاخٞتاىغضزٗفٞت، حذٕ٘ر اىغضزٗف، الإٔذ


