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INTRODUCTION 
Diabetes mellitus refers to a collection of long term 

metabolic conditions marked by consistently high blood 

glucose levels.
[1]

 Hyperglycemia, a defining 

characteristic of diabetes mellitus, can result in serious 

complications including retinopathy, cardiovascular 

diseases, kidney failure and mucormycosis infections.
[2]

 

Diabetes is a metabolic condition characterized by bodies 

inability to produce sufficient insulin or by the 

development of insulin resistance, which impairs the 

effectiveness of the insulin that is produced. The primary 

function of insulin is to regulate blood sugar levels 

through a variety of mechanisms.
[3]

 Diabetes mellitus 

primarily characterized into three types; type 1 diabetes 

[T1DM], type 2 diabetes [T2DM], and gestational 

diabetes [GDM].
[4]

 Type 2 diabetes, which is the most 

common variant, is marked by gradual increase in insulin 

resistance and a reduction in the ability to secrete insulin. 

Gestational diabetes is a transient condition that occurs 

during pregnancy and typically resolves following 

delivery.
[1,5]

 Successful management of diabetes across 

all types relies on prompt diagnosis.
[6] 

 

 
 

Artificial intelligence is a swiftly advancing domain with 

a growing range of applications in prediction, risk 

evaluation, and the early detection of diabetes. Machine 

learning algorithms processes significant potential to 

transform clinical practices through the auto machine of 

diagnostic processes.
[7] 

the field of diabetic care is 

leading the way in the adoption and integration of 

machine learning technology, presenting  considerable 
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oppurtunities for enhancing patient outcome.
[7,8] 

diabetic 

retinopathy, a prevalent microvascular complication 

associated with diabetes mellitus ,ranks among the 

primary cause of preventable blindness, especially 

within  the working age demographic .the incidence of 

diabetic retinopathy is anticipated to continue increasing, 

posing a significant challenge to health care systems 

globally.
[9] 

 

The global incidence of diabetes mellitus and diabetic 

retinopathy is anticipated to rise significantly.  

concurrently, the worldwide prevalence of vision 

threatening diabetic retinopathy [VTDR], which 

encompasses diabetic macular edema [DME], severe non 

proliferative diabetic retinopathy [NPDR], and 

proliferative diabetic retinopathy [PDR], is also expected 

to increase. It is projected that the number of individuals 

affected by vision threatening diabetic retinopathy will 

grow by 57.0 percent, from approximately 28.5 million 

in 2020 to around 48.8 million by 2045.
[10]

 Implementing 

screening measures to identify early sight threatening 

lesions associated with DR is crucial approach to 

mitigate the impact of vision loss and blindness resulting 

from this condition.
[11,12] 

 

Machine learning techniques facilitate the creation of AI 

applications that uncover previously unnoticed patterns 

within data, eliminating the necessity to define specific 

deficient rules for each task or to consider intricate 

interactions among input features. consequently, machine 

learning has emerged as the preferred framework for 

developing AI tools.
[13]

 In light of this context we 

examine the latest programs in the application of AI 

within diabetes management in clinical settings, followed 

by a discussion on the opportunities and challenges 

associated with these AI applications. Additionally, we 

investigate the potential for integrating and enhancing 

existing digital health technologies to establish an AI 

assisted digital health care ecosystem, which 

encompasses both the prevention and management of 

diabetes, representing a promising vision for the future of 

diabetes care. 

 

METHODS 
The article review was conducted using the google 

scholar and PubMed. This reliable tools were chosen due 

to their extensive health care related content. The review 

focused on English language documents published 

between 2020 to 2024. 

 

Artificial Intelligence in the Early Diagnosis of Type 2 

Diabetes 

Type 2 diabetes mellitus, which does not require insulin 

for management, represents the most prevalent form of 

diabetes, comprising approximately 90 to 95 percent of 

all diabetes cases. It is projected that the number of 

individuals affected will reach 439 million by the year 

2030 (Wu et al., 2014). Recent advancements in artificial 

intelligence models have demonstrated potential in 

forecasting the development of type 2 diabetes among 

high-risk patients. These models leverage intricate 

relationships between distinct individual metrics and 

binary classification algorithms, which have been 

developed from the ground up to effectively predict the 

onset of diabetes. A collection of binary classification 

algorithms, structured fundamentally and enhanced 

through the Adam optimization method, attained a 

commendable accuracy rate of approximately 86%. This 

technique, grounded in artificial neural networks, holds 

significant promise for providing accurate data tailored 

for individualized treatment, thereby serving as a crucial 

resource for decision-making processes. 

 

APPLICATION OF AI IN DIABETES 

PREDICTION AND PREVENTION 

Forecasting Diabetes Onset 

The forecasting of diabetes onset is an integral 

component of preemptive healthcare, focusing on the 

precise identification of individuals at a high risk of 

developing diabetes before the onset of the disease. This 

technological advancement has the potential to 

significantly reduce the prevalence of diabetes by 

facilitating early medical interventions for at-risk 

individuals. The ability to predict diabetes onset predates 

the introduction of machine learning technology. Abbasi 

et al. highlighted the effectiveness of various statistical 

models, including logistic regression, the Cox 

proportional hazards model, and Weibull distribution 

analysis, in forecasting diabetes onset among non-

diabetic individuals over a span of 5 to 10 years, 

achieving a concordance index (C index) between 0.74 

and 0.94.
[14] 

 

Machine learning (ML) represents a promising approach 

that has the potential to enhance predictive accuracy in 

comparison to traditional statistical models. Choi et al. 

found that the area under the curve (AUC) for predicting 

new-onset diabetes within a five-year period among 

hospitalized patients was 0.78, based on an ML-driven 

logistic regression model.
[15]

 Ravaut et al. recently 

demonstrated that an ML model utilizing administrative 

health data achieved an AUC of 0.80 for predicting 

diabetes onset within the same timeframe.
[16]

 In a similar 

vein, Nomura et al. created an ML-based prediction 

model aimed at identifying diabetes indicators prior to 

the disease's onset, employing the gradient-boosting 

decision tree technique, which yielded an AUC of 0.71 

and an overall accuracy of 94.9%.
[17] 

 

Recently, a DL system developed Common algorithms 

employed in supervised learning encompass
[18]

 (1) 

artificial neural networks, including Boltzmann 

machines, restricted Boltzmann machines, multi-layer 

perceptrons, radial basis function networks, recurrent 

neural networks, Hopfield networks, convolutional 

neural networks, and spiking neural networks; (2) 

Bayesian learning techniques, such as naive Bayes, 

Gaussian naive Bayes, multiple naive Bayes, average 

one-dependence estimators, Bayesian belief networks, 

and Bayesian networks; (3) decision trees, which include 
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classification and regression trees, Iterative Dichotomiser 

3, the C4.5 algorithm, the C5.0 algorithm, chi-squared 

automatic interaction detection, decision stumps, and 

supervised learning in quest; (4) ensemble methods, such 

as random forests, bagging, boosting, AdaBoost, and 

XGBoost; and (5) linear models, which consist of linear 

regression, logistic regression, generalized linear models, 

Fisher linear discriminant analysis, quadratic 

discriminant analysis, least absolute shrinkage and 

selection operator regression, multi-modal logistic 

regression, naive Bayes classifiers, perceptrons, and 

linear support vector machines. In the realm of 

unsupervised learning, prevalent algorithms include
[19][20]

 

[ (1) transformation equivariant representations, such as 

group equivariant convolutions and autoencoding 

transformations; (2) generative models, including flow-

based generative models, generative adversarial 

networks, autoencoders, and disentangled 

representations; and (3) self-supervised methods, such as 

autoregressive models and self-attention models. 

 

Artificial Intelligence in the Prediction of Diabetic 

Retinopathy 

Diabetic retinopathy is the most common complication 

associated with diabetes. The management of diabetes 

and its related retinopathy is often fragmented, 

disorganized, and delivered in phases, frequently 

requiring substantial financial and resource investments 

for treatment. To address these gaps in healthcare 

delivery, innovative strategies that incorporate digital 

technologies are essential (Gunasekeran et al., 2020). 

Artificial intelligence systems have demonstrated 

remarkable accuracy in diagnosing diabetic retinopathy. 

By analyzing patient datasets, AI algorithms can identify 

the earliest indicators of severe retinopathy with a level 

of precision comparable to that of endocrinologists. A 

range of automated deep-learning-based screening 

algorithms for diabetic retinopathy has been developed, 

achieving notable specificity and sensitivity rates 

exceeding 90%. Nevertheless, the performance of these 

deep-learning algorithms in clinical settings is hindered 

by the limitations of available open-access datasets (T. Li 

et al., 2019). 

 

APPLICATION OF AI IN THE SCREENINGAND 

CLASSIFICATION OF DIABETES 

Screening for Diabetes 

Current diagnostic protocols for diabetes [21] are 

primarily based on invasive assessments conducted in 

clinical settings, which may be affected by behavioral 

and ethnic variables. Given that the initial phases of Type 

2 Diabetes (T2D) frequently present without symptoms, 

individuals may remain undiagnosed for extended 

periods.
[22]

 Unfortunately, a diagnosis at a later stage can 

result in significant health issues and a reduced life 

expectancy. To mitigate this trend, researchers have 

focused on enhancing the diagnosis of T2D by striving to 

create precise diagnostic techniques utilizing easily 

accessible data and non-invasive, cost-effective testing 

methods.
[23] 

The constraints associated with traditional methods have 

spurred the adoption of AI-driven diagnostic tools that 

exhibit high classification accuracy and utilize extensive 

datasets, including information from wearable and 

continuous monitoring devices that are often challenging 

to interpret. These AI models are characterized by their 

non-invasive nature and enhanced accessibility, which 

may significantly increase the general population's 

willingness to undergo screening and facilitate the 

development of personalized screening strategies for 

individuals at high risk. 

 

AI-driven screening for diabetes primarily emphasizes 

two key areas. Firstly, the application of AI in screening 

has proven effective in identifying predictors that do not 

exhibit clear correlations with diabetes. Tapak et al. 

employed various methodologies, including artificial 

neural networks, support vector machines, fuzzy c-

means, random forests, logistic regression, and linear 

discriminant analysis, on a dataset comprising 6,500 

individuals in Iran.
[24]

 Ten risk factors were selected as 

predictors, excluding blood glucose-related data. The 

findings indicated that the support vector machine 

outperformed both logistic regression and linear 

discriminant analysis in terms of area under the curve 

(AUC). In a similar vein, Maniruzzaman et al. evaluated 

Gaussian process-based techniques utilizing different 

kernels (linear polynomial and radial basis) against linear 

discriminant analysis, quadratic discriminant analysis, 

and naive Bayes.
[25]

 with the Gaussian process method 

featuring a radial kernel achieving the highest accuracy. 

Secondly, advancements in diverse sensing technologies 

and the creation of innovative datasets are expanding the 

possibilities for AI-based diabetes screening. Shu et al. 

conducted a comprehensive analysis of the impact of 

texture features derived from specific facial regions on 

diabetes detection, utilizing eight different texture 

extractors.
[26]

 The most effective texture feature extractor 

for diagnosing diabetes mellitus attained an accuracy of 

99.02%, a sensitivity of 99.64%, and a specificity of 

98.26% when implemented with a support vector 

machine. Li et al. developed a non-invasive model for 

predicting diabetes risk based on the fusion of tongue 

features, successfully forecasting the likelihood of pre-

diabetes and diabetes through machine learning 

techniques.
[27]

 Their model achieved an average accuracy 

of 0.821 and an average area under the receiver operating 

characteristic curve (AUROC) of 0.924. Furthermore, 

Zhang et al. illustrated that deep learning models could 

effectively identify type 2 diabetes (T2D) using only 

fundus images or in conjunction with clinical metadata, 

yielding AUROCs ranging from 0.85 to 0.93.
[28] 

 

LIMITATIONS IN AI IN DIABETES RESEARCH 

AND CARE 

Artificial intelligence (AI) undoubtedly stands as one of 

the most contentious subjects within the medical 

community today. Numerous experts believe that AI 

possesses significant potential for enhancing diabetes 

management. Devices powered by artificial intelligence, 
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including continuous glucose monitors (CGMs) and 

insulin pumps, contribute to effective diabetes control 

and the mitigation of high blood sugar levels. 

Furthermore, AI could be utilized to predict which 

patients are at a higher risk of experiencing 

complications such as diabetic ketoacidosis. 

Additionally, AI has the capacity to assist in diabetes 

management by reminding patients to regularly check 

their blood sugar levels, take their prescribed 

medications, engage in physical exercise, plan their 

meals, consume healthy foods, and implement other 

necessary lifestyle changes. Although these applications 

are still in the early stages of development, they hold 

promise for enabling patients to achieve better diabetes 

control and avert severe complications. If individuals 

lack the knowledge to address a particular problem, 

machine learning cannot spontaneously generate the 

expertise required for humans to find a solution. We are 

acquainted with autonomous vehicles because humans 

comprehend the principles of driving. Similarly, robots 

excel in chess because humans have a deep 

understanding of the game. Industrial robots are utilized 

by humans who know how to operate them (Ben 

Dickson, 2013). There are several reasons why machine 

learning and artificial intelligence will not be able to 

completely resolve the diabetes epidemic. Firstly, 

artificial intelligence depends on vast quantities of data 

to learn and evolve. In the context of diabetes, experts 

currently do not possess enough information. We need 

data regarding individuals' daily habits, genetic factors, 

and other health conditions such as coronary artery 

disease and kidney disease, among others, to develop a 

machine-learning algorithm capable of predicting which 

individuals are at risk of developing diabetes. Even if all 

this information were available, organizing it in a format 

that artificial intelligence could interpret would be 

exceedingly challenging. 

 

Machine learning algorithms derive their effectiveness 

from the quality of the data they receive, and the data 

available in healthcare databases is often suboptimal. 

There are frequently gaps and inaccuracies in the 

collected data, which can result in erroneous conclusions 

drawn by artificial intelligence systems. Consequently, 

human oversight is essential for reviewing and assessing 

the results produced. If this holds true, artificial 

intelligence will not be able to replace healthcare 

professionals. A significant number of diabetic patients 

continue to utilize traditional methods, such as finger 

pricking, to monitor their blood glucose levels with a 

glucometer, rather than adopting these advanced devices 

(Olansky & Kennedy, 2010). The high cost and limited 

availability of devices can lead to considerable expenses, 

including issues related to accessibility and the ongoing 

monitoring of one's health status. Wearable technologies 

may also influence clothing choices, compromise 

personal intimacy, and draw unwanted attention in 

professional settings. Such concerns can subtly impact 

how others perceive an individual's ability to manage 

their health or fulfill their job responsibilities (Williams, 

2022). 

 

DIABETIC RETINOPATHY SCREENING 

In the pivotal research conducted by Abramoff et al., an 

artificial intelligence system utilizing supervised 

machine learning (ML) through logistic regression 

achieved a sensitivity of 96.8% and a specificity of 

59.4% in identifying referable diabetic retinopathy (DR). 

Although the specificity is relatively low, it is anticipated 

that this system could significantly reduce the workload 

associated with manual screening performed by 

specialists.
[29]

 A new deep learning (DL) model was 

developed by the same team, utilizing convolutional 

neural network (CNN) architectures influenced by 

AlexNet and VGGNet. This model exhibited an 

enhanced specificity of 87% for the detection of 

referable diabetic retinopathy (DR), while maintaining 

sensitivity.
[30]

 EyeArt and Retmarker, two artificial 

intelligence systems demonstrating sensitivities of 93.8% 

and 85% for referable diabetic retinopathy (DR), 

respectively, have been linked to a reduction in the costs 

associated with DR screening.
[31]

 Additional economic 

modeling research has indicated that both semi-

automated and fully automated screening techniques 

conducted by human specialists are more cost-effective 

compared to conventional manual screening 

methods.
[32,32]

 Furthermore, IDx-DR, recognized as the 

first medical device utilizing AI to identify cases of 

diabetic retinopathy beyond mild severity, received FDA 

approval in 2018.
[33] 
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In low-income nations where healthcare resources are 

scarce, the absence of established diabetes mellitus (DM) 

screening and blood glucose management programs 

leads to an increased prevalence of diabetes-related 

complications. A study conducted in sub-Saharan Africa 

revealed that the rate of progression from no diabetic 

retinopathy (DR) to sight-threatening DR was five times 

greater than that observed in Europe.
[34,35]

 Despite this 

alarming statistic, achieving universal annual DR 

screening for all DM patients remains a challenging 

objective.
[35]

 Technological advancements may offer a 

potential solution. The application of artificial 

intelligence (AI) to analyze digital fundal photographs 

could significantly reduce the costs associated with 

nationwide screening programs while providing 

diagnostic performance that is comparable to or even 

exceeds current standards.
[36,37]

 A pertinent concern is 

whether models developed and validated in countries 

with different ethnic compositions can be effectively 

applied to local populations. Research by Bellemo et 

al.
[38]

 demonstrated that an ensemble model, which 

included adapted VGGNet and ResNet architectures 

trained on a database of color retinal images from 

Singapore, exhibited acceptable diagnostic performance 

in a real-world DM population in Zambia, achieving a 

receiver operating characteristic area-under-curve (AUC) 

of 0.973 for referable DR, with sensitivities of 99.42% 

for sight-threatening DR and 97.19% for diabetic 

macular edema (DME). Additionally, a prospective 

interventional cohort study in Thailand found that a deep 

learning-based system for detecting sight-threatening DR 

had an accuracy of 94.7%, surpassing the 93.5% 

accuracy of human experts.
[39]

 Among innovative cost-

effective strategies, retinal images can be captured using 

smartphone-based retinal cameras. A study utilizing 

EyeArt, an ensemble of deep artificial neural networks, 

demonstrated the feasibility of this method. The AI 

software achieved a sensitivity of 99.1% and a specificity 

of 80.4% in detecting sight-threatening diabetic 

retinopathy (DR) through the analysis of smartphone 

retinal images, processed online and compared against 

evaluations by human experts.
[40] 

 

GRADING DIABETIC RETINOPATHY SEVERITY 

The classification of color fundus photographs into 

distinct grades of diabetic retinopathy (DR) severity, as 

illustrated, is based on alterations in retinal vasculature. 

These grades include no retinopathy, mild non-

proliferative DR, moderate non-proliferative DR, severe 

non-proliferative DR, and proliferative DR.
[41]

 This 

classification can provide valuable insights into the 

progression and prognosis of the disease.
[42]

 

Traditionally, this assessment has been performed 

through manual fundus examinations conducted by 

specialists, which are often limited in availability and 

accessibility.
[43]

 However, emerging artificial 

intelligence-based tools have the potential to effectively 

categorize DR grades, thereby alleviating healthcare 

costs and reducing the associated burdens.
[44,45] 

 

Gulshan et al. developed a convolutional neural network 

(CNN) model utilizing the Inception-v3 architecture 

along with transfer learning, which produces five distinct 

binary classifiers for the grading of diabetic retinopathy 

(DR).
[46]

 This model demonstrated commendable 

performance in DR grading, achieving a sensitivity of 

84.0% (95% CI, 75.3%-90.6%) and a specificity of 

98.8% (95% CI, 98.5%-99.0%) for identifying severe or 

worse cases of DR. Additionally, it recorded a sensitivity 

of 90.8% (95% CI, 86.1%-94.3%) and a specificity of 
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98.7% (95% CI, 98.4%-99.0%) for detecting diabetic 

macular edema (DME). In a separate study, Takahashi et 

al.
[47]

 employed the GoogLeNet CNN to assess DR using 

four different 45-degree color fundus photographs (CFP) 

taken from each eye. This network achieved a mean 

accuracy of 81% and a prevalence-adjusted bias-adjusted 

kappa of 0.74, indicating that it provided the correct 

diagnosis with the highest probability in 402 out of 496 

CFP images, thereby surpassing the performance of 

traditional manual grading by experts based on a single 

CFP image. Other studies have also reported elevated 

sensitivity and specificity rates for DR grading through 

the application of various models.
[48,49,50] 

 

Sandhu et al. integrated OCT and OCT angiographic 

images with primary clinical and demographic 

information gathered from 111 patients to develop an AI 

model aimed at screening and staging diabetic 

retinopathy (DR).
[51]

 They introduced an innovative 

computer-aided design system to classify non-

proliferative DR into mild and moderate categories. 

Their findings indicated an accuracy of 98.7%, with 

100% sensitivity, 97.8% specificity, 99% differential 

scanning calorimetry (DSC), and an area under the curve 

(AUC) of 0.981. Notably, progressive enhancements in 

nearly all metrics were noted as OCT angiography, 

clinical, and demographic data were progressively 

incorporated into the model. In a separate study, Wang et 

al.
[52]

 utilized ultra-widefield fluorescein angiographic 

images from 399 patients to train an AI model capable of 

distinguishing between normal, non-proliferative DR, 

and proliferative DR, achieving an accuracy of 88.50%. 

 

DIABETIC RETINOPATHY TREATMENT 

Intravitreal administration of anti-vascular endothelial 

growth factor (VEGF) agents, such as ranibizumab, 

bevacizumab, and aflibercept, is recommended for 

managing sight-threatening diabetic retinopathy (DR), 

particularly diabetic macular edema (DME).
[53,54,55,56]

 

Optical coherence tomography (OCT) is frequently 

employed to assess the therapeutic response. By 

analyzing OCT images, artificial intelligence (AI) 

models can forecast individual patient reactions to anti-

VEGF treatment, potentially enabling tailored 

therapeutic strategies for DME.
[57]

 +. Advanced AI 

algorithms have been created to evaluate various OCT 

parameters—including central macular fluid volume, 

ellipsoid zone integrity, intraretinal fluid, subretinal fluid, 

hyperreflective foci, and external limiting membrane—to 

predict visual acuity outcomes in DME, thus offering 

clinicians objective metrics for diagnosis and monitoring. 

Liu et al.
[58,59]

 integrated deep learning (DL) with 

classical machine learning (CML) techniques, training 

models such as AlexNet, VGG16, and ResNet18 on a 

dataset comprising 304 pre-treatment OCT images from 

DME patients. The DL ensemble model generated fifteen 

OCT features, which were subsequently utilized to train 

traditional machine learning algorithms—Lasso, support 

vector machine, decision tree, and random forest—to 

forecast post-treatment central foveal thickness and best-

corrected visual acuity one month following three 

months of anti-VEGF injections.
[59]

 However, the 

model's inability to accurately predict post-treatment 

values indicated that OCT images alone were inadequate 

as the sole inputs for the model. Gallardo et a.
[60]

 

established a machine learning system to evaluate the 

burden of anti-VEGF treatment, categorized as low, 

moderate, or high based on injection intervals, within a 

treat-and-extend framework for DME and retinal vein 

occlusion, utilizing demographic data and OCT images 

collected from patients during two consecutive clinic 

visits.
[61] 

 

The suggested supervised machine learning model, 

utilizing a random forest approach, aims to forecast the 

treatment needs over a one-year period, achieving a 

satisfactory area under the curve (AUC) that enhances 

the interpretability of the decision-making process. 

Notably, all features associated with intra-retinal fluid 

were significant in distinguishing between low and high 

treatment demands. 

 

Artificial intelligence (AI) not only aids in predicting 

treatment responses but can also be utilized to enhance 

the planning of therapeutic procedures. One such 

procedure is focal or grid laser photocoagulation, which 

involves delivering a series of controlled 

photocoagulations to retinal areas affected by pathology. 

This method is particularly relevant for treating diabetic 

macular edema (DME) and proliferative diabetic 

retinopathy (DR).
[62,63]

 By normalizing oxygen partial 

pressures in peripheral avascular regions of the retina, 

this treatment promotes the regression of newly formed 

blood vessels, thereby reducing the incidence of aberrant 

vessel formation, vitreous hemorrhage, and membrane 

development. The effectiveness of the treatment is 

significantly influenced by the precise location and 

dosage of the photocoagulates administered.
[64] 

 

Standardized photocoagulation patterns often fail to 

accommodate the individual variations in the 

morphology of macular edema and the anatomical 

differences in retinal vasculature.
[62,65]

 Additionally, the 

manual mapping of coagulation patterns necessitates a 

high level of surgical skill and is time-consuming.
[65]

 AI 

can be employed to automate the segmentation of the 

retina, ensuring that only the designated areas are 

subjected to coagulation. This approach enhances the 

accuracy of laser photocoagulation while minimizing 

adverse effects. By integrating patient-specific data into 

advanced AI software, personalized and high-quality 

coagulation maps can be created. This results in 

significantly improved precision in targeting the exact 

burn locations and controlling the power delivered, 

leading to a nine-fold reduction in the likelihood of laser 

burns extending beyond the edges of the edema, as well 

as decreased preparation time for procedures and fewer 

postoperative complications.
[65]
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AI TECHNIQUES USED IN RETINAL IMAGES ANALYSIS 

 
[a]Normal Condition of Retina                                      [b]Diabetic Retinopathy 

 

Researchers in artificial intelligence have implemented a 

variety of models for the analysis of retinal images, with 

the most prevalent being the CNN-based architectures 

ResNet
[66,67,68]

 and VGGNet.
[69,70]

 The architecture of a 

CNN specifically tailored for image analysis is depicted 

in Figure 5. In practice, deep networks often encounter 

challenges related to optimization, primarily due to the 

vanishing gradient problem. ResNet addresses this 

challenge through the concept of residual learning, which 

incorporates skip or shortcut connections that allow the 

network to bypass one or more layers during both 

forward and backward propagation.
[66,71] 

This mechanism 

ensures that the deeper layers do not yield higher training 

errors than their shallower counterparts, thereby 

facilitating the network's ability to learn identity 

functions. Additionally, ResNet's modular design allows 

for the scaling of the model by modifying the number of 

residual blocks, making it a versatile option for 

developers who can customize the architecture according 

to specific requirements and computational limitations. 

Despite its depth, ResNet is relatively efficient in terms 

of computational resource consumption. 

 

VGGNet, on the other hand, is a series of deep CNNs 

recognized for its straightforward architecture, capacity 

to capture intricate image features, and outstanding 

performance in image classification tasks. VGG16, a 

prominent variant consisting of 16 layers
[69,70]

, initiates 

with layers that include 64 channels, utilizing a 3x3 filter 

size with consistent padding, followed by a max-pooling 

layer with a stride of (2, 2), and subsequent 

convolutional layers that progressively increase the 

number of channels, reaching up to 128, while 

maintaining the uniform 3x3 filter size. VGGNet is 

primarily designed for image classification across large 

datasets, particularly the ImageNet database, which 

contains over 14 million images organized according to 

the WordNet hierarchy. In addition to image 

classification, efforts have been made to enhance VGG 

architectures to support a variety of computer vision 

applications and improve their classification 

capabilities.
[71,72,73] 

Inception-v3, DenseNet, AlexNet, ResNet, and U-Net 

represent various neural network architectures, each 

characterized by unique structural differences, that have 

been utilized in the analysis of retinal images.
[74,75]

 

Inception-v3, part of the GoogLeNet family, was 

specifically engineered for the extraction of multi-level 

features, making it suitable for large-scale image 

recognition tasks. It employs techniques such as 

factorization and batch normalization to reduce the 

number of parameters while enhancing 

performance.
[76,77]

 DenseNet excels in image 

classification and segmentation, thanks to its dense inter-

layer connections that facilitate improved gradient flow 

and promote the reuse of features.
[78]

 AlexNet, one of the 

pioneering convolutional neural networks, is proficient in 

image classification due to its deep architecture and the 

application of the rectified linear unit (RELU) activation 

function; however, it may be less efficient compared to 

more recent models.
[79]

 ResNet builds upon the concept 

of residual learning and incorporates split-attention 

mechanisms, enabling the model to concentrate on the 

most pertinent features for image classification.
[80]

 In 

contrast to Inception-v3 and AlexNet, which serve more 

general purposes, U-Net was specifically designed for 

the segmentation of biological images.
[81]

 Its distinctive 

"U-shaped" architecture enhances localization accuracy, 

a critical aspect in diagnostic imaging.
[82] 

 

CHALLENGES OF AI IN DIABETES CARE 

Only two countries in Asia have diabetic retinopathy 

(DR) screening programs that meet the standards set by 

the International Council of Ophthalmology.
[83]

 There 

exists a pressing need to standardize national protocols to 

address the discrepancies in screening and referral 

timelines.
[84]

, as well as to develop comprehensive 

guidelines for the implementation of AI in DR screening 

to ensure consistent and effective practices.
[85]

 While AI-

driven DR screening has the potential to alleviate 

economic burdens and improve access to healthcare 

services
[86]

, numerous challenges still need to be 

addressed.
[87]

 Tackling these issues will necessitate 

collaboration across multiple disciplines, standardization 



www.ejpmr.com      │      Vol 12, Issue 1, 2025.       │      ISO 9001:2015 Certified Journal       │ 

 

Swapna et al.                                                                  European Journal of Pharmaceutical and Medical Research 

 

452 

of data, sharing of resources, real-world validation, and 

commercialization of solutions.
[88]

 Specifically, deep 

learning algorithms require extensive datasets 

comprising thousands or even millions of images for 

effective training, which can be expensive to label and 

curate. AI developers frequently depend on available but 

limited training datasets, which may not be 

representative of real-world conditions, where image 

quality can be compromised due to inadequacies in 

clinical environments and may not consistently meet 

high standards.
[89]

 Poor image quality and a low 

incidence of target pathology can lead to increased rates 

of false positives.
[90] 

 

Current methodologies for AI model development are 

largely disconnected from the intricate healthcare 

environments for which they are designed. Consequently, 

the pace of AI model development has significantly 

surpassed their integration into established clinical 

workflows.
[91]

 This disconnect results in models that 

often lack well-defined use cases and are neither 

adequately tested nor implemented in clinical settings. 

Employing a mixed-methods strategy that combines 

design thinking with quality improvement techniques—

focused on understanding variations in healthcare 

processes and incorporating user-centered design to 

ensure practical model functionality
[92]

 has the potential 

to bridge this gap, facilitating smoother AI integration 

within the healthcare sector and promoting broader 

clinical adoption.
[93]

 

 

AI screening systems have shown promising results in 

detecting DR from CFP and OCT images. However, 

there is still a need for validation, regulation, safe 

implementation, and demonstration of clinical impact 

before widespread adoption. Test-bedding new AI 

models in clinical settings is essential for identifying and 

remedying system bugs before full-scale deployment 

152, 153.
[94]

 Further, the AI tools may need to be 

validated and calibrated against local populations and 

clinical contexts: published results from one context may 

not always be generalizable or achievable in a different 

setting 154.
[95]

 Finally, in complex AI models of DR 

diagnosis or treatment decision-making, interpretability 

is essential for gaining the trust of clinicians and patients 

alike. There is a need for transparent and interpretable AI 

in the reasoning processes behind the generated model 

outputs. Explainable AI is an active area of research and 

remains a challenge 155.
[96]
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