

ANTICANCER POTENTIAL OF 1,3,4-THIADIAZOLE-AMIDE DERIVATIVES: A MEDICINAL CHEMISTRY PERSPECTIVE
Akash S. Gondkar and Girish A. Hampannavar*

Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi 580031, Karnataka, India.

***Corresponding Author: Dr. Girish A Hampannavar**

Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Vidyanagar, Hubballi 580031, Karnataka, India.

Article Received on 16/04/2025

Article Revised on 06/05/2025

Article Accepted on 26/05/2025

ABSTRACT

1,3,4 thiadiazole amide, heterocyclic ring system bearing nitrogen and sulfur heteroatoms along with an amide portion attached at C-3 position has attracted considerable interest in bioorganic and medicinal chemistry research due to its remarkable anticancer potential. This review unveils comprehensive exploration of their synthetic routes and anticancer efficacy, highlighting key structural modifications within the 1,3,4-thiadiazole amide core. Their efficacy against diverse anticancer targets—including kinases, tubulin, and specific cancer cell lines—is critically discussed. By focusing on the anticancer potential of 1,3,4-thiadiazole amides, this review aims to offer valuable insights for the design of novel and effective anticancer therapies, covering reports from the year 2005.

KEYWORD:- 1,3,4-Thiadiazole-Amide; Anticancer agents; Structure-activity relationship (SAR); Cytotoxicity; Tumor inhibition.

1. INTRODUCTION

Heterocyclic compounds are fundamentally important in organic and medicinal chemistry, forming the structural foundation of numerous commercially available drugs. Many five-membered heterocycles have been investigated for a diverse biological activities and efforts are been ongoing to identify novel heterocyclic

compounds with potent bioactivities.^[1] Among the five-membered heterocycles—such as imidazole, oxazole, thiazole, oxadiazole, and thiadiazole—are particularly significant due to their diverse bioactivities and prevalence in pharmaceuticals, agrochemicals, and natural products.^[2]

Improves the ability to bind with

receptors

Improves lipid solubility

Figure 1: Thiadiazole scaffold with key pharmacophoric features.

Nitrogen- and sulfur-containing heterocycles have attracted extensive research interest, with 1,3,4-thiadiazole emerging as a privileged structure. Its unique electronic properties and ability to mimic peptide bonds make it a versatile pharmacophore, featured in antimicrobial, anti-inflammatory agents and notably, anticancer agents.^[3] Furthermore, thiadiazole derivatives, especially 1,3,4-thiadiazole amides, exhibit enhanced

bioavailability and target selectivity, driving efforts to design novel analogs with improved therapeutic potential.^[4]

This five-membered ring, comprising one sulfur and two nitrogen atoms, exhibits strong aromaticity and serves as a bioisostere for thiazole, oxadiazole and pyrazole rings, enhancing its pharmacological relevance.^[5,6]

Thiadiazoles demonstrate diverse biological properties, including anti-cancer,^[7] anti-microbial,^[8] anti-viral,^[9] anti-phlogistic and analgesic,^[10,11] anti-diabetic,^[12] anti-convulsant,^[13] anti-tuberculosis,^[14] anti-depressants^[15] and anti-hypertensive^[16] making them a versatile pharmacophore.

1.1. Chemistry of 1,3,4 thiadiazole

Thiadiazoles are easy to synthesize and exhibit remarkable versatility due to their four isomeric ring variations (a-d), which have been extensively explored in medicinal chemistry for their exceptional aromaticity. Among these, 1,3,4-thiadiazole is particularly prominent owing to its straightforward synthesis, high aromatic stability, and significant medicinal properties making it the most studied isomer in pharmacological research.^[5,17]

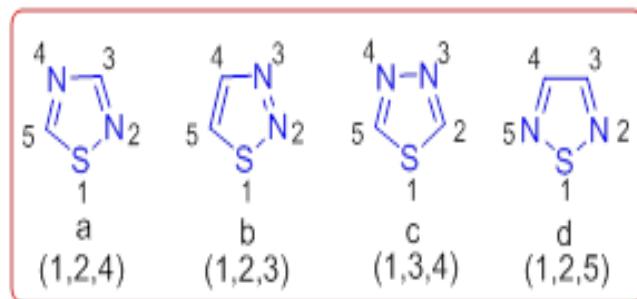


Figure 2: Isomers of thiadiazole.

The 1,3,4-thiadiazole nucleus is hypo-electronic, favoring nucleophilic substitutions at the 2nd and 5th positions, while remaining relatively inert to electrophilic attacks. Its high aromaticity ensures stability under acidic conditions but renders it susceptible to ring cleavage in basic environments. The $-\text{N}=\text{C}-\text{S}-$ structural fragment plays a key role in reducing toxicity while ensuring remarkable *in vivo* stability.^[18] Additionally, its mesoionic character (regions of positive and negative charge delocalization) enhances membrane permeability, improving oral bioavailability and interactions with biological targets (e.g., DNA, proteins).^[6,19-20]

1.2. Medicinal importance

The 1,3,4-thiadiazole amide derivatives are notable considering their benefits like enhanced hydrogen-bonding capacity, which strengthens receptor interactions.^[21]

The amide linkage further augments pharmacological properties by improving solubility, binding affinity, and metabolic stability. The versatile synthetic approaches for 1,3,4-thiadiazole amide derivatives have become a major focus for medicinal chemists owing to their extensive array of pharmacological applications. Marketed drugs such as acetazolamide, methazolamide, and sulfamethizole containing 1,3,4-thiadiazole amide exemplify the therapeutic potential of this scaffold.^[18,22-23]

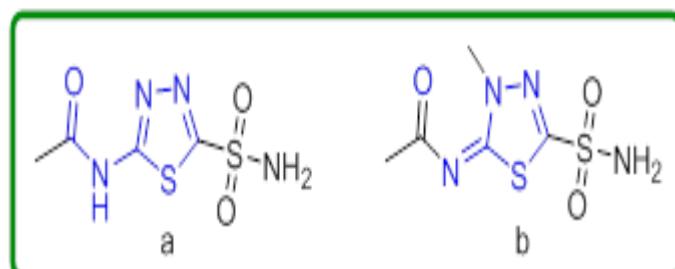
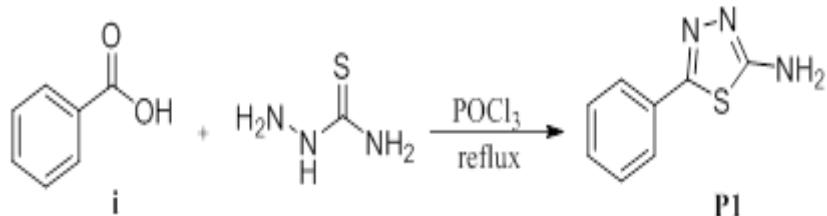
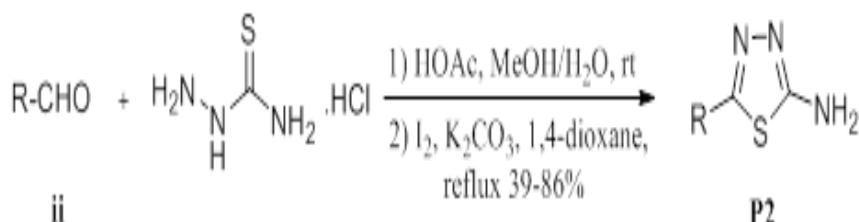


Figure 3: Marketed drugs acetazolamide (a) and methazolamide (b) containing 1,3,4-thiadiazole amide scaffold.


Given the emerging prominence of 1,3,4-thiadiazole amides as privileged scaffolds in anticancer drug discovery, this review critically evaluates recent advances in their synthetic strategies and structure-activity relationships (SAR). The findings presented here will provide valuable insights for researchers to refine and develop next-generation thiadiazole-based anticancer derivatives with improved target selectivity and therapeutic efficacy.

2. Synthetic methodologies for 1,3,4 thiadiazole amide scaffold

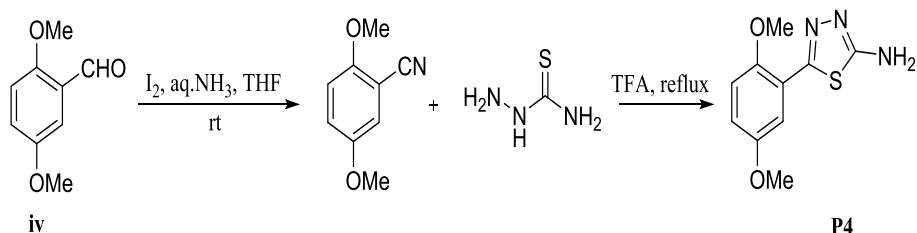
The synthesis of 1,3,4-thiadiazole amides typically proceeds through the initial formation of 1,3,4-thiadiazole amine intermediates. These key precursors are commonly prepared via multiple synthetic approaches involving the cyclocondensation of various substituted carbonyl compounds with thiosemicarbazide via multiple synthetic approaches. The following section


provides a detailed discussion of the most frequently employed synthetic approaches for obtaining amine-functionalized 1,3,4-thiadiazole compounds.

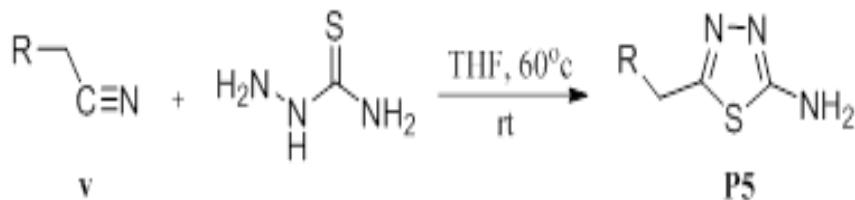
Brai *et al.*, accomplished the cyclization of benzoic acid (**i**) and thiosemicarbazide using phosphorus oxychloride under reflux, yielding compound **P1** (Scheme-1).^[24]

Scheme 1

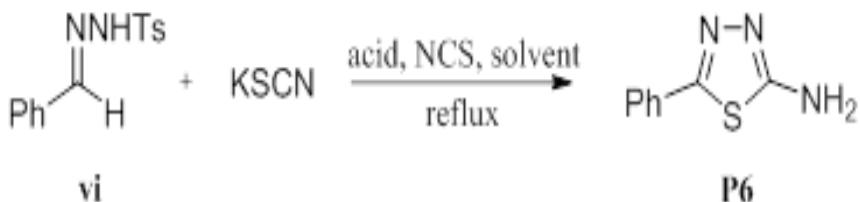
Niu *et al.*, demonstrated a transition-metal-free approach to synthesize 1,3,4-thiadiazole-2-amines, via the reaction of substituted aldehyde (**ii**) and semicarbazide hydrochloride to yield desired product **P2** (Scheme-2).^[25]


Scheme 2

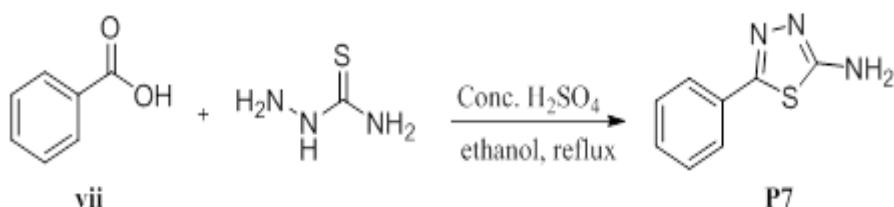
Yang and co-workers performed regioselective cyclization of various thiosemicarbazides (**iii**) by refluxing in DMSO using EDC·HCl as catalyst to yield final compound **P3** (Scheme-3).^[26]


Scheme 3

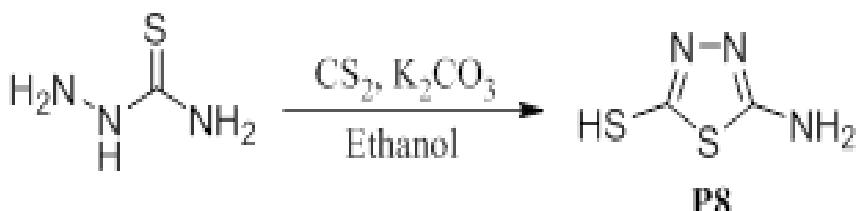
Polkam *et al.*, elucidated the cyclization reaction of 2,5-dimethoxybenzaldehyde (**iv**) with aqueous ammonia followed by reaction with thiosemicarbazide, yielding compound **P4** under reflux conditions (Scheme-4).^[27]


Scheme 4

Mustafa *et al.*, obtained **P5** via treating substituted acetonitrile (**v**) with thiosemicarbazide in trifluoroacetic acid under reflux conditions (Scheme-5).^[28]


Scheme 5

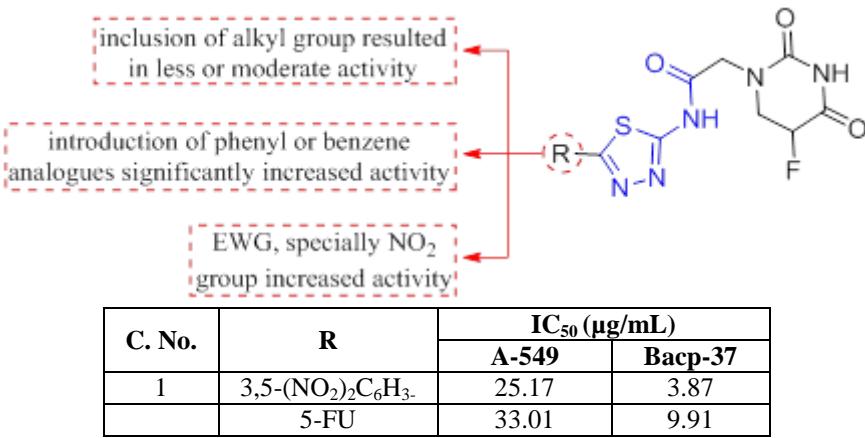
Wei and co-workers documented the cyclisation of *N*-tosylhydrazone (**vi**) with potassium thiocyanate, yielding **P6** under reflux conditions (Scheme-6).^[29]


Scheme 6

Bhinge *et al.*, conducted the cyclization of benzoic acid (**vii**) with thiosemicarbazide using concentrated sulfuric acid and ethanol, yielding compound **P7** (Scheme-7).^[30]

Scheme 7

Ruan *et al.*, have reported cyclization reaction of thiosemicarbazide in the presence of carbon disulfide under reflux conditions in ethanol solvent yielding thiol substituted 2-amino-1,3,4-thiadiazole product **P8** (Scheme-8).^[31]

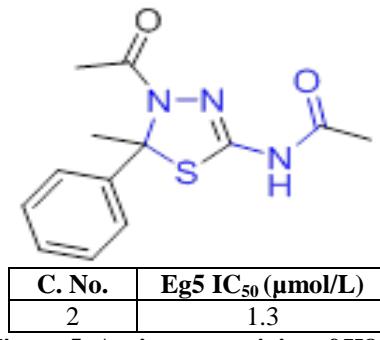


Scheme 8

3. Anti-cancer activity of 1,3,4 thiadiazole amides

3. Anti-cancer activity of 1,3, thiadiazole amides
Zheng et al., have developed novel 5-Fluorouracil-thiadiazole conjugates and evaluated their cytotoxic effects on human cancer cell lines like A-549 (lung cancer) and Bcap-37 (breast cancer) using the MTT

assay method, with 5-FU serving as the reference drug. Notably, compound **1**, featuring a dinitrophenyl group, exhibited the strongest growth inhibition against Bcap-37 cells. The SAR and anticancer efficacy of this derivative are summarized in Fig. 4.^[32]


Figure 4: Anticancer properties of 5-Fluorouracil-thiadiazole derivative.

Nakai and co-workers performed a phenotype-based screening and discovered **K858** (2) as a new Eg5-targeting compound. The antimitotic effects of

compound **2** were further evaluated across multiple human cancer cell lines, including HCT-116 (colorectal cancer), A2780 (ovarian Cancer), and ARPE-19 (retinal

epithelium), using Paclitaxel and Carboplatin as reference standards. Among these, the HCT-116 cell line exhibited the highest sensitivity to Compound **2**. The

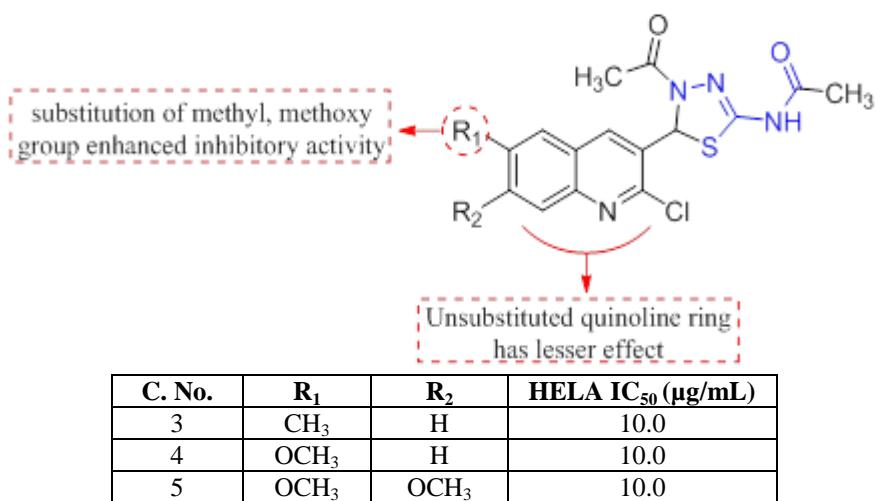

structural details and activity data are illustrated in Fig. 5.^[33]

Figure 5: Antitumor activity of K858.

Marganakop and colleagues achieved an innovative synthesis of substituted 2-chloroquinolinyl thiadiazole acetamides and assessed their antitumoral properties against cervical cancer cell line (HeLa). Within this series, compounds **3**, **4**, and **5** exhibited significant efficacy against HeLa cells, inducing cell disruption at a

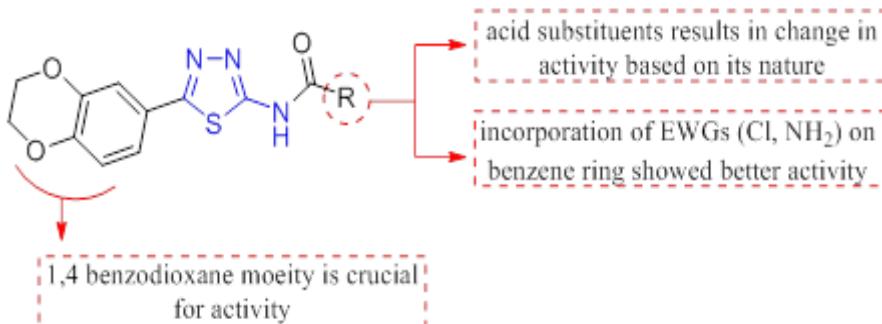
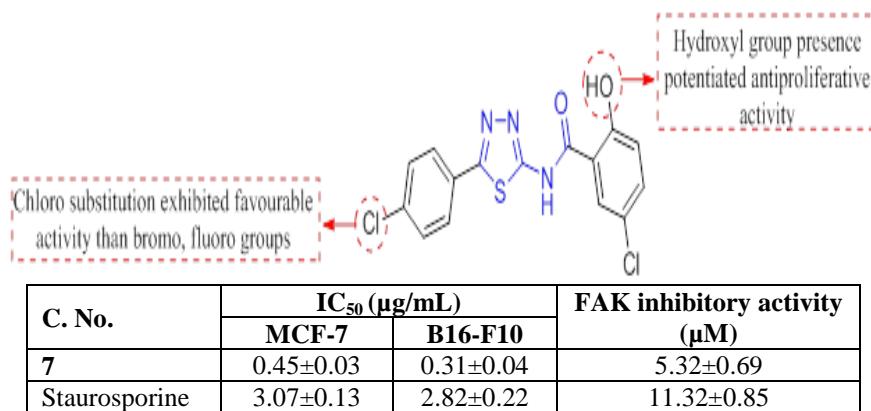

concentration of 10 μg/mL. Structure-activity relationship (SAR) investigations elucidated that introducing methyl or methoxy substituents at the C-6, C-7, or C-8 positions of the quinoline ring significantly enhanced bioactivity, as illustrated in Fig. 6.^[34]

Figure 6: Antitumor activity of 2-chloroquinolinyl thiadiazole acetamides on HEA cancer cell line.

Sun *et al.*, synthesized 2,3-Dihydrobenzo[b][1,4]dioxin-linked thiadiazole acetamide derivatives as FAK inhibitors and determined their antitumor effects on multiple human cancer cell lines (HEPG2, HEA, SW1116, BGC823), using Staurosporine as the reference drug. Of the screened compounds, 6 emerged as the most

effective, demonstrating significant inhibitory activity (Fig. 7). Compound **6** was further investigated through molecular docking, apoptosis assays, and Western blot analysis, with results confirming that compound **6** binds effectively to FAK and exhibits strong antitumor potential through the induction of apoptosis.^[35]



C. No.	R	IC ₅₀ (μg/mL)				FAK inhibitory activity (μM)
		HEPG2	HELA	SW1116	BGC823	
6		10.28	>100	60.17	45.36	10.79
	5-Fluorouracil	23.31	31.02	28.52	17.37	-
	Staurosporine	21.74	29.12	24.92	26.83	11.32

Figure 7: FAK Inhibitory and Anti-cancer activity of dihydrobenzo linked thiadiazole acetamide derivatives on various cancer cell lines.

Yang *et al.* developed and synthesized a diverse range of 1,3,4-thiadiazol amide derivatives from substituted benzoic acids. These compounds were screened for FAK inhibitory ability thus suppress cancer growth using MCF-7 (human breast cancer) and B16-F10 (mouse melanoma) tumor cell lines. From the series, compound 7 featuring a 5-Cl substituent on the salicylic acid moiety

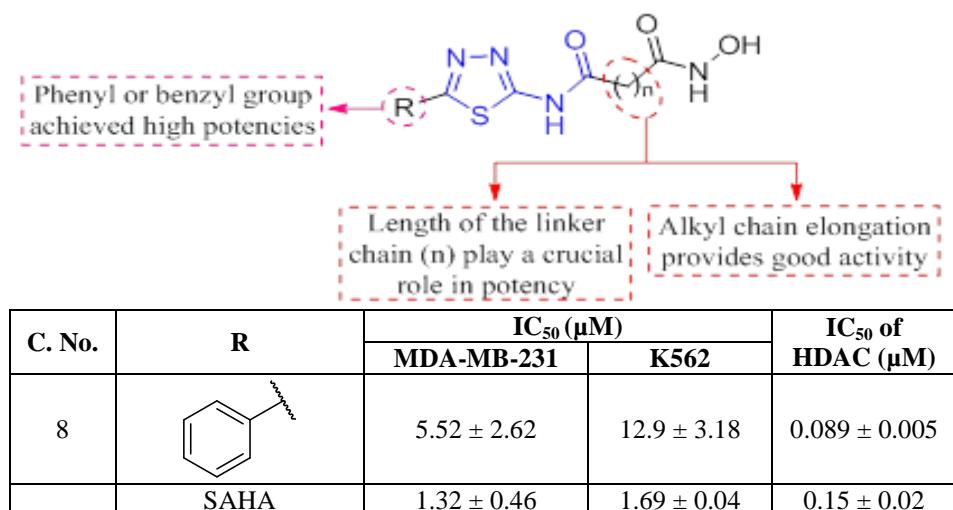

exhibited the most potent inhibitory effects, comparable to the positive control, staurosporine. Additionally, Western blot analysis confirmed the significant antiproliferative effectiveness of 7. Fig. 8 summarizes the SAR and anti-cancer activity profile of compound 7.^[36]

Figure 8: Anti-cancer FAK Inhibitory properties and of 1,3,4-thiadiazol amide derivative.

Guan and co-workers synthesized and developed a new class of hydroxamic acids derived from 1,3,4-thiadiazole scaffold as potent inhibitors of histone deacetylases (HDACs). They then assessed their pharmacological potential using MDA-MB-231(breast cancer) and K562 (chronic myeloid leukemia) human cancer cell lines, and their HDAC inhibitory activity (Color de Lys assay) was

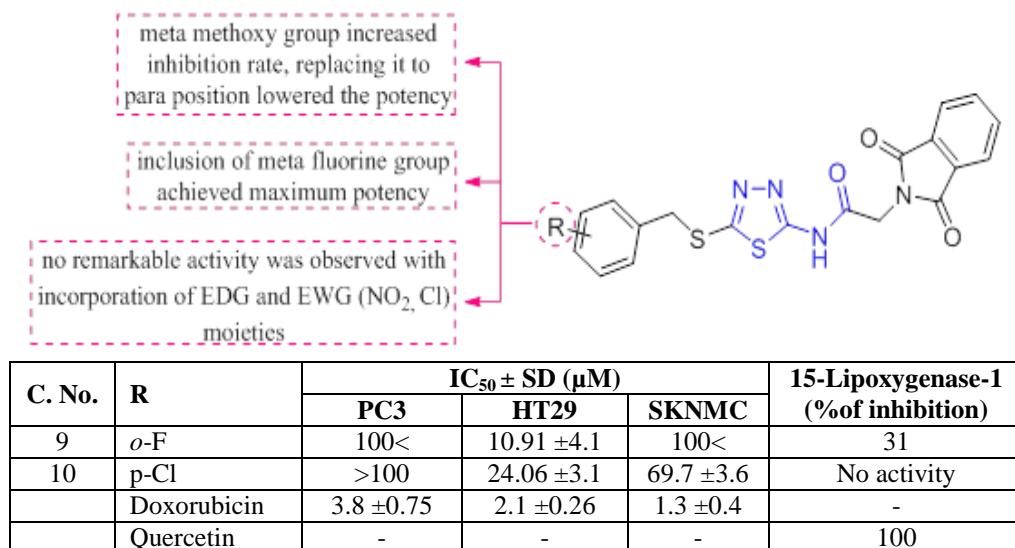

assessed as well. Of the series, several derivatives exhibited promising anti-cancer activity, with one standout molecule compound 8 showing superior HDAC inhibition outperforming the reference drug. SAR investigations revealed that judicious modifications at the 'R' position influenced the effectiveness, as delineated in Fig. 9.^[37]

Figure 9: HDAC inhibitory and anticancer activity of compound 8.

Aliabadi and colleagues investigated the antineoplastic potential of newly synthesized N-Phthalimidoacetyl thiadiazole amides bearing substituted benzylthio moiety derivatives by employing in vitro MTT protocol. The authors tested these compounds against three human cancer cell lines (PC3, HT29, SKNMC) while also

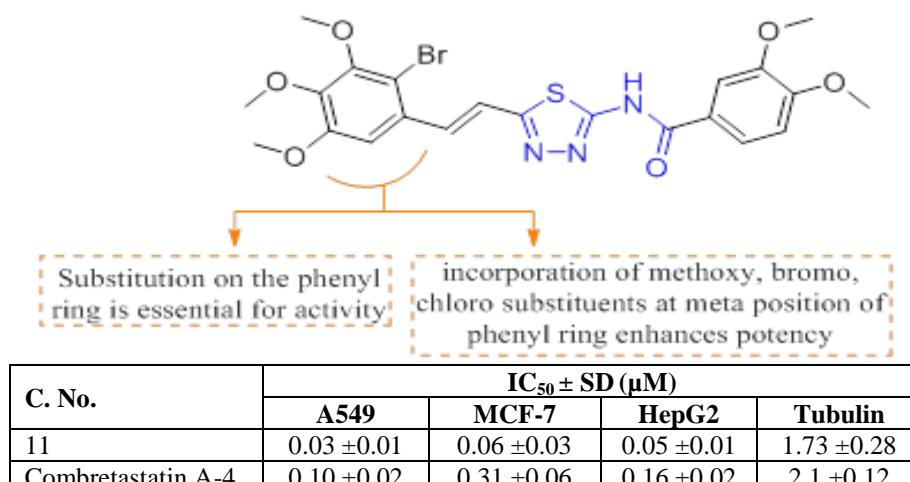

investigating their inhibitory efficacy against 15-lipoxygenase-1. From the experimental data, only compounds **9** and **10** demonstrated appreciable cytotoxicity towards the HT29 cell line (Fig. 10). Thus, authors concluded that further structural alterations were necessary to yield derivatives with superior efficacy.^[38]

Figure 10: Anticancer and Lipoxygenase inhibitory data of Phthalimidoacetyl thiadiazole amide derivatives.

Jing Li and co-workers synthesized benzamide derivatives of a styryl-1,3,4-thiadiazole scaffold and assessed their effects on tubulin polymerization along with in vitro anticancer potential. Among these, derivatives featuring methoxy or halogen substitutions at the phenyl ring's C-3 position demonstrated notable

biological activity. From the series, compound **11** emerged as a standout candidate, displaying strong tubulin polymerization inhibition and remarkable cellular toxicity on A549 (lung), MCF-7 (breast), and HepG2 (liver) cancer cell lines. SAR and pharmacological activity of **11** are represented in Fig. 11.^[39]

Figure 11: In vitro cytostatic properties of benzamide linked styryl-1,3,4-thiadiazole amides on human tumor cell lines.

Almasirad *et al.*, developed a series of novel 1,3,4-thiadiazol-thioacetates and subsequently evaluating anticancer effects on multiple tumor cell lines, including HL-60 (promyelocytic leukemia), SKOV-3 (ovarian cancer) and MOLT-4 (T-cell lymphoblastic leukemia). From this series, compound **12**, which featured a 4-methoxyphenol group, exhibited marked potency across

all investigated neoplastic cell lines. Additionally, compounds **13** and **14** demonstrated significant growth inhibition against the SKOV-3 line. A concise SAR investigation elucidated that judicious aromatic substitution at the 'R' position modulated the observed potency, as illustrated in Fig. 12.^[40]

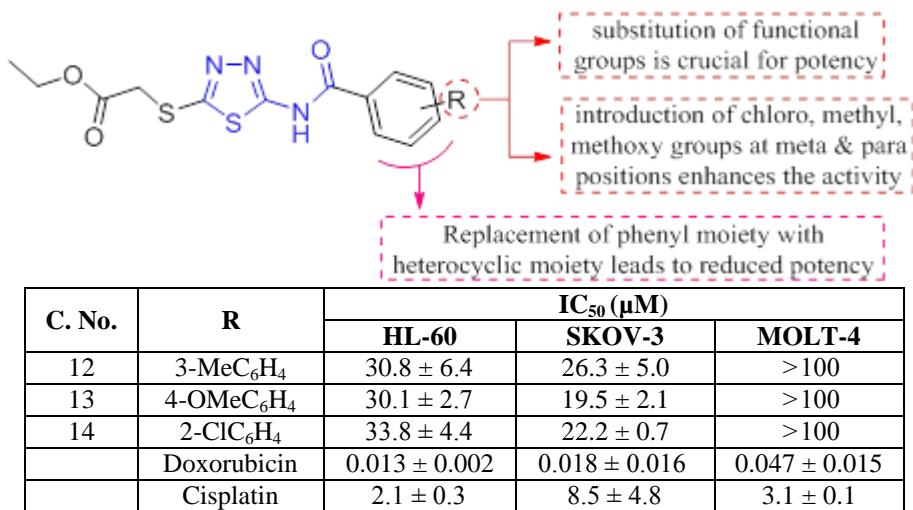
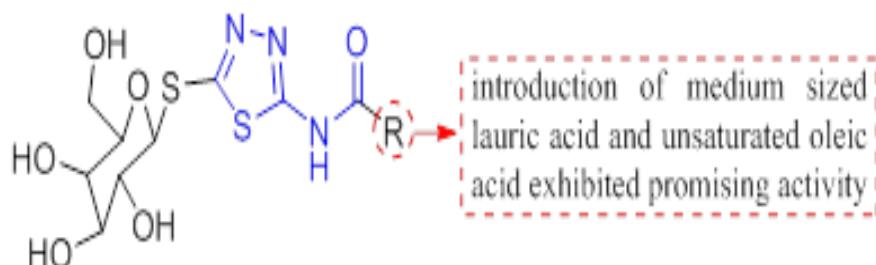
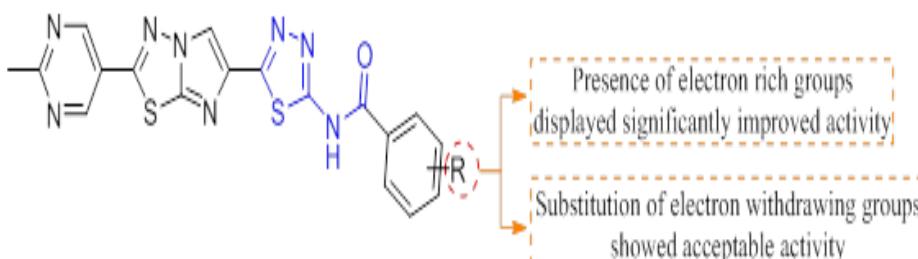



Figure 12: Anticancer activity of 1,3,4-thiadiazol-thioacetate derivatives.

Vudhgiri *et al.*, reported the synthesis of glycoside linked 5-fatty acyl amido-1,3,4-thiadiazole-2-thiol derivatives, and assessed their cytotoxic potential. SAR analysis indicated that derivatives with specific short-chain (acetate-protected) and long-chain (free hydroxyl) fatty acids at 'R' enhanced cytotoxicity. The synthesized series was further evaluated against multiple human cancer cell

lines (SKOV3, HeLa, MDA-MB-231, DU145, CHO-K1), while Doxorubicin and Mitomycin C served as reference drugs. From the synthesized series, the lauric acid derivative with a free hydroxyl group (**15**) and the oleic acid-based compound (**16**) displayed significant efficacy against the HeLa cell line as shown in Fig. 13.^[41]

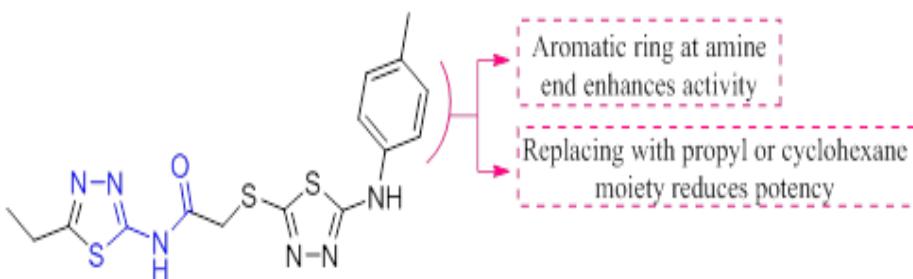


C. No.	R	IC ₅₀ (μM)				
		SKOV3	HeLa	MDA-MB-231	DU145	CHO-K1
15	-(CH ₂) ₁₀ -CH ₃	—	8.7 ± 0.59	32.0 ± 0.58	—	—
16	-(CH ₂) ₇ -CH=CH-(CH ₂) ₇ -CH ₃	—	8.8 ± 0.61	43.6 ± 0.61	—	—
	Doxorubicin	0.7 ± 0.23	0.7 ± 0.22	0.7 ± 0.20	0.8 ± 0.19	—
	Mitomycin c	—	—	—	—	13.4 ± 0.21

Figure 13: Cytotoxicity evaluation data of glycoside linked 5-fatty acyl amido-1,3,4-thiadiazole derivatives.

Sridhar and colleagues prepared a series of novel Imidazo linked 1,3,4-thiadiazole amide derivatives and assessed their anticancer potential. Among these, derivatives containing electron-donating groups and halogens (particularly chlorine) at the benzene ring's C-4 position exhibited strong biological activity. Notably,

compounds **17** and **18** exhibited potent cytotoxicity, with activity observed against several human cancer cell lines, including MCF-7, A549, DU-145, and MDA-MB-231 (see Fig. 14). Further SAR analysis indicated that modifications at the C-3, C-4, and C-5 positions were critical for anticancer efficacy.^[42]

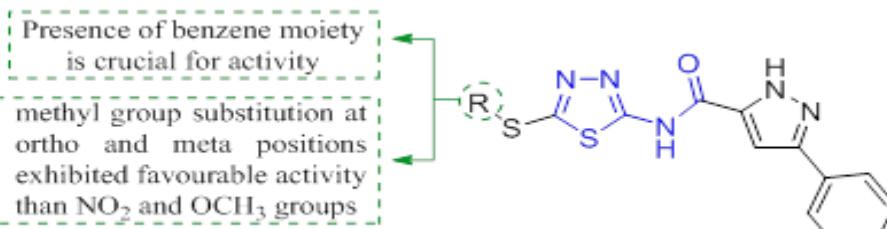

C. No.	R	IC ₅₀ (μM)			
		MCF-7	A549	DU-145	MDAMB-231
17	3,4,5-trimethoxy	0.071 ± 0.009	0.045 ± 0.0034	0.67 ± 0.051	1.33 ± 0.76
18	4-chloro	13.8 ± 6.33	ND	ND	12.91 ± 6.10
	Etoposide	2.11 ± 0.024	3.08 ± 0.135	1.97 ± 0.45	1.91 ± 0.84

ND: not determined

Figure 14: Anticancer activity profile of Imidazo linked 1,3,4-thiadiazole amide derivatives.

Çevik *et al.*, developed a new set of bis-thiadiazole thioacetamide compounds and assessed their anticancer effects on A549 (lung cancer) and MCF-7 (breast cancer) cell lines. Many derivatives exhibited significant activity against A549 cell line, with compound **19** (containing a 4-methylphenyl group) being the most active and

outperforming cisplatin. The SAR study revealed that incorporation of an aromatic ring onto the thiadiazole's amine moiety boosted anticancer performance as shown in Fig. 15. Furthermore, these highly efficacious derivatives were screened against non-malignant NIH3T3 cells to ascertain cancer-selective toxicity.^[43]

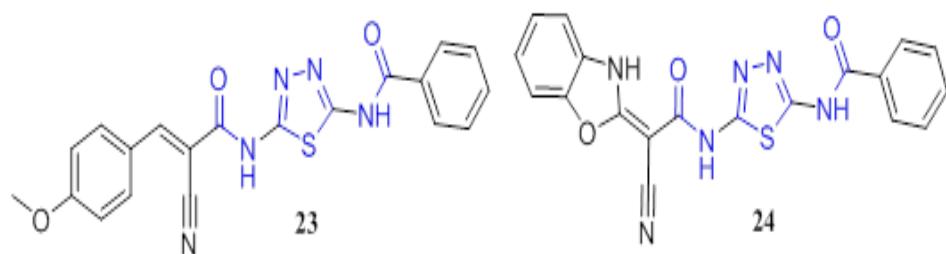


C. No.	R	IC ₅₀ (mmol L ⁻¹)		
		MCF-7	A549	NIH3T3
19	4-Methylphenyl	0.084 ± 0.020	0.034 ± 0.008	1.791 ± 0.087
	Cisplatin	0.019 ± 0.009	0.013 ± 0.003	111.26 ± 3.745

Figure 15: Anticancer activity of bis-thiadiazole thioacetamide derivatives.

Jiaoli *et al.* designed and synthesized a new class of pyrazole substituted 1,3,4-thiadiazole amides, assessing their anticancer properties. Among the synthesized compounds, **20** exhibited the highest efficacy against both HepG2 (liver cancer) and MGC803 (stomach cancer) cell lines, while derivatives **21** and **22** also

showed significant inhibition of HepG2 cells, with activity levels similar to the control drug 5-fluorouracil. SAR analyses revealed that the introduction of a methyl substituent at the ortho and meta positions of the benzene ring at the 'R' locus potentiated antitumor activities, as delineated in Fig. 16.^[44]


C. No.	R	IC ₅₀ (mmol L ⁻¹)	
		HepG2	MGC803
20	C ₆ H ₅ CH ₂	0.0695	0.0420
21	2-CH ₃ C ₆ H ₄ CH ₂	0.0682	—
22	3-CH ₃ C ₆ H ₄ CH ₂	0.0753	—
	5-Fluorouracil	0.0787	0.0820

— indicates that there is basically no anti-cancer cell inhibitory activity.

Figure 16: Anticancer properties pyrazole substituted 1,3,4-thiadiazole amide derivatives.

Hekal *et al.*, documented the creation of 24 novel annulated 1,3,4-thiadiazole benzamide homologues and subsequently evaluated their antiproliferative efficacy against multiple human cancer cell lines (MCF-7, HCT-116, PC-3, HepG2, WI-38). Notably, two specific

congeners **23** and **24** were observed to exhibit marked inhibitory activity against CDK1. The antiproliferative and CDK inhibitory effects of these two compounds are summarized in Fig. 17.^[45]

C. No.	IC ₅₀ (μM)				
	MCF-7	HCT-116	PC-3	HepG2	WI-38
23	9.48 ± 0.8	8.15 ± 0.7	7.41 ± 0.6	15.88 ± 1.3	50.39 ± 0.9
24	7.70 ± 0.5	5.98 ± 0.3	6.35 ± 0.5	19.40 ± 1.5	60.28 ± 3.7
Doxorubicin	4.17 ± 0.2	5.23 ± 0.3	8.87 ± 0.6	4.50 ± 0.2b	6.72 ± 0.5

Figure 17: Antiproliferative activity results of 1,3,4-thiadiazole benzamide homologues.

The therapeutic potential of these compounds is further supported by clinically studied and patented examples have been summarized in Tables 1 and 2.

Table 1: 1,3,4 thiadiazole amide nucleus containing patents having numerous biological activities.

Research group	Patent number	Target activity	Year
Joel L. Kirkpatrick	US4097263A	Herbicide ^[46]	1978
William C. Doyle	CA1151179A	Herbicide ^[47]	1972
Steven R. Turner	WO1999047507A2	Herpesvirus Infection ^[48]	1999
Tony Cebalo	US4092148A	Herbicide ^[49]	1970
Pottayil Govindan Nair	WO2015033301A1	Immunomodulators ^[50]	2015
Natalya Alekseevna Pulina	RU2549572C2	Analgesic ^[51]	2015
Liu Xinghai Weng	CN103030606A	Fungicide ^[52]	2014
Li Wan	CN111747946A	Plant Bactericide ^[53]	2020
Wang Meiyi	CN114507194A	Bactericide ^[54]	2022
Xue Wei	CN104086508B	Antibacterial agent ^[55]	2017
Xue Wei	CN104086508A	Antimicrobial agent ^[56]	2014
Liu Weiwei	CN112480031B	Antimicrobial agent ^[57]	2022
Liu Aiqin	CN103864776A	Anticancer agent ^[58]	2015

Table 2: Marketed and Investigational Drugs Containing a 1,3,4-Thiadiazole amide Moiety.

Name	Current status	Use	1,3,4-thiadiazole amide nucleus containing
Acetazolamide	Marketed drug	Carbonic anhydrase inhibitor ^[59,60]	Sulfonamide
Methazolamide	Marketed drug	Carbonic anhydrase inhibitor ^[61]	Sulfonamide
Sulfamethizole	Marketed drug	Antibiotic ^[62]	Sulfonamide
Megazole	Discontinued (due to toxicity)	Antitrypanosomal ^[63]	Amino group
CB-839	Phase II clinical stage	Glutaminase inhibitor ^[64]	Heterocyclic system
K858	Preclinical stage	Eg5 inhibitor ^[33]	Heterocyclic system

4. CONCLUSION

Heterocyclic compounds incorporating nitrogen and sulfur atoms represent a highly adaptable group of molecules with diverse biological activities. Among these, the 1,3,4-thiadiazole core, a versatile heterocyclic system incorporating nitrogen and sulfur atoms, has demonstrated significant potential in the development of anticancer agents. This review first explores the synthetic methodologies—including conventional, multi-component, and alternative approaches—used to prepare substituted 1,3,4-thiadiazole amines highlighting their synthetic adaptability.

By consolidating synthetic strategies, structure-activity relationships, and promising therapeutic applications in the anticancer field, this review aims to guide researchers in developing target-selective, optimized 1,3,4-thiadiazole amide derivatives with enhanced potential for treating cancer.

5. ACKNOWLEDGEMENTS

The authors are thankful to the *KLE College of Pharmacy, Vidyanaganagar, Hubballi 580031, Karnataka, India* and *KLE Academy of Higher Education & Research, Belagavi, India* for the facilities and support.

REFERENCES

1. Singh SP, Parmar SS, Raman K, Stenberg VI. Chemistry and biological activity of thiazolidinones. *Chemical Reviews*, 1981; 1, 81(2): 175-203.
2. Kabir E, Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. *Results in Chemistry*, 2022; 1, 4: 100606.
3. Bala M, Piplani P, Ankalgi A, Jain A, Chandel L. 1, 3, 4-Thiadiazole: A versatile pharmacophore of medicinal significance. *Medicinal Chemistry*, 2023; 1, 19(8): 730-56.
4. Anthwal T, Paliwal S, Nain S. Diverse biological activities of 1, 3, 4-thiadiazole scaffold. *Chemistry*, 2022; 6: 4(4).
5. Manimaran T, Anand RM, Jishala MI, Gopalasatheeskumar K. Review on substituted 1, 3, 4 thiadiazole compounds. *IJPAR*, 2017; 6(2): 222-31.
6. Serban G, Stanasel O, Serban E, Bota S. 2-Amino-1, 3, 4-thiadiazole as a potential scaffold for promising antimicrobial agents. *Drug design, development and therapy*, 2018; 31: 1545-66.
7. Padmavathi V, Reddy GS, Padmaja A, Kondaiah P. Synthesis, antimicrobial and cytotoxic activities of 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazoles. *European Journal of Medicinal Chemistry*, 2009; 1, 44(5): 2106-12.
8. Kumar D, Vaddula BR, Chang KH, Shah K. One-pot synthesis and anticancer studies of 2-arylamino-5-aryl-1, 3, 4-thiadiazoles. *Bioorganic & medicinal chemistry letters*, 2011; 15, 21(8): 2320-3.
9. Serban G. Synthetic compounds with 2-amino-1, 3, 4-thiadiazole moiety against viral infections. *Molecules*, 2020; 19, 25(4): 942.
10. MH Shkair A, K Shakya A, M Raghavendra N, R Naik R. Molecular modeling, synthesis and pharmacological evaluation of 1, 3, 4-thiadiazoles as anti-inflammatory and analgesic agents. *Medicinal Chemistry*, 2016; 1, 12(1): 90-100.
11. Hafez HN, Hegab MI, Ahmed-Farag IS, El-Gazzar AB. A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9', 2-[1, 3, 4] thiadiazole derivatives as potential analgesic and anti-inflammatory agents. *Bioorganic & medicinal chemistry letters*, 2008; 15, 18(16): 4538-43.
12. Datar PA, Deokule TA. Design and synthesis of thiadiazole derivatives as antidiabetic agents. *Med. Chem*, 2014; 4(4): 390-9.
13. Sharma B, Verma A, Prajapati S, Sharma UK. Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles. *International journal of medicinal chemistry*, 2013; 2013(1): 348948.
14. Oruç EE, Rollas S, Kandemirli F, Shvets N, Dimoglo AS. 1, 3, 4-thiadiazole derivatives. Synthesis, structure elucidation, and structure-antituberculosis activity relationship investigation. *Journal of medicinal chemistry*, 2004; 30, 47(27): 6760-7.
15. Yusuf M, Khan RA, Ahmed B. Syntheses and anti-depressant activity of 5-amino-1, 3, 4-thiadiazole-2-thiol imines and thiobenzyl derivatives. *Bioorganic & medicinal chemistry*, 2008; 1, 16(17): 8029-34.
16. Samel AB, Pai NR. Synthesis of novel aryloxy propanoyl thiadiazoles as potential antihypertensive agents. *Journal of the Chinese Chemical Society*, 2010; 57(6): 1327-30.
17. Joseph L; GM; MP. A review on various biological activities of 1,3,4-thiadiazole derivatives. *J Pharm Chem Biol Sci*, 2015; 3: 329-345.
18. Serban G. Future prospects in the treatment of parasitic diseases: 2-amino-1, 3, 4-thiadiazoles in leishmaniasis. *Molecules*, 2019; 19, 24(8): 1557.
19. Li Y, Geng J, Liu Y, Yu S, Zhao G. Thiadiazole—A promising structure in medicinal chemistry. *ChemMedChem*, 2013; 8(1): 27-41.
20. Senff-Ribeiro A, Echevarria A, Silva EF, Franco CR, Veiga SS, Oliveira MB. Cytotoxic effect of a new 1, 3, 4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma. *British journal of cancer*, 2004; 91(2): 297-304.
21. Li YJ, Qin YJ, Makawana JA, Wang YT, Zhang YQ, Zhang YL, Yang MR, Jiang AQ, Zhu HL. Synthesis, biological evaluation and molecular modeling of 1, 3, 4-thiadiazol-2-amide derivatives as novel antitubulin agents. *Bioorganic & Medicinal Chemistry*, 2014; 1, 22(15): 4312-22.
22. Dawood KM, Farghaly TA. Thiadiazole inhibitors: a patent review. *Expert opinion on therapeutic patents*, 2017; 3, 27(4): 477-505.
23. Haider S, Alam MS, Hamid H. 1, 3, 4-Thiadiazoles: A potent multi targeted pharmacological scaffold. *European journal of medicinal chemistry*, 2015; 6, 92: 156-77.
24. Brai A, Ronzini S, Riva V, Botta L, Zamperini C, Borgini M, Trivisani CI, Garbelli A, Pennisi C, Boccutto A, Saladini F. Synthesis and antiviral activity of novel 1, 3, 4-thiadiazole inhibitors of DDX3X. *Molecules*, 2019; 4, 24(21): 3988.
25. Niu P, Kang J, Tian X, Song L, Liu H, Wu J, Yu W, Chang J. Synthesis of 2-amino-1, 3, 4-oxadiazoles and 2-amino-1, 3, 4-thiadiazoles via sequential condensation and I2-mediated oxidative C–O/C–S bond formation. *The Journal of organic chemistry*, 2015; 16, 80(2): 1018-24.
26. Yang SJ, Lee SH, Kwak HJ, Gong YD. Regioselective synthesis of 2-amino-substituted 1, 3, 4-oxadiazole and 1, 3, 4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide intermediate. *The Journal of Organic Chemistry*, 2013; 18, 78(2): 438-44.
27. Polkam N, Rayam P, Anireddy JS, Yennam S, Anantaraju HS, Dharmarajan S, Perumal Y, Kotapalli SS, Umanni R, Balasubramanian S. Synthesis, in vitro anticancer and antimycobacterial evaluation of new 5-(2, 5-dimethoxyphenyl)-1, 3, 4-thiadiazole-2-amino derivatives. *Bioorganic & Medicinal Chemistry Letters*, 2015; 1, 25(7): 1398-402.

28. Er M, Isildak G, Tahtaci H, Karakurt T. Novel 2-amino-1, 3, 4-thiadiazoles and their acyl derivatives: Synthesis, structural characterization, molecular docking studies and comparison of experimental and computational results. *Journal of Molecular Structure*, 2016; 15, 1110: 102-13.

29. Wei Z, Zhang Q, Tang M, Zhang S, Zhang Q. Diversity-oriented synthesis of 1, 2, 4-triazols, 1, 3, 4-thiadiazols, and 1, 3, 4-selenadiazoles from N-tosylhydrazones. *Organic Letters*, 2021; 14, 23(11): 4436-40.

30. Bhinge SD, Chature V, Sonawane LV. Synthesis of some novel 1, 3, 4-thiadiazole derivatives and biological screening for anti-microbial, antifungal and anthelmintic activity. *Pharmaceutical Chemistry Journal*, 2015; 49(6): 367-72.

31. Ruan X, Zhang C, Jiang S, Guo T, Xia R, Chen Y, Tang X, Xue W. Design, synthesis, and biological activity of novel myricetin derivatives containing amide, thioether, and 1, 3, 4-thiadiazole moieties. *Molecules*, 2018; 29, 23(12): 3132.

32. Zheng KB, He J, Zhang J. Synthesis and antitumor activity of N1-acetylamino-(5-alkyl/aryl-1, 3, 4-thiadiazole-2-yl)-5-fluorouracil derivatives. *Chinese Chemical Letters*, 2008; 1, 19(11): 1281-4.

33. Nakai R, Iida SI, Takahashi T, Tsujita T, Okamoto S, Takada C, Akasaka K, Ichikawa S, Ishida H, Kusaka H, Akinaga S. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. *Cancer research*, 2009; 1, 69(9): 3901-9.

34. Marganakop SB, Kamble RR, Taj T, Kariduraganvar MY. An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1, 3, 4-thiadiazole as anticancer and anti-tubercular agents. *Medicinal chemistry research*, 2012; 21: 185-91.

35. Sun J, Yang YS, Li W, Zhang YB, Wang XL, Tang JF, Zhu HL. Synthesis, biological evaluation and molecular docking studies of 1, 3, 4-thiadiazole derivatives containing 1, 4-benzodioxan as potential antitumor agents. *Bioorganic & medicinal chemistry letters*, 2011; 15, 21(20): 6116-21.

36. Yang XH, Xiang L, Li X, Zhao TT, Zhang H, Zhou WP, Wang XM, Gong HB, Zhu HL. Synthesis, biological evaluation, and molecular docking studies of 1, 3, 4-thiadiazol-2-amide derivatives as novel anticancer agents. *Bioorganic & medicinal chemistry*, 2012; 1, 20(9): 2789-95.

37. Guan P, Sun FE, Hou X, Wang F, Yi F, Xu W, Fang H. Design, synthesis and preliminary bioactivity studies of 1, 3, 4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors. *Bioorganic & medicinal chemistry*, 2012; 15, 20(12): 3865-72.

38. Aliabadi A, Mohammadi-Farani A, Hosseinzadeh Z, Nadri H, Moradi A, Ahmadi F. Phthalimide analogs as probable 15-lipoxygenase-1 inhibitors: synthesis, biological evaluation and docking studies. *DARU Journal of Pharmaceutical Sciences*, 2015; 23: 1-8.

39. Li YJ, Qin YJ, Makawana JA, Wang YT, Zhang YQ, Zhang YL, Yang MR, Jiang AQ, Zhu HL. Synthesis, biological evaluation and molecular modeling of 1, 3, 4-thiadiazol-2-amide derivatives as novel antitubulin agents. *Bioorganic & Medicinal Chemistry*, 2014; 1, 22(15): 4312-22.

40. Almasirad A, Firoozpour L, Nejati M, Edraki N, Firuzi O, Khoshneviszadeh M, Mahdavi M, Moghimi S, Safavi M, Shafiee A, Foroumadi A. Design, synthesis, and biological evaluation of new series of 2-amido-1, 3, 4-thiadiazole derivatives as cytotoxic agents. *Zeitschrift für Naturforschung B*, 2016; 1, 71(3): 205-10.

41. Vudhgiri S, Koude D, Veeragoni DK, Misra S, Prasad RB, Jala RC. Synthesis and biological evaluation of 5-fatty-acylamido-1, 3, 4-thiadiazole-2-thioglycosides. *Bioorganic & Medicinal Chemistry Letters*, 2017; 1, 27(15): 3370-3.

42. Sridhar G, Palle S, Vantikommu J, Gangarapu K. Design, synthesis, and biological evaluation of amide derivatives of imidazo [2, 1-b][1, 3, 4]thiadiazole as anticancer agents. *Synthetic Communications*, 2020; 1, 50(21): 3221-33.

43. Çevik UA, Osmaniye D, Levent S, Sağlık BN, Çavuşoğlu BK, Karaduman AB, Özkar Y, Kaplancikli ZA. Synthesis and biological evaluation of novel 1, 3, 4-thiadiazole derivatives as possible anticancer agents. *Acta Pharmaceutica*, 2020; 31, 70(4): 499-513.

44. Jiaoli M, Penghu G, Jing L, Xincheng L, Huicheng C. Synthesis and Antitumor Activity of Amide Derivatives Containing 1, 3, 4-Thiadiazole and Pyrazole Moieties. *Chinese Journal of Organic Chemistry*, 2021; 25, 41(8): 3214.

45. Hekal MH, Farag PS, Hemdan MM, El-Sayed AA, Hassaballah AI, El-Sayed WM. New 1, 3, 4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. *RSC advances*, 2023; 13(23): 15810-25.

46. Kirkpatrick JL, inventor; Varian Associates, assignee. United States patent US, 1978; 4, 097: 263.

47. Doyle WC Jr, Hedrich LW, inventors; Wilhelm Hedrich Vakuumanlagen GmbH & Co. KG, assignee. Canada patent CA, 1983; 1, 151: 179.

48. Steven R. Turner, Suvit Thaisrivongs. World Intellectual Property Organization patent, WO1999047507A2, 1999.

49. Cebalo T, inventor. United States patent US, 1978; 4, 092: 148.

50. Pottayil Govindan Nair Sasikumar, Muralidhara Ramachandra, Seetharamaiah Setty Sudarshan Naremaddepalli. World Intellectual Property Organization patent, WO2015033301A1, 2015.

51. Natalia Alekseevna Pulina, Vyacheslav Yurievich Kozhukhar, Anastasia Ivanovna. Russian patent, RU2549572C2, 2015.

52. Liu Xinghai, Weng Jianquan, Tan Chengxia. China Patent, CN103030606A, 2013.

53. Li Wan, Li Shengnan, Yan Kecheng, Zhu Huajie. China Patent, CN111747946A, 2020.
54. Wang Meiyi, Peng Yaqi, Wang Sanyan. China Patent, CN114507194A, 2022.
55. Xue Wei; Zhang Xian; Zhu Xuesong; Wang Zhongbo. China Patent, CN104086508B, 2016.
56. Xue Wei; Zhang Xian; Zhu Xuesong; Wang Zhongbo. China Patent, CN104086508A, 2014.
57. Liu Weiwei, Cao Liangong, Wang Youxian, Liu Shuhao, Shao Zhongbo. China Patent, CN112480031B, 2022.
58. Liu Aiqin; Qin Sanhai; Yu Shanghai; Sun Jingyong; Wu Zhongyu. China Patent, CN103864776A, 2014.
59. Parasrampuria J. Acetazolamide. In *Analytical Profiles of Drug Substances and Excipients*, 1993; 1, 22: 1-32. Academic Press.
60. Shukralla AA, Dolan E, Delanty N. Acetazolamide: Old drug, new evidence?. *Epilepsia Open*, 2022; 7(3): 378-92.
61. Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. *European Journal of Medicinal Chemistry*, 2021; 1, 209: 112923.
62. Zhou L, Yang X, Ji Y, Wei J. Sulfate radical-based oxidation of the antibiotics sulfamethoxazole, sulfisoxazole, sulfathiazole, and sulfamethizole: the role of five-membered heterocyclic rings. *Science of the Total Environment*, 2019; 20, 692: 201-8.
63. Jennings FW, Chauvire G, Viode C, Murray M. Topical chemotherapy for experimental African trypanosomiasis with cerebral involvement: the use of melarsoprol combined with the 5-nitroimidazole, megazol. *Tropical Medicine & International Health*, 1996; 1(3): 363-6.
64. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, MacKinnon AL. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. *Molecular cancer therapeutics*, 2014; 1, 13(4): 890-901.