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INTRODUCTION 

The process of drug development is inherently lengthy, 

expensive, and high-risk, often taking over a decade and 

costing billions of dollars to bring a single new 

therapeutic agent from the laboratory bench to the patient 

bedside.
[1] 

Despite advances in biotechnology and 

computational chemistry, traditional drug discovery 

pipelines remain constrained by high attrition rates, 

complex biological interactions, and the need for 

extensive preclinical and clinical testing. Simultaneously, 

the biomedical sciences are generating vast quantities of 

data through high-throughput techniques in genomics, 

proteomics, transcriptomics, and chemical screening. 

This deluge of information presents an unprecedented 

opportunity to accelerate drug discovery but only if it can 

be meaningfully interpreted and leveraged.
[2] 

In this context, Artificial Intelligence (AI) and machine 

learning algorithms have emerged as powerful tools to 

extract patterns, predict outcomes, and automate 

decision-making in pharmacology. AI-driven approaches 

are now being integrated into several stages of the drug 

development lifecycle, including target identification, 

lead optimization, preclinical testing, and post-marketing 

surveillance, with the goal of improving efficiency, 

reducing cost, and enhancing predictive accuracy.
[3]

 This 

review focuses on three pivotal AI applications in 

pharmacology: virtual screening for identifying potential 

drug candidates, quantitative structure–activity 

relationship (QSAR) modelling for predicting molecular 

activity, and AI-powered pharmacovigilance for real-

time drug safety monitoring. 
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ABSTRACT 
Drug development has long been a slow, expensive, and high-risk journey, but Artificial Intelligence (AI) is rapidly 

changing that narrative. This review explores how AI is reshaping pharmacology by making the process faster, 

smarter, and more personalized. From identifying potential drug candidates through advanced virtual screening 

tools like AtomNet and DeepDock, to improving molecular activity predictions with machine learning-driven 

QSAR models, AI is enhancing key stages of discovery. It's also proving valuable in drug repurposing—uncovering 

new uses for existing drugs using data mining, natural language processing, and network analysis, as seen in 

breakthroughs like baricitinib for COVID-19 and metformin for Alzheimer’s. Beyond development, AI is 

improving drug safety through real-time pharmacovigilance, detecting adverse effects from sources like electronic 

health records and social media. Still, challenges such as opaque ―black box‖ models, biased data, and regulatory 

uncertainty remain. Even so, innovations like explainable AI and digital twin technology are paving the way for a 

more transparent, efficient, and individualized approach to medicine. 
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AI IN VIRTUAL SCREENING 

Virtual screening is a computational technique used to 

evaluate large chemical libraries in order to identify 

compounds with a high likelihood of binding to a 

specific biological target. Traditionally, this process has 

relied on molecular docking methods and scoring 

functions, which attempt to estimate the binding affinity 

between a ligand and a target protein based on physical 

and chemical principles. However, these conventional 

approaches often struggle with limited accuracy and 

scalability.
[4]

 In recent years, Artificial Intelligence (AI), 

particularly machine learning and deep learning, has 

significantly enhanced virtual screening by enabling 

models to learn complex, non-linear relationships from 

vast chemical and biological datasets. 

 

Notable advancements in this domain include AtomNet, 

one of the first deep learning platforms to apply 

convolutional neural networks (CNNs) for structure-

based drug screening, allowing the system to model 

spatial features of molecular interactions with high 

precision.
[5]

 Another example is DeepDock, which 

integrates traditional docking simulations with machine 

learning-based binding affinity predictions, improving 

the identification of active compounds. Open-source 

platforms such as DeepChem and Chemprop further 

democratize access to machine learning models for 

chemoinformatics tasks by providing user-friendly 

frameworks to train predictive models on molecular 

descriptors and graph-based features.
[6,7] 

 

A prominent application of these technologies is 

Atomwise’s AI-driven screening platform, which 

successfully identified potential inhibitors for the Ebola 

virus in under 24 hours an achievement that would 

typically take weeks using conventional methods.
[8] 

Despite these successes, AI-based virtual screening still 

faces critical challenges, including overfitting to training 

data, poor generalizability to novel chemical scaffolds, 

and the dependency on high-quality, annotated datasets 

to ensure robust and transferable predictions.
[9] 

 

QSAR MODELS IN PHARMACOLOGY 

Quantitative Structure–Activity Relationship (QSAR) 

modeling is a cornerstone of computational drug 

discovery, enabling the prediction of a compound’s 

biological activity based on its chemical structure. 

Traditionally reliant on linear regression and other 

statistical approaches, QSAR models have been 

significantly enhanced through the integration of 

Artificial Intelligence (AI), particularly machine learning 

(ML) methods, which are capable of capturing non-linear 

relationships and managing high-dimensional datasets 

with improved predictive performance.
[10] 

 

Modern QSAR modelling frequently employs a variety 

of ML techniques, including Support Vector Machines 

(SVM), Random Forests (RF), Artificial Neural 

Networks (ANN), and more recently, Graph Neural 

Networks (GNNs), which operate directly on molecular 

graph representations to capture structural features more 

effectively.
[9,11]

 These approaches have proven 

particularly valuable in ADMET prediction assessing 

absorption, distribution, metabolism, excretion, and 

toxicity profiles as well as in toxicological screening, 

which is critical during early-phase drug development to 

reduce failure rates in later clinical stages. 

 

Several platforms have emerged to support AI-driven 

QSAR modelling, including open-source tools such as 

DeepChem, workflow-based systems like KNIME, and 

commercial software such as AutoQSAR by 

Schrödinger, which automates the model-building 

process.
[6,12]

 A notable case study demonstrated the 

application of deep learning QSAR models to the 

identification of novel antimalarial compounds, 

achieving greater predictive accuracy than traditional 

linear models and expediting lead prioritization.
[13] 

 

AI APPROACHES TO DRUG REPURPOSING 

Artificial Intelligence (AI) has become an essential 

component in modern drug repurposing strategies, 

offering data-driven methodologies that accelerate the 

identification of new therapeutic uses for existing drugs. 

Among these, machine learning (ML) and deep learning 

(DL) models both supervised and unsupervised play a 

crucial role in uncovering latent patterns within large-

scale biomedical datasets. These models are employed to 

predict disease–drug associations, often by learning from 

molecular, phenotypic, and clinical features.
[14]

 

Supervised models leverage labeled data to train 

algorithms that can predict repurposing candidates, while 

unsupervised models cluster drugs or diseases based on 

similarity metrics to reveal novel associations.
[15] 

 

Natural Language Processing (NLP) represents another 

pivotal AI approach, allowing automated extraction of 

relevant information from vast amounts of unstructured 

textual data, such as scientific literature, electronic health 

records (EHRs), and clinical trial repositories. By using 

NLP techniques, researchers can mine co-occurrence 

patterns, adverse event mentions, and mechanistic 

insights that may not be readily accessible through 

traditional curation.
[16] 

 

Additionally, network-based approaches have gained 

prominence in drug repurposing. These methods 

construct and analyze disease-gene-drug interaction 

networks, often represented as knowledge graphs 

integrating heterogeneous biomedical data. Publicly 

available databases such as DrugBank, the Comparative 

Toxicogenomics Database (CTD), and PubChem provide 

structured information that can be leveraged to model the 

complex relationships among biological entities and 

pharmacological agents.
[17,18] 

These graph-based 

frameworks enable AI systems to navigate intricate 

biological systems and identify repositioning candidates 

with a mechanistic basis. 
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CASE STUDIES 

Artificial Intelligence (AI) has played a pivotal role in 

accelerating drug repurposing, offering a cost-effective 

and time-efficient strategy to identify new therapeutic 

uses for existing drugs. One prominent example emerged 

during the COVID-19 pandemic, where the AI platform 

BenevolentAI identified baricitinib a Janus kinase 

(JAK) inhibitor as a potential therapeutic candidate due 

to its dual anti-inflammatory and antiviral properties.
[19]

 

This prediction was rapidly supported by clinical trials 

demonstrating its efficacy in reducing disease severity 

when used in combination with remdesivir, ultimately 

contributing to its emergency use authorization by 

regulatory agencies.
[20] 

 

In oncology, AI-driven pathway analysis and systems 

pharmacology approaches have facilitated the 

repositioning of thalidomide, a drug once withdrawn 

due to teratogenic effects. By uncovering its 

immunomodulatory mechanisms, particularly in the 

tumor microenvironment, researchers successfully 

repurposed thalidomide for multiple myeloma, leading 

to the development of safer and more potent analogs 

such as lenalidomide and pomalidomide collectively 

known as immunomodulatory imide drugs (IMiDs).
[21,22] 

 

In the field of neurology, AI-based network 

pharmacology has been utilized to investigate the 

potential of metformin, a common anti-diabetic agent, in 

treating Alzheimer’s disease. By integrating multi-

omics data, AI models revealed overlapping pathways 

involving aging, neuroinflammation, and insulin 

signalling, prompting clinical interest in metformin’s 

neuroprotective effects. Multiple clinical trials are 

currently underway to assess its efficacy in delaying 

cognitive decline.
[23,24] 

 

For rare diseases, AI combined with systems biology 

modelling has enabled the repositioning of cysteamine, 

traditionally used in cystinosis, as a candidate treatment 

for Batten disease a rare, fatal paediatric 

neurodegenerative disorder. Through analysis of 

molecular networks and neuroprotective pathways, 

cysteamine was identified as a modulator of lysosomal 

function and neuronal survival, leading to preclinical 

validation and investigational use in this new context.
[25] 

 

AI-POWERED PHARMACOVIGILANCE 

Pharmacovigilance, the science of monitoring and 

evaluating the safety of pharmaceutical products after 

they have entered the market, plays a crucial role in 

identifying adverse drug reactions (ADRs) that may not 

have been apparent during clinical trials. In recent years, 

Artificial Intelligence (AI) particularly Natural Language 

Processing (NLP) has increasingly been applied to 

automate the extraction of ADRs from diverse real-world 

data sources, including electronic health records (EHRs), 

clinical notes, and user-generated content on social 

media platforms such as Twitter and Reddit.
[26,27] 

 

AI-powered systems are capable of detecting subtle 

patterns and signals in large volumes of unstructured 

text, enabling earlier identification of potential safety 

concerns compared to conventional manual review or 

rule-based systems. One such application is IBM Watson 

for Drug Safety, which utilizes NLP and machine 

learning techniques to not only detect ADRs in near real-

time but also classify their severity using AI-based 

scoring frameworks.
[28]

 The benefits of integrating AI 

into pharmacovigilance include real-time signal 

detection, scalability across global datasets, and 

enhanced accuracy in identifying safety signals from 

noisy, heterogeneous sources. 

 

However, several challenges remain. These include 

regulatory and ethical concerns, particularly around data 

privacy, as well as the difficulty of achieving the right 

balance between signal sensitivity and specificity to 

avoid both missed risks and false positives.
[29]

 Despite 

these hurdles, AI continues to offer transformative 

potential in making pharmacovigilance more proactive, 

data-driven, and globally responsive. 

 

CHALLENGES AND ETHICAL 

CONSIDERATIONS 

Despite the promising applications of Artificial 

Intelligence (AI) in drug discovery, several critical 

limitations hinder its widespread adoption and regulatory 

integration. One prominent challenge is the lack of 

interpretability associated with many deep learning 

models, often referred to as ―black box‖ systems, 

wherein the rationale behind a prediction or decision is 

not readily transparent to users or regulators.
[30] 

This 

opacity complicates the validation and trustworthiness of 

AI-generated outputs, particularly in high-stakes settings 

such as drug development. 

 

Another major concern is data bias. AI models trained on 

non-representative or historically biased datasets may 

inadvertently propagate existing disparities in healthcare 

outcomes, such as underrepresentation of certain 

populations in clinical data.
[31]

 Furthermore, the absence 

of standardized validation metrics across the industry 

impedes reliable benchmarking and comparison of AI 

models, making it difficult to assess their real-world 

utility and reproducibility.
[32] 

 

Lastly, there are regulatory constraints, as current 

guidelines provided by agencies such as the U.S. Food 

and Drug Administration (FDA) and the European 

Medicines Agency (EMA) for AI-driven drug discovery 

tools remain limited and underdeveloped. This regulatory 

ambiguity creates uncertainty for developers and hinders 

the formal approval and deployment of AI-enabled 

platforms in clinical and preclinical settings.
[33] 

 

FUTURE PERSPECTIVES 

The integration of Artificial Intelligence (AI) with high-

dimensional omics data including genomics, proteomics, 

and metabolomics as well as real-world evidence (RWE) 



www.ejpmr.com        │        Vol 12, Issue 7, 2025.         │        ISO 9001:2015 Certified Journal         │ 

 

 

Rovita et al.                                                                     European Journal of Pharmaceutical and Medical Research 

 

 

 

63 

and emerging technologies such as digital twins, is 

poised to fundamentally transform the landscape of 

personalized medicine. These AI-driven approaches 

enable the modelling of individual biological variability 

and environmental exposures, thus facilitating the 

development of highly tailored therapeutic 

interventions.
[34]

 Digital twins, which are virtual replicas 

of patients constructed from real-time clinical and 

molecular data, further enhance predictive simulations of 

disease progression and treatment outcomes.
[35] 

 

As the field advances, the emergence of explainable AI 

(XAI) is expected to address one of the core limitations 

of traditional black-box models—namely, the lack of 

interpretability. By improving transparency, XAI fosters 

greater trust and accountability in AI-driven medical 

decision-making, which is essential for both clinical 

adoption and ethical deployment.
[36]

 In parallel, 

regulatory bodies such as the U.S. Food and Drug 

Administration (FDA) and the European Medicines 

Agency (EMA) are actively exploring and establishing 

guidance frameworks to assess, validate, and monitor AI-

based tools in healthcare, signalling a gradual but 

essential shift toward regulatory readiness for AI-

integrated personalized medicine.
[33,37] 

 

CONCLUSION 

Artificial Intelligence (AI) has moved beyond being just 

a helpful tool it’s now at the heart of modern 

pharmacology. By making drug discovery faster, more 

affordable, and more precise, AI is reshaping how we 

find and monitor treatments. It can sift through enormous 

amounts of data to spot patterns that humans might miss, 

opening up new possibilities for targeted therapies and 

real-time safety monitoring. But to truly unlock its 

potential, we need to tackle some important hurdles. 

These include making AI systems more transparent and 

easier to understand, ensuring the data they’re trained on 

is fair and representative, and building clearer regulatory 

paths to safely bring these tools into everyday use. If we 

get these parts right, AI could help create a future where 

drug development is not only more efficient, but also 

more personalized, ethical, and responsive to patient 

needs. 
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