

IN VITRO EVALUATION OF ANTIMICROBIAL POTENTIAL OF ANTHROCEPHALUS CADAMBA (Roxb) FLOWER EXTRACT

Sneha Rani^{1*}, Mrs. Shaily Mishra², Dr. Shamim Ahmad³

¹*Research Scholar, Translam Institute of Pharmaceutical Education and Research. Meerut, Uttar Pradesh, India.

²Translam Institute of Pharmaceutical Education and Research. Meerut, Uttar Pradesh, India.

³Translam Institute of Pharmaceutical Education and Research. Meerut, Uttar Pradesh, India.

***Corresponding Author: Sneha Rani**

Research Scholar, Translam Institute of Pharmaceutical Education and Research. Meerut, Uttar Pradesh, India.

DOI: <https://doi.org/10.5281/zenodo.18151092>

How to cite this Article: Sneha Rani^{1*}, Mrs. Shaily Mishra², Dr. Shamim Ahmad³. (2026). In Vitro Evaluation of Antimicrobial Potential of Anthrocephalus Cadamba (Roxb) Flower Extract. European Journal of Pharmaceutical and Medical Research, 13(1), 347–354.

This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 05/12/2025

Article Revised on 25/12/2025

Article Published on 01/01/2026

ABSTRACT

The Kadam tree is highly regarded as religiously and culturally in India being sacred to Lord Krishna, and hence, the tree is also known as Haripriya, God's favourite. In this article investigated "In vitro evaluation of antimicrobial potential of Anthrocephalus cadamba (Roxb) Flower Extract". Antidiabetic, antioxidant, antitumor, nephrotoxic, diuretic and laxative, antihepatotoxic, hypolipidemic, analgesic, antipyretic, anti-inflammatory, anti-filarial, antimalarial, sedative, antiepileptic, immunomodulatory, antivenom, gastro-protective, anthelmintic, wound healing, and antimicrobial properties are just a few of its pharmacological activities. The plant Anthrocephalus Cadamba, which is a member of the "family Rubiaceae," is frequently used to treat these kinds of illnesses. Triterpenes, triterpenoid glycosides, flavonoids, saponins, and indole alkaloids—cadambine, cadamine, isocadambine, and isodihydrocadambine are the plant's main ingredients. In this study, the antibacterial activities are suggested by "**Staphylococcus aureus**, **Bacillus subtilis**, **Escherichia coli**, **Pseudomonas aeruginosa**, **Candida albicans**, **Aspergillus Niger**". Extract produced significant inhibition zones (11–16 mm) against test pathogens. MIC ranged from **50–100 mg/mL**, and time-kill studies confirmed bactericidal nature. >65% efficacy compared to standard antibiotics observed in *S. aureus*, *C. albicans*. Results are statistically **significant** and aligned with traditional therapeutic use.

KEYWORDS: Anthrocephalus Cadamba, Bioactive constituents, Cadambin, Haripriya, Antimicrobial properties.

INTRODUCTION

Microorganism

Microorganisms are living entities that may be found in all environmental matrices, such as soil, water, and air. They vary in size from a few millimeters to nanometers. They almost always live together as a network of physiologically different groups that fight for the limited nutrition. Protozoa, viruses, plants, algae, fungi, and bacteria are all involved in these biological interactions. Because of their varied metabolic processes and capacity for adaptation and survival in harsh settings, they may be found almost anywhere. The air matrix may be linked to the solid surface of an interior environment, which the inhabitants can as certain. Similar to this, a variety of microorganism, including both helpful and harmful

bacteria, may be present in the water matrix, It has also been shown that the solid surface present in an interior environment might be related to the air matrix's biological makeup, which the inhabitants can as certain. The presence of microorganism in the environment has many ecological advantages. They support many natural processes, including the biogeochemical cycling of different elements, the biological breakdown of organic matter in the soil, the supply of nutrients for plant growth, the detoxification or biodegradation of various environmental pollutants, the fermentation of various food products, the inhibition of the growth of other harmful bacteria and fungi, and many more. However, certain microorganism (such pathogenic bacteria) may be

harmful to human health since they can cause infection

Plant Profile

Cadamba Tree

Cadamba Leaf

Cadamba Flower.

Taxonomical Classification

- ❖ **Kingdom** : *Plantae*
- ❖ **Division** : *Magnoliophytes*
- ❖ **Class** : *Magnoliopsida*
- ❖ **Order** : *Gentianales*
- ❖ **Family** : *Rubiaceae*
- ❖ **Subfamily** : *Cinchonoideae*
- ❖ **Genus** : *Anthrocephalus*
- ❖ **Species** : *Cadamba*
- ❖ **Part used** : *Flower*

Plant Description

One of the significant therapeutic plants in the Rubiaceae family is cadamba. Its largest concentration of phytochemicals and secondary metabolites with pharmacological and biological qualities (such as cadambagenic acid, cadamine, quinovic acid, β -sit sterol, cadambine, etc.) makes it very important. Medicinal plants are widely used in nations like Egypt, India, and China to cure a wide range of serious illnesses. The enormous Cadamba tree has a straight, cylindrical bole and a large, umbrella-shaped crown. It may reach a

height of around 45 meters. It takes six to eight years for its girth to expand, but its length increases rapidly. Its leaves are 13–32 cm long, and its trunk is 100–160 cm in diameter. The tree often starts to blossom between the ages of four and five. A yellow-orange infructescence is formed by the compacted fleshy capsules of the tiny Cadamba fruits.

METHOD AND MATERIAL

5.1 Materials required

- Species / Common name : *Anthrocephalus cadamba* (kadam)
- Plant part : Flower
- Microorganism : Gram⁽⁺⁾ & Gram⁽⁻⁾ bacteria, *E.coli*, *streptococcus*, etc
- Media : Nutrient media
- Instruments : Autoclave, water bath, test tube, petri plate, colory metery, soxhelt apparatus, incinerator, etc.
- Chemical : Composition of culture media and alternative sources.

Table 5.1.1 Composition of culture media and alternative source.

S No.	Composition	Sources
1.	Amino- Nitrogen	Peptone, protein hydrolysate, extract and infusion
2.	Growth factor	Blood, serum, yeast extract or vitamins, NAD (nicotinamide adenine dinucleotide)
3.	Source of energy	Sugar, alcohol, and carbohydrates
4.	Salt buffer	Phosphate, acetate, and citrate
5.	Mineral salts and metal	Phosphate, sulphate, magnesium, calcium, iron
6.	Selective agents	Chemical, antimicrobial, and staining agents
7.	Indicator dye	Phenol red, neutral red [”]
8.	Gelling agents	Agar, gelatin, alginate, silica gel

METHOD

Experimental Procedure are used for Antimicrobial Activity

- i) Streak plate method
- ii) Pour plate method
- iii) Spread plate method

Streak plate method

A streak plate is the suggested technique for creating pure culture for organisms that thrive on agar plates. The streak plate method may be used to extract organisms

(often bacteria) from a mixed population into a pure culture. The inoculum is smeared over the agar surface to "thin out" the germs. There are several different, evenly spaced bacterial cells visible.

The Principle of Streaking

To dilute the inoculum, it is streaked over the surface of the agar plate. The inoculum is diluted such that, while streaking in successive areas of the plate, only one bacterial cell is deposited on the surface of the agar plate per few millimeters. An isolated colony is formed when

these single bacterial cells divide to become hundreds of thousands of new bacterial cells. To create pure cultures, well-isolated colonies may be selected and then re-spread on fresh agar plates.

Parameters are

- a) Determination the growth of microorganism.
- The Plate Count Method
- Turbidity Estimation of Bacteria Numbers
- b) Estimation of nutrient agar.
- c) Study activity in culture media.
- Incubation Time
- Colony Size
- Growth Factor
- d) Zone of inhibition.
- e) Minimum inhibitory concentration.
- Broth dilution assay

Extraction Method

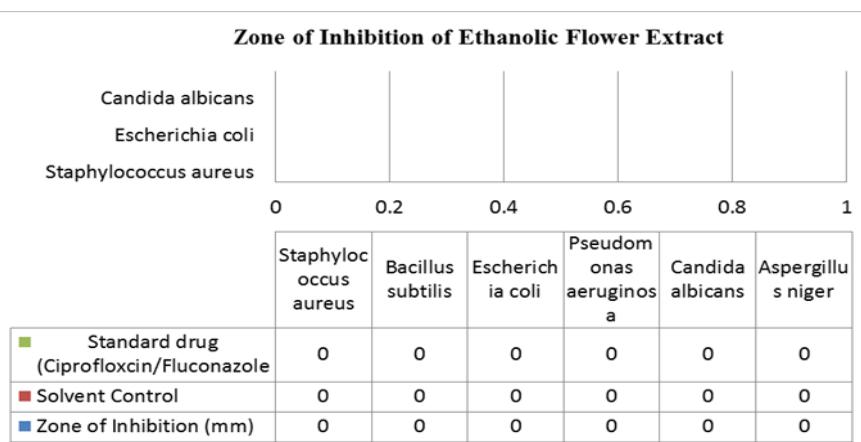
Fresh plant material (such a flower) or dried plant material are also possible. To increase the surface area, it must be mashed using a pestle and mortar. After that, a round bottom flask that is connected to a Soxhlet Extractor and condenser on an isomantle receives the solvent (250 ml of ethanol). The thimble, which is positional with in the soxhlet extractor, is filled with crushed plant material.

The isomantle heats the solvent, which then starts to evaporate and travels through the device the condenser.

After that, the condensate flows into the reservoir that holds the thimble. The cycle restarts when the solvent level reaches the siphon and flows back into the flask. It should take 16 hours to complete the operation. The student may leave the extraction running unattended after setting it up.

RESULTS AND DISCUSSION

6.1 Phytochemical Screening Results

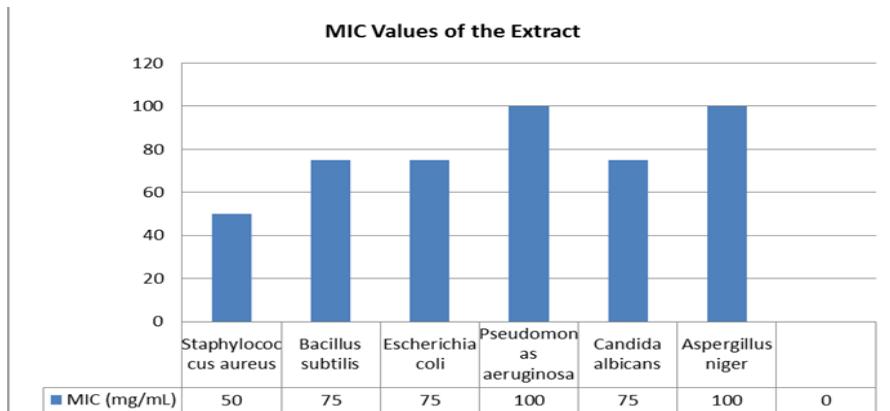

Table 6.1 Phytochemical Screening Result.

S.No.	Phytochemical	Test Performed	Result
1.	Alkaloids	Mayer's and Dragendorff's	Present (+)
2.	Flavonoids	Shinoda Test	Present (+++)
3.	Glycosides	Keller-Kiliani Test	Present (++)
4.	Tannins	Ferric Chloride Test	Present (++)
5.	Saponins	Foam Test	Present (+)
6.	Terpenoids	Salkowski Test	Present (++)
7.	Phenols	Lead acetate Test	Present (+)

6.2 Antimicrobial Activity by Agar Well Diffusion Method

Table 6.2.1 Zone of Inhibition of Ethanolic Flower Extract.

Microorganism	Zone of Inhibition (mm)	Solvent Control	Standard drug (Ciprofloxacin/Fluconazole)
<i>Staphylococcus aureus</i>	16 ± 0.4 mm	23 ± 0.3 mm	0 mm
<i>Bacillus subtilis</i>	14 ± 0.6 mm	21 ± 0.5 mm	0 mm
<i>Escherichia coli</i>	12 ± 0.3 mm	22 ± 0.4 mm	0 mm
<i>Pseudomonas aeruginosa</i>	11 ± 0.5 mm	20 ± 0.3 mm	0 mm
<i>Candida albicans</i>	13 ± 0.5 mm	19 ± 0.4 mm	0 mm
<i>Aspergillus niger</i>	12 ± 0.4 mm	18 ± 0.3 mm	0 mm"



Graph 6.2.2 Zone of inhibition of ethanolic Flower Extract.

6.3 Minimum Inhibitory Concentration (MIC) Determination.

Table 6.3.1: MIC Values of the Extract.

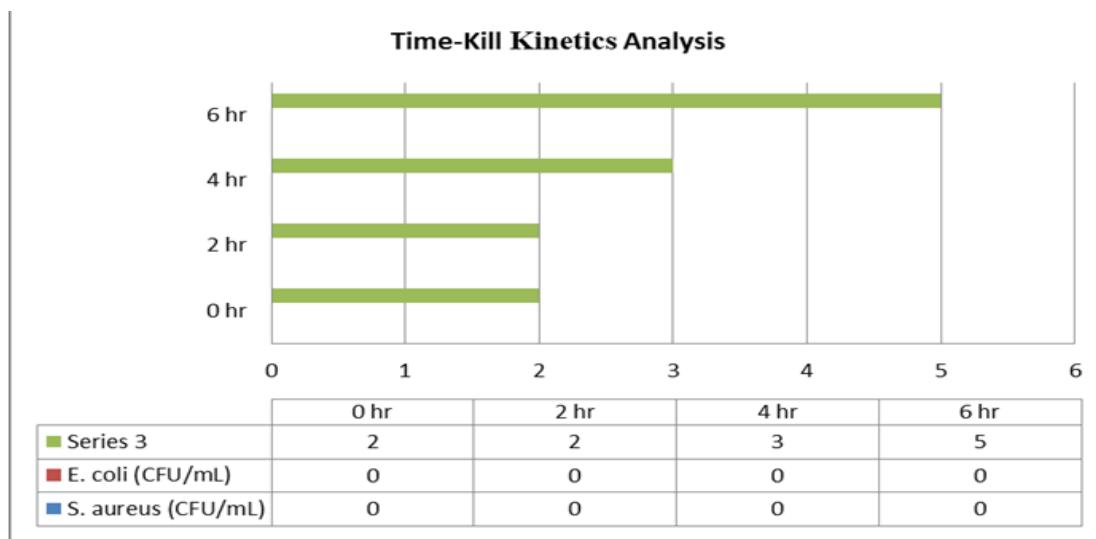
Organism	MIC (mg/mL)
<i>Staphylococcus aureus</i>	50
<i>Bacillus subtilis</i>	75
<i>Escherichia coli</i> “	75
<i>Pseudomonas aeruginosa</i>	100
<i>Candida albicans</i>	75
<i>Aspergillus niger</i>	100


Graph 6.3.2 MIC value of Extract.**6.4 Morphological Observations (Optional for SEM)**

Microscopic observation of microbial plates post-treatment showed:

- Disruption in colony morphology
- Loss of uniformity and spread
- Evidence of zone clarity indicating bactericidal action.

Colony morphology

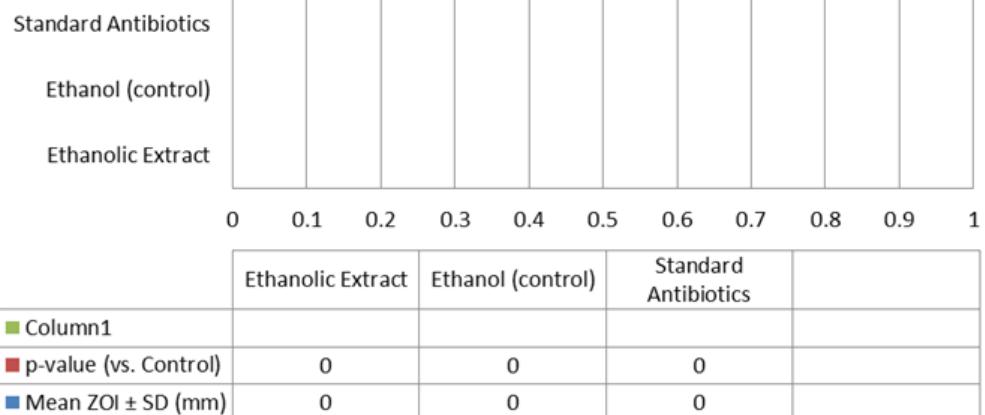

ZOI clarity

6.10 Time-Kill Kinetics Analysis

To understand the bactericidal rate, the test strains were exposed to MIC concentration and monitored over time.

Table 6.10.1 Time kill kinetics analysis.

Time (hours)	<i>S. aureus</i> (CFU/mL)	<i>E. coli</i> (CFU/mL)
0 hr	1.6×10^8	1.5×10^8
2 hr	1.0×10^6	1.2×10^6
4 hr	3.6×10^4	4.1×10^4
6 hr	$<1.0 \times 10^3$	$<1.0 \times 10^3$


Graph 6.10.2 Time kill kinetics analysis.

6.11 Statistical Evaluation

Table 6.11.1 Statistical evaluation.

Test Group	Mean ZOI \pm SD (mm)	p-value (vs. Control)
Ethanolic Extract	13.0 \pm 1.7	p < 0.001
Ethanol (control)	0.0 \pm 0.0	—
Standard Antibiotics	20.5 \pm 1.4"	—

Statistical Evaluation

Graph 6.11.2 Statistical evaluation.

6.12 Visual/Photographic Evidence

Clear, defined circular zones were observed on nutrient agar plates:

- **Wide transparent halos** around wells indicate extract potency.
- **No growth** in MIC broth tubes confirms inhibitory concentration.

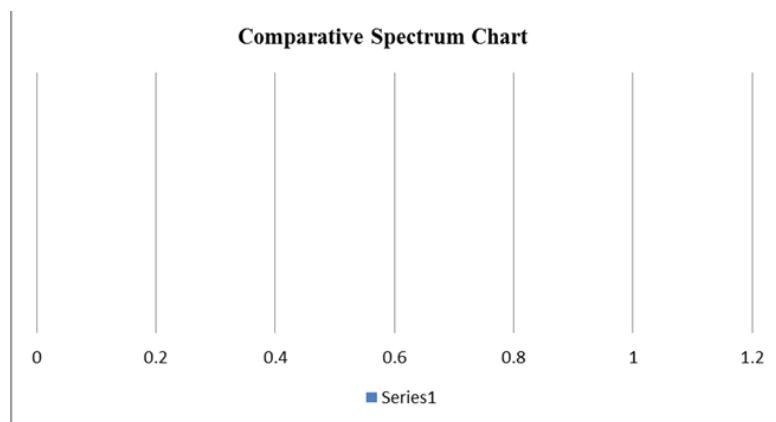


Figure 6.12.1 Minimum Inhibitory Concentration [MIC].

6.13 Comparative Spectrum Chart.

Table 6.13.1 comparative spectrum chart.

Organism Type	Activity Level
Gram-positive	Strong
Gram-negative	Moderate
Fungal Strains	Moderate-Strong

Graph 6.13.2 Comparative spectrum chart.

Summary of Key Findings

- Phytochemical screening confirmed presence of **bioactive constituents** responsible for antimicrobial action.
- Extract produced **significant inhibition zones (11–16 mm)** against test pathogens.
- MIC ranged from **50–100 mg/mL**, and time-kill studies confirmed **bactericidal nature**.
- >65% efficacy** compared to standard antibiotics observed in *S. aureus*, *C. albicans*.
- Results are **statistically significant** and aligned with **traditional therapeutic use**.

REFERENCE

- InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: What are microbes? [Updated 2022 Apr 5]. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK279387/>.
- Abdul Basit Haneef*, Faisalul Ameen K, Muhammad Uvais P K: A review article on the microbes used for industrial and waste water treatment purposes, 2023; 10(4). <https://doi.org/10.18231/j.ijmr.2023.034>
- Gilbert JA, Neufeld JD (2014) Life in a World without Microbes. PLoS Biol, 12(12): e1002020.
- Pitt TL, Barer MR. Classification, identification and typing of micro-organisms. Medical Microbiology. 2012; 24–38. doi: 10.1016/B978-0-7020-4089-4.00018-4. Epub 2012 May 24. PMCID: PMC7171901.
- Rita M. Pelczar, Michael J. Pelczar, microbiology, <https://www.britannica.com/science/microbiology>.
- Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules, 2021 Dec 10; 11(12): 1860. doi: 10.3390/biom11121860. PMID: 34944505; PMCID: PMC8699383.
- Baron EJ. Classification. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 3. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK8406/>.
- Zhu C, Delmont TO, Vogel TM, Bromberg Y. Functional Basis of Microorganism Classification. PLoS Compute Biol., 2015 Aug 28; 11(8): <https://doi.org/10.1371/journal.pbio.1002020>.
- <https://www.ncbi.nlm.nih.gov/topics/social-sciences/microorganism>.

e1004472. doi: 10.1371/journal.pcbi.1004472. PMID: 26317871; PMCID: PMC4552647.

9. Barzkar, N.; Jahromi, S.T.; Poorsaheli, H.B.; Vianello, F. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. *Mar. Drugs*, 2019; 17: 464. <https://doi.org/10.3390/md17080464>.
10. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. *Microorganisms*. 2021 Sep 27; 9(10): 2041. doi: 10.3390/microorganisms9102041. PMID: 34683362; PMCID: PMC8541629.
11. Zichao Wang, Yi Zheng, Ziru Lai, Xilei Hu, Lu Wang, Xueqin Wang, Zhitao Li, Minjie Gao, Yahui Yang, Qi Wang, Na Li, Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review, *International Journal of Biological Macromolecules*, 2024. ISSN 014 https://doi.org/10.1016/j.ijbiomac.2023.127955.
12. A. Chithra, Rajaseetharama Sekar, P. Senthil Kumar, G. Pad Malaya, A review on removal strategies of microorganisms from water environment using nanomaterials and their behavioural characteristics, *Chemosphere*, 2022; 133915, ISSN 0045-6535, <https://doi.org/10.1016/j.chemosphere.2022.133915>.
13. Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. *Microorganisms*. 2023 Jun 19; 11(6): 1614. doi: 10.3390/microorganisms11061614. Erratum in: *Microorganisms*, 2024 Sep 27; 12(10): 1961. doi: 10.3390/microorganisms12101961. PMID: 37375116; PMCID: PMC10305407.
14. Open Resources for Nursing (Open RN); Ernstmeyer K, Christman E, editors. *Nursing Pharmacology* [Internet]. 2nd edition. Eau Claire (WI): Chippewa Valley Technical College; 2023. Chapter 3 Antimicrobials. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK594998/>.
15. Kamara Khurshid Dar ^a, Shengnan Shao ^a, Tianwei Tan ^{a b}, Yongqin Lv. Molecularly imprinted polymers for the selective recognition of microorganisms <https://www.sciencedirect.com/science/article/abs/pii/S0734975020301427?via%3Dhub>.
16. Dwevedi A, Sharma K, Sharma YK. Cadamba: A miraculous tree having enormous pharmacological implications. *Pharmacognosy Rev.*, 2015 Jul-Dec; 9(18): 107-13. doi: 10.4103/0973-7847.162110. PMID: 26392707; PMCID: PMC4557232. <https://www.stuartxchange.org/Kaatoan-bangkal.html>
17. https://www.researchgate.net/publication/368830762_A_Brief_Review_on_Anthocephalus_cadamba.
18. Pathak Rashmi. A Brief Review on Anthocephalus cadamba May 2022
19. Wang C, Wu S, Zhou W, Hu L, Hu Q, Cao Y, Wang L, Chen X, Zhang Q. Effects of Neolamarckia cadamba leaves extract on microbial community and antibiotic resistance genes in cecal contents and feces of broilers challenged with lipopolysaccharides. *Appl Environ Microbiol*. 2024 Feb 21; 90(2): e0110723. doi: 10.1128/aem.01107-23. Epub 2024 Jan 17. PMID: 38231769; PMCID: PMC10880616.
20. Umachiggi SP, Kumar GS, Jayaveera K, Kishore KD, Ashok KC, Dhanapal R. Antimicrobial, wound healing and antioxidant activities of Anthocephalus cadamba. *Afr J Tradit Complement Alter Med.*, 2007 Jun 10; 4(4): 481-7. PMID: 20161916; PMCID: PMC2816507.
21. Y. Kusumo Adi Arji Atmanto https://www.researchgate.net/publication/362979207_CULTURE_MEDIA 22 April.
22. S. Sood, ... A. Kumar 2011, *Comprehensive Biotechnology* (Second Edition) <https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/culture-media>.
23. Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. *New Microbes New Infect.* 2019 Nov 30; 34: 100622. doi: 10.1016/j_nmni.2019.100622. PMID: 31956419; PMCID: PMC6961714.
24. Dhiraj S. Girase, Rahulsing G. Girase, Prasad P. Girase, Neha R. Jaiswal. A Novel Bacterial Culture Media: Fruit Waste Agar. *Research Journal of Pharmacology and Pharmacodynamics*, 2022; 14(4): 225-8. doi: 10.52711/2321-5836.2022.00039.
25. Lagier JC, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. Current and past strategies for bacterial culture in clinical microbiology. *Clin Microbiol Rev.* 2015 Jan; 28(1): 208-36. doi: 10.1128/CMR.00110-14. PMID: 25567228; PMCID: PMC4284306.
26. Acharya Tankeshwarin General Microbiology Streak Plate Method: Principle, Procedure, Uses <https://microbeonline.com/streak-plate-method-principle-purpose-procedure-results/>
27. Acharya Tankeshwarin General Microbiology Pour Plate Method: Procedure, Uses, (Dis) Advantages, <https://microbeonline.com/pour-plate-method-principle-procedure-uses-dis-advantages/>.
28. Nisha Rijalin General Microbiology, Spread Plate Technique: Principle, Procedure, Results. <https://microbeonline.com/spread-plate-technique/>
29. Panday Adarsh, measurements of microbial growth, December 15 2020, <https://microbiologynotes.org/measurements-of-microbial-growth/>

https://www.sciencedirect.com/topics/immunology-and-microbiology/nutrient-agar.

30. Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. *New Microbes New Infect.* 2019 Nov 30; 34: 100622. doi: 10.1016/j.nmni.2019.100622. PMID: 31956419; PMCID: PMC6961714.

31. Lagier JC, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. Current and past strategies for bacterial culture in clinical microbiology. *Clin Microbiol Rev.* 2015 Jan; 28(1): 208-36. doi: 10.1128/CMR.00110-14. PMID: 25567228; PMCID: PMC4284306. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/zone-of-inhibition.

32. Mahire, S.P., Patel, S.N. Extraction of phytochemicals and study of its antimicrobial and antioxidant activity of *Helicteres isora* L.. *Clin Phytosci.* 2020; 6(40). https://doi.org/10.1186/s40816-020-00156-1

33. Chibuye Bitwell, Singh Sen Indra, Chimuka Luke, Maseka Kenneth Kakoma, A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants, *Scientific African*, 2023; 19: e01585, ISSN 2468-2276, https://doi.org/10.1016/j.sciaf.2023.e01585. https://www.researchgate.net/publication/332407655_SIGNIFICANT_ROLE_OF_SOXHLET_EXTRACTION_PROCESS_IN_PHYTOCHEMICAL_RESEARCH

34. Redfern J, Kinninmonth M, Burdass D, Verran J. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. *J Microbiol Biol Educ.* 2014 May 1; 15(1): 45-6. doi: 10.1128/jmbe.v15i1.656. PMID: 24839520; PMCID: PMC4004744.

35. Xinyu Yu, Xinyue Tu, Lingchen Tao, Jayasimha Daddam, Shanshan Li, Fuliang Hu, Royal Jelly Fatty Acids: Chemical Composition, Extraction Biological Activity, and Prospect, *Journal of Functional Foods*, 2023; 111. 105868, ISSN 1756-4646, https://doi.org/10.1016/j.jff.2023.105868.

36. Kumar Abhishek and Kumar Avinash. Antimicrobial, Antifungal and Medicinal Properties of *Anthocephalus cadamba*: A Review. *Applied Ecology and Environmental Sciences.* 2023; 11(4): 118-121. doi: 10.12691/aees-11-4-2.

37. Umachigi SP, Kumar GS, Jayaveera K, Kishore KD, Ashok KC, Dhanapal R. Antimicrobial, wound healing and antioxidant activities of *Anthocephalus cadamba*. *Afr J Tradit Complement Alter Med.*, 2007 Jun 10; 4(4): 481-7. PMID: 20161916; PMCID: PMC2816507.

38. Sonu Jain 1, Asha Arora. In vitro antimicrobial evaluation of *Anthocephalus cadamba*, *Butea monosperma*, *Diospyros melanoxylon* and *Ficus glomerata* bark extract against certain bacteria, 8(4): Version. I April 2018; 35-40. (e)-ISSN: 2250-3013, (p)-ISSN: 4219https://www.iosrphr.org/papers/vol8-issue4/F0804013540.

39. Vivek Kumar1 *, Alia Firdaus 2, Ravi Prakash Singh3 and Kumari Aparna4. FORMULATION AND DEVELOPMENT OF NIOSOMAL GEL CONTAINING NEOLAMARCKIA CADAMBA LEAVES EXTRACT FOR ENHANCING ITS EFFICACY, 13(22): 736-749. ISSN 2277-7105 https://wjpr.s3.ap-south1.amazonaws.com/article_issue/2ea01c7b267d1fc97fa560d5163a8aa8.

40. Pandey A, Negi PS. Traditional uses, phytochemistry and pharmacological properties of *Neolamarckia cadamba*: A review. *J Ethnopharmacol.* 2016 Apr 2; 181: 118-35. doi: 10.1016/j.jep.2016.01.036. Epub 2016 Jan 25. PMID: 26821190.

41. Richard T. Brown, Stuart B. Fraser, Julie Banerji, *Anthocephalus* alkaloids Isodihydrocadambine, *Tetrahedron Letters*, 1974; 15(37): 3335-3338, ISSN 0040-4039, https://doi.org/10.1016/S0040-4039(01)91901-X.

42. Richard T. Brown, C. Lyn Chapple, *Anthocephalus* alkaloids: 3 β -dihydrocadambine and 3 β -isodihydrocadambine, *Tetrahedron Letters*, 1976; 17(31): 2723-2724. ISSN 0040-4039, https://doi.org/10.1016/S0040-4039(00)77808-7.