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Abstract

We present INTELLECT-3, a 106B-parameter Mixture-of-Experts model (12B active)
trained with large-scale reinforcement learning on our end-to-end RL infrastructure stack.
INTELLECT-3 achieves state of the art performance for its size across math, code, science
and reasoning benchmarks, outperforming many larger frontier models. We open-source the
model together with the full infrastructure stack used to create it, including RL frameworks,
complete recipe, and a wide collection of environments, built with the verifiers library,
for training and evaluation from our Environments Hub community platform.

Built for this effort, we introduce prime-rl, an open framework for large-scale asyn-
chronous reinforcement learning, which scales seamlessly from a single node to thousands
of GPUs, and is tailored for agentic RL with first-class support for multi-turn interactions
and tool use. Using this stack, we run both SFT and RL training on top of the GLM-4.5-
Air-Base model, scaling RL training up to 512 H200s with high training efficiency.
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Figure 1: INTELLECT-3 Evaluation Results
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1 Introduction

Scaling compute for training large language models (LLMs) with reinforcement learning with
verifiable rewards (RLVR) has emerged as the dominant paradigm for improving model performance
in post-training. Models such as OpenAl o3 [34]], Grok 4 [50], and DeepSeek R1 [8] demonstrate
that training models via RL for long-context reasoning and agentic tool use greatly enhances their
capabilities, making them more effective both for everyday and specialized tasks.

While the open-source ecosystem has been successful in producing strong open-weight models trained
with RL, the open-source infrastructure for the end-to-end RL pipeline, including training frameworks,
RL environments and evaluations, and stable training recipes, still has notable shortcomings compared
to proprietary pipelines inside frontier Al labs. For example, existing open-source frameworks are
often complex, monolithic, and designed without modularity in mind [43]]. This can make extensibility
difficult, inhibit broad adoption, slow down individual research projects, and lead to a fragmentation
of ecosystem artifacts.

In this report we present INTELLECT-3, a state-of-the-art model in its weight class built on top of the
GLM-4.5-Air base model [44]. Alongside the model, we share the complete training recipe, covering
everything from supervised fine-tuning on the initial base checkpoint to large-scale reinforcement
learning. We also introduce our training framework prime-rl, which is easy to use and hackable
yet performant and scalable enough to support state-of-the-art RL post-training. We highlight the
following features:

1. First-class support for OpenAl-compatible async inference, verifiers environments [5],
and a public Environments Hub to standardize agentic RL training and evaluation

2. Support for end-to-end post-training, including SFT and multi-turn agentic RL
3. Multi-node deployment with FSDP2 training and vLLM inference backend

4. Naturally asynchronous training for high-throughput including continuous batching and
in-flight weight updates [37]]

5. Modular and extensible by nature, enabling high research velocity

INTELLECT-3 fully trained end-to-end with prime-rl and our open-source infrastructure compo-
nents, outperforms existing open-source models in its size range across the board and even surpasses
frontier open models over 6x larger on reasoning and agentic benchmarks: It achieves scores of
90.8% and 88.0% on AIME 2024 and 2025 respectively, outperforming DeepSeek’s frontier models
and matching the performance of Z.ai’s latest next-generation model GLM-4.6 which has over 3 the
number of parameters. On coding benchmarks, INTELLECT-3 achieves 69.3% on LiveCodeBench
v6, outperforming Z.ai’s GLM-4.5-Air post-train by 8%.

We open-source INTELLECT-3P} our RL training framework prime-r1f| and all environments|[]
used for synthetic data generation, training, and evaluation.

The remainder of this report is organized as follows: Section 2] provides a detailed overview of the
end-to-end reinforcement learning infrastructure, including prime-rl, verifiers, the Environ-
ments Hub, sandbox code execution and compute orchestration. Section [3describes the concrete
INTELLECT-3 training run, covering the RL environments used for training and the results of both
the SFT and RL stages. Sectiond] presents the model’s evaluation results on reasoning and agentic
benchmarks. Finally, Section [5]concludes the report and outlines directions for future work.

2 Training Infrastructure

We introduce the following key training infrastructure components for the end-to-end training of
INTELLECT-3

* prime-rl: An asynchronous RL framework powering large-scale SFT and RL training of
Mixture-of-Experts models.

2@ huggingface.co/PrimeIntellect/INTELLECT-3
30 |github.com/PrimeIntellect-ai/prime-rl
‘Bhub.primeintellect.ai


https://huggingface.co/PrimeIntellect/INTELLECT-3
https://github.com/PrimeIntellect-ai/prime-rl
https://hub.primeintellect.ai

* Verifiers and the Environments Hub: A unified environment interface and ecosystem for
agentic RL.

* Prime Sandboxes: High-throughput, secure code execution for agentic coding environ-
ments.

2.1 prime-rl: A Framework for Asynchronous Reinforcement Learning at Scale

INTELLECT-3 was trained end-to-end with prime-rl, our production-scale post-training frame-
work. prime-rl provides native integration with verifiers environments, which power our entire
post-training stack from synthetic data generation, supervised fine-tuning, reinforcement learning,

to evaluations. Through its tight connection to the Environments Hub, the entire training stack can
seamlessly access a rapidly expanding ecosystem of training and eval environments.

2.1.1 Architecture

Three main abstractions facilitate RL training: the orchestrator, the trainer, and the inference service.
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Figure 2: Architecture. A RL training run involves the coordination of a ,
and an service. The FSDP trainer and vLLM inference run
disaggregated, and can be individually deployed across multiple nodes.

Orchestrator. The orchestrator is a lightweight CPU process that handles the core data flow
and scheduling logic, serving as an intermediary between the trainer and inference service with
bidirectional relays. In one direction, it collects rollouts from the inference server, assembles them
into packed batches, and dispatches them to the trainer; in the other direction, it relays updated model
weights from the trainer to the inference service. The orchestrator utilizes verifiers environments
to abstract multi-turn rollout generation and scoring, allowing any environment on the Environments
Hub to plug into the training loop.

Trainer. The trainer is responsible for producing an updated policy model given rollouts and
advantages. We use FSDP 2 [3] as the backend with compatibility for any HuggingFace (HF) model.
FSDP shards model parameters, gradients, and optimizer states, allowing training large models with
data parallelism and minimal GPU memory footprint. The trainer is inspired by torchtitan [22]
and relies on native PyTorch features to implement advanced parallelism techniques, such as tensor,
context, and expert parallelism, and leverages grouped matrix multiplication kernels for efficient
MOoE training.

Inference. The inference pool consists of standard OpenAl-compatible servers with a vLLM [20]
backend. The API specification is extended with custom endpoints to enable updating the server
with the latest policy: /update_weights is used to update the policy, and /reload_weights is
used to reset the weights to the base model in between experiments. We rely on vLLM’s optimized
kernels, parallelism strategies, and scheduling for fast rollout generation. Given the disaggregated
nature of the service architecture, it can be directly extended to include multiple engines with a shared
request pool, allowing operation across multiple clusters and straightforward integration of alternative
inference engines (e.g. SGLang [56]], Tokasaurus [[18]).



2.1.2 Asynchronous Off-Policy Training

In prime-rl, the trainer and inference run disaggregated, i.e. on a disjoint set of GPUs, to overlap
rollout generation and training.

At each training step, all artifacts are identified by the step count n. For the trainer, this is the gradients
gn and model weights 6,,, and for the inference service, rollouts (z,,, y,,). At step 0, the inference
service uses 6y (base model) to produce (xg, o). The trainer subsequently uses (zg, yo) to compute
go to finally update the model as 61 < 6y — go.

In synchronous on-policy training, the inference engine stalls after producing (xg, yo) because it
requires 0 to produce the next rollouts (x1, y; ). To prevent this, we allow off-policy training, which
means that the inference service can asynchronously generate rollouts from an old policy model. For
example, in one-step off-policy training, the inference service continues generating (x1,y;) from
6o, while the trainer is producing 6 in parallel. An example of such overlapped, asynchronous

computation is shown in
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Figure 3: Asynchronous Off-Policy Training. We show the execution graph of one-step off-policy
training in an idealized setting where the trainer step time equals the inference step time. At step n,
the inference engine uses a policy no older than 6,;,, (0,n—1)-

2.1.3 Continuous Batching & In-Flight Weight Updates

Generating rollouts which are many tens of thousands of tokens long quickly becomes a major
bottleneck in large-scale RL training. Traditional systems schedule n rollout requests and only release
a training batch once the slowest rollout has finished generation. However, this method is prone
to heavily under-utilize inference compute because less-than-optimal rollouts are being generated
concurrently as rollouts in the batch finish. This bottleneck becomes especially visible if there is high
variance in the length of the generated rollouts, as is typical for reasoning models in complex agentic
environments.

To make training viable, we implement continuous batching with in-flight policy weight updates,
as popularized by AReal [11] and PipelineRL [37]]. Two main asynchronous task loops on the
orchestrator achieve this.

In-Flight Weight Updates. The orchestrator continuously polls the trainer to update the inference
pool as soon as a new policy becomes available. Once this happens, the inference pool temporarily
interrupts generation to receive the updated weights from the trainer. Once the weight update is
complete, rollout generation continues with the updated weights. Thus, a single trajectory may be
generated by multiple policies. We control the maximum off-policyness by discarding rollouts which
are generated by more than max_off_policy_steps policies to prevent policy drift.

Continuous Batching. The orchestrator maintains a large pool of concurrent, asynchronous rollout
requests. Whenever a rollout group completes, its slot is immediately repopulated with a new request.
This keeps the pool saturated and ensures that a constant number of rollouts are in flight, thereby
sustaining peak inference throughput without waiting for synchronous batch boundaries.

Figure [] visualizes how rollout trajectories span multiple policies which are updated in-flight as they
become available.

We find these optimizations critical to scale to long-context RL training, achieving much higher
end-to-end system throughput, while minimizing data off-policyness.
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Figure 4: Continuous Batching & In-Flight Weight Updates. Continuous batching
maintains a constant inference load because finished rollout are immediately replaced with
new rollout requests. The policy used to generate rollouts is updated in-flight as soon as it

becomes available, allowing rollouts to be generated by multiple policies.

2.1.4 Multi-Client Orchestrator

When scaling inference to hundreds of GPUs, we found that the standard multi-node data-parallel
strategy provided by vVLLM did not deliver the expected throughput gains. As the number of inference
nodes increased, overall performance quickly plateaued.

To overcome this limitation, we implemented a custom data-parallel strategy centered on a multi-
client abstraction on the orchestrator. Each inference node is deployed as an entirely independent
server, and the orchestrator maintains one client per node. Group rollout requests are distributed
across clients using a simple round-robin mechanism, ensuring balanced utilization and eliminating
any inter-node synchronization. We found that inference throughput scales linearly with the number
of nodes used, as desired.

2.1.5 Online Data Filtering

An effective reinforcement learning setup depends on a well-designed curriculum that exposes the
model to tasks of appropriate and progressively increasing difficulty. Beyond pre-selecting data via
offline data filtering, we implement advanced online data filtering techniques to continually adapt
task difficulty during training.

To support this, problems are sorted into difficulty pools (easy, normal, hard) based on each problem’s
observed solve rate. By flexibly controlling how many samples are drawn from each pool at every
step, we can maintain a balanced curriculum that avoids training with problems that are either too
trivial or too challenging. In parallel, an online difficulty filter discards trivial rollouts—such as those
that the model always fails or always solves—ensuring that we only train on rollouts with meaningful
learning signal. Together, these mechanisms allow the curriculum to evolve as the model’s capabilities
increase, and continue to provide good learning signal.

2.1.6 Scaling Sequence Length

Over the course of RL training, the sequence length of model generations naturally increases [8]].
Training on these increasingly long rollouts while preserving efficiency is nontrivial. In our training
setting, we managed to reach up to 48k sequence length with FSDP degree equal to 32, by leveraging
aggressive activation check-pointing and Flash Attention 3 (FA3) [41]. However, for some of the
more difficult environments, sequence length of at least 64k was required. To solve this, we explored
the following two approaches:

Context Parallelism. With increasing sequence length, the attention score matrix becomes the
dominant component of the training memory footprint. Algorithms such as FlashAttention [7]
help mitigate this, but are often not sufficient. Context parallelism distributes the attention computation
across V., GPUs, reducing the memory footprint at the cost of communication overhead. The most
common implementation is based on Ring Attention [24], which assigns separate chunks of Q, K,



and V to each GPU and rotates K and V among devices to compute the attention matrix. This algorithm
is implemented in PyTorch; however, its implementation for FlexAttention [9] was experimental
at the time of our training. Although we were able to scale the sequence lengths up to 256k using
this approach with N, = 2, doing so effectively halved our data-parallelism degree and additionally
exhibited accuracy degradations, making it unsuitable for our production training setting.

Activation Offloading. Our training utilized full activation checkpointing, meaning that only the
outputs of each decoder layer and the top-level module activations are stored, while all intermediate
activations are recomputed during the backward pass. Ignoring top-level activations, the activation
memory for a sequence length of 48k, hidden size 4096, and 46 decoder layers is

Mem,; = 46 x (48,000 x 4,096) x 2 bytes ~ 18 GB.

To reduce this footprint, we offload activations to the CPU using an implementation based on
torchtune [46]. This enabled us to scale the sequence length to 72k with the same hardware
configuration as above, without any degradation in MFU. We observed a memory leak in the
asynchronous offloading implementation when using CUDA streams, and therefore adopted the
synchronous variant. Although this led to a slight decrease in MFU, the impact was negligible at
roughly 0.1%.

2.1.7 Distributed Muon

As shown by [235]], reusing the Muon optimizer during post-training yields the best performance
when the model was initially pretrained with Muon. Unlike SGD or Adam, which apply element-wise
updates, Muon [17] operates at the matrix level: its Newton-Schulz update requires access to the full
gradient tensor. Consequently, we cannot directly apply Muon to FSDP-sharded gradients. Gathering
full gradients on every rank and redundantly performing the same Muon computation would be
prohibitively expensive.

To address this, we explore two strategies for distributing Muon across multiple nodes. Our first
approach uses an overlapping round-robin scheme: each rank gathers a subset of FSDP-sharded
gradients based on its index, computes the Newton-Schulz update locally, and then scatters the
updated gradients back to all FSDP ranks. This approach parallelizes the expensive computation
across ranks and can hide the additional communication. However, at large multi-node scales, issuing
many overlapping gathers leads to InfiniBand congestion.

We therefore adopt a more efficient method based on all-to-all collectives, which reshuffles gradient
shards without relying on many individual gathers. Although this design is less flexible and may
require padding tensors before communication, it significantly improves performance and avoids
congestion at scale. We use this all-to-all-based algorithm for our main training runs, leveraging the
open-source implementation provided in Dion [2].

2.1.8 Efficient Mixture-of-Experts Support

We use the Mixture-of-Experts (MoE) [42] layer implementation from torchtitan [22] to leverage
the efficient grouped matrix multiplication kernels for expert execution which comes with support for
expert parallelism (EP). We found that enabling EP led to worse training throughput and thus did not
enable it for our training. The reduced throughput can be attributed to the relatively large sequence
length and hidden dimension on each GPU for our training runs.

We train with relatively large sequence length and hidden dimension and are thus in the regime
depicted in Figure [5| where we already saturate the grouped gemm kernel without the need for
decreasing the number of experts per GPU with expert parallel. Expert parallel in this regime
will lead to increased overhead from the scatter and gather without decreasing the time spent
performing the grouped gemm. Training that uses lower sequence length, hidden dimension or
utilizes parallelizations that decrease the amount of work per GPU like context parallel and tensor
parallel might see an improvement from using expert parallelism.

To maintain compatibility with HF, as for example required by our vLLM inference engine, we
transform the state dict on-the-fly during the broadcasting from the torchtitan-based MoE layer
implementation used by the trainer to the HF-based MoE layer implementation used by the inference
engine.
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Figure 5: Execution time and TFLOPS of torch._grouped_mm with hidden dim 4096 and MoE
dim 1408 on H200 SXM at different sequence lengths and number of experts. We assume that the
input is perfectly balanced between the experts and thus an increase in experts leads to an inversely
proportional decrease in the number of tokens and work per expert, eventually causing lower TFLOPS
as the work per expert is no longer able to saturate the kernel. At sequence lengths (N) 32, 768
and 65, 536, the TFLOPS remains in the saturated regime up to 128 experts. We thus do not gain
significant throughput from using expert parallel given our training parameters.

To monitor expert load distribution, we compute and log the maximum violation load-balancing

max; Load; —Load

metric MaxViolation = L as described in [47]. This metric quantifies the degree to

Load;
which expert load imbalance slows down the MoE layer relative to an ideally balanced configuration.
Since imbalance directly affects both training and inference throughput, it provides a useful diagnostic
of system efficiency.

2.2 Verifiers: Environments for LLM Reinforcement Learning

We train INTELLECT-3 using environments built with our verifiers library, which provides a set
of modular and extensible components for concisely expressing complex environment logic while
maintaining highly scalable performance. Conceptually, verifiers environments for RL training
play the same role as datasets for SFT or pre-training: disentangling environments from training
infrastructure yields desirable compositionality and interoperability, allowing environments to be
developed, tested, and versioned independently of the trainer.

2.2.1 Environment Design

Environments built with verifiers are installable Python modules, and consist of:

* adataset where each row corresponds to a task example, including the input prompt and
any necessary metadata for execution scoring (e.g. ground-truth answer, test cases);

* arollout method which takes as input a dataset row and an OpenAl-compatible inference
client, executes all steps of action until a termination condition is reached, and collects all
information required for training (e.g. token ids, logprobs);

* a Rubric object which includes one or more reward functions (operating either on a per-
rollout or per-group basis), and logs final scores and metrics upon completion of rollouts;

* aload_environment method implemented in the environment module which instantiates
the environment, handling any necessary preprocessing and resource provisioning.

Rollout Orchestration. Rollouts are executed asynchronously via asyncio, allowing thousands
of concurrent rollouts to proceed in parallel. Inference requests, tool calls, and reward functions
are dispatched and awaited independently of other in-flight rollouts. Parallelism occurs at multiple
granularities: we replicate across inference workers, API clients, and environment processes via a



central orchestrator. We apply fine-grained semaphore-based throttling to ensure inference workers
are kept busy while minimizing KV cache eviction.

Rubrics and Reward Functions. The Rubric abstraction manages reward computation with sup-
port for multiple weighted reward functions. Each reward function receives the prompt, completion,
ground-truth answer, and rollout state, and returns a scalar score. Scores from multiple reward
functions are combined via configurable weights to produce a final reward signal.

For more complex scoring scenarios, rubrics can be composed to aggregate multiple scoring strategies
(e.g. combining a format-checking rubric with an LLM judge rubric). The scoring interface can also
be overridden to implement inter-group comparisons such as voting, ranking, or relative scoring
across samples from the same problem.

Evaluations. We additionally use verifiers environments directly for evaluation, both offline
(via a standalone CLI which runs remote-hosted evaluations via the Environments Hub) and online
during training. The same rollout and Rubric entrypoints can be used for either training or
evaluation, ensuring consistency across deployment settings.

Extensibility via Class Inheritance. The environment hierarchy provides progressive specialization
for common use cases. The base class handles dataset management, prompt formatting, and the
core generate/score pipeline. Multi-turn environments extend this with a rollout loop that alternates
between model responses and environment responses until a termination condition is met. Single-turn
environments provide a minimal specialization for tasks requiring only a single model response. Tool-
calling environments further specialize multi-turn behavior with native OpenAl-format tool calling:
tool definitions are automatically converted to the API schema, tool calls in model responses are
parsed and executed, and results are appended as tool messages. Custom environments inherit from
the appropriate base class and override methods to implement task-specific logic such as termination
conditions and environment response generation.

[ CodeEnv

!

SandboxEnv

ToolEnv

[
[
I
[
[

MultlTurnEnV

StatefulToolEnv}

Environment j

Figure 6: Inheritance Hierarchy. Class hierarchy for CodeEnv, used in the
primeintellect/i3-code environment. Each level adds functionality: Environment provides
the core abstraction; MultiTurnEnv adds iterative rollout logic; ToolEnv adds OpenAl-format
tool calling; StatefulToolEnv enables injecting tool arguments that depend on rollout state (e.g.
resource IDs); SandboxEnv manages containerized execution environments; and CodeEnv runs test
cases against the code generated by the LLM.

2.2.2 Integration with prime-rl

prime-rl has first-class support for verifiers environments, which are installed as standalone
Python modules via the Environments Hulﬂ Environments can be developed and tested in isolation
against local or API models, then pushed to the Environments Hub and used immediately in training
without any code modification in prime-r1l. The orchestrator loads environments by their Python

*https://hub.primeintellect.ai
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module identifiers, invokes them with batches of inputs and inference clients, and receives finished
rollout states, including rewards, token IDs, logprobs (directly from vLLM), and attention masks.

Multi-Environment RL Training. The EnvGroup pattern in verifiers allows the combination
of multiple environments into a single class object with concatenated datasets, where an injected task
ID column is used to route rollout and scoring logic across appropriate sub-environments. We leverage
this functionality in prime-rl to support simultaneous training of INTELLECT-3 across many
environments without needing any explicit multi-environment-aware code within the orchestrator
after the EnvGroup is instantiated.

2.2.3 Environments Hub

Many RL frameworks treat environments as subfolders within a central training repository, tightly
coupling environment logic to training infrastructure. This complicates versioning, makes it difficult
to run controlled ablations across environment variants, and creates friction for external contributors
who must navigate the full training codebase to add or modify tasks or run offline evaluations.

The Environments Hub addresses these issues by providing an open registry where environments
built with verifiers are packaged as standalone Python modules with pinnable dependencies and a
standardized entry point. Environments can be versioned, shared, tested, and iterated on outside of the
context of training code, enabling researchers to contribute new tasks independently. Combined with
our open-source prime-rl trainer, sandboxes for secure code execution, and distributed compute
infrastructure, the Environments Hub forms part of a full infrastructure stack for open RL research,
lowering the barrier for anyone to train, evaluate, and fine-tune models on custom tasks.

2.2.4 Evaluations

Evaluation and training are tightly coupled through the use of verifiers, streamlining the process
of evaluating against a wide range of common benchmarks. Evaluation can be run both as part of an
active training (online) or as a standalone entrypoint (offline). When evaluating online, the orchestrator
asynchronously interleaves evaluation requests with training requests using the same inference pool
as the trainer, effectively hiding evaluation overhead while providing real-time feedback of training
performance.

2.3 Prime Sandboxes: Code Execution for RL Training

Executing untrusted code for thousands of concurrent rollouts requires a container orchestration
layer capable of sub-second provisioning and millisecond-level execution latency. While Kubernetes
provides the primitives for container management, standard architectural patterns are insufficient for
the throughput required by high-velocity training.

2.3.1 The Limits of Naive Orchestration

A standard, naive implementation of a remote execution sandbox typically relies on the Kubernetes
API Server. In this design, the training loop utilizes standard client libraries to spawn ephemeral
pods and executes commands via kubectl exec. This operation relies on upgrading an HTTP
request to a WebSocket connection, which is then proxied through the Kubelet to the container
runtime. Empirical testing revealed that this approach is fundamentally unscalable. While the code
execution itself should take milliseconds, the orchestration overhead creates latencies measured in
seconds. Because every execution command involves an authenticated API request that is logged and
persisted in etcd, the control plane becomes the primary bottleneck. Etcd is Kubernetes’ distributed
key-value store that maintains cluster state; every API operation must be serialized through write
locks, creating a fundamental throughput ceiling. At a scale of thousands of concurrent sandboxes,
we measured execution latency spiking to 2.5 seconds per command due to API server saturation and
etcd write-lock contention.

2.3.2 Prime Sandboxes Architecture

To overcome these control plane limitations, we developed Prime Sandboxes, which is a cloud based,
Sandbox execution infrastructure which covers the requirements for agentic RL at scale. We re-
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engineered the communication path to bypass the Kubernetes API for the critical execution loop. We
introduced a high-performance Rust-based Gateway that accepts execution requests via a lightweight
HTTP API. Instead of routing through the Kubernetes control plane, this Gateway communicates
directly with the sandbox pods via Kubernetes Headless Services. A Headless Service allows the
Gateway to resolve the direct IP addresses of individual pods via DNS, bypassing the overhead of
kube-proxy load balancing.

However, relying on DNS for thousands of ephemeral pods creates a secondary scalability challenge.
Standard CoreDNS configurations can become overwhelmed by the high churn rate of A-records
associated with headless services, leading to resolution throttling. To ensure the Gateway can resolve
pod IPs in milliseconds, we deployed a custom, high-throughput CoreDNS architecture optimized for
high-velocity record updates.

The sandbox pod itself utilizes a Sidecar pattern. A privileged sidecar container functions as an
execution agent. Upon receiving a request from the Gateway, the sidecar utilizes nsenter to inject
commands directly into the target’s namespace. This architecture achieves the speed of a local process
spawn while maintaining full container isolation.

2.3.3 Asynchronous Lifecycle Management

Reliably detecting when a sandbox is ready for execution is a critical latency path. The naive approach
involves either actively polling the Kubernetes API to check for the Running state or relying on a
standard Controller to watch the event stream. While sufficient for low-volume workloads, this method
fails under high concurrency. Polling thousands of pods creates immense read pressure on the API
server. Furthermore, standard controllers—specifically those built with Kopf (Kubernetes Operator
Pythonic Framework)—typically process reconciliation queues sequentially. In a "thundering herd"
scenario where thousands of pods initialize simultaneously, the resulting notification backlog causes
the system to report a sandbox as "Ready" seconds after it has actually booted, leaving valuable
compute resources idle.

To eliminate this latency, we inverted the status reporting flow. We utilize Kopf strictly for asyn-
chronous maintenance tasks, such as error handling and resource finalization. For readiness signaling,
we bypass the Kubernetes control plane entirely: the sandbox sidecar transmits a direct webhook to
the training backend the moment it becomes operational. This "push-based" architecture ensures the
training loop is notified within milliseconds of boot completion, achieving a consistent start-up time
of under 10 seconds regardless of cluster load.

2.3.4 Image Distribution and Infrastructure Density

Distributing container images to thousands of sandboxes simultaneously presents a distinct scalability
barrier. A naive implementation that pulls images from public repositories (e.g., Docker Hub) hits fatal
bottlenecks immediately: upstream registries enforce strict rate limits that block high-concurrency
requests, and the sheer volume of data transfer saturates node network bandwidth, delaying boot times
by minutes. To overcome these physical constraints, we architected a two-tiered image distribution
strategy:

* Custom Registry and Image Streaming: For dynamic environments requiring unique
dependencies, we host a private, high-throughput container registry. Crucially, we utilize
Container Image Streaming (Lazy Pulling). Instead of blocking startup until the entire
image manifest is downloaded, the runtime fetches only the data chunks necessary for the
entrypoint process. The remaining layers are streamed in the background, allowing the
sandbox to become operational seconds before the full image is physically present on the
node.

* Warm Pools: For environments relying on static runtime images (e.g., standard Python
distributions), we maintain a "warm pool" of pre-provisioned pods. This allows the training
loop to acquire a sandbox instantly without incurring any image pull latency or initialization
overhead.

Underlying this distribution layer is a custom Cluster Autoscaler and bin-packing scheduler designed

for extreme density. We target a packing factor of 256 sandboxes per node and utilize the Burstable
QoS class. Burstable QoS allows pods to request a baseline of CPU resources but burst above that

12



limit when available, which is ideal for RL workloads where sandboxes alternate between brief
execution spikes and idle waiting periods. This allows the cluster to vastly oversubscribe CPU
resources during the idle periods inherent in RL training steps, maximizing hardware efficiency
without compromising peak execution throughput.

2.3.5 Security and Capabilities

We utilize gVisor (runsc) as the container runtime, providing a user-space kernel that isolates the host
from potential exploits within the untrusted code as well as configurable network policies to limit
the communication allowed from within a sandbox. Beyond simple code execution, the architecture
supports complex network requirements, allowing sandboxes to expose arbitrary TCP/UDP ports for
HTTP traffic. Furthermore, the system is designed to support hardware acceleration, enabling the
mounting of GPUs for environments dependent on custom GPU kernels.

2.4 Compute Orchestration: Frontier GPU Infrastructure

We deployed 512 NVIDIA H200 GPUs across 64 interconnected nodes. The primary engineering
challenge lies in maintaining determinism and synchronization across a distributed system prone to
hardware failures.

Provisioning and Fabric. To eliminate configuration drift, we enforce a strict Infrastructure as
Code paradigm using idempotent Ansible playbooks that handle dynamic hardware discovery and
automated firewall generation. Distributed training performance is bound by the tail latency of
the AllReduce collective, so we utilize a 400Gbps NDR InfiniBand fabric (NVIDIA ConnectX-7)
and validate throughput before every run, targeting >160 GB/s. When performance degrades, an
automated binary search isolates straggler nodes with faulty transceivers.

Orchestration. We use Slurm with Cgroup v2 integration to guarantee resource reclamation—upon
job termination, the kernel freezes and eliminates the entire cgroup hierarchy, preventing zombie
processes from holding GPU memory. This provides container-like isolation without filesystem
overhead.

Storage. A tiered architecture balances I/O performance: Lustre handles high-throughput operations
(training trajectories, multi-terabyte checkpoints), while NVMe-backed NFS serves metadata-heavy
user environments and enables keyless SSH across the fleet.

Observability. We monitor GPU telemetry via DCGM aggregated into Prometheus, with active
alerting on Xid errors and thermal slowdown events. This allows proactive node draining before a
failing component corrupts training progress.

3 INTELLECT-3 Training

We train INTELLECT-3 in two main stages: a supervised fine-tuning stage and a large-scale RL
stage. We use GLM-4.5-Air base as our base model. Both stages, including multiple ablations, were
carried out on a 512 H200 cluster over the course of two months. For the entire stack, from the RL
environments to the evaluation of the model, we utilize open-source environments contributed to our
Environments Hub.

3.1 Environments Mix

We train on a diverse and challenging mix of environments designed to enhance the reasoning and
agentic capabilities of our model.

3.1.1 Math

For our model to excel in mathematical problem solving, we carefully design our math envi-
ronment E] for long chain-of-thought reasoning. It consists of 21.2K challenging math prob-

Mlenvironments/primeintellect/i3-math
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lems, curated from Skywork-OR1 [12], Acereason-Math [6], DAPO [53], and ORZ-Hard [15].
To verify the model’s responses we parse out the final answer and compare it against the
ground truth using math-verify [21]. In practice, we have found a non-negligible fraction
of false negatives with mere rule-based verification. For this reason, we additionally employ
opencompass/CompassVerifier-7B [27] as an LLM-judge to double-check all answers which
are marked as wrong by the rule-based verifier. Finally, we difficulty annotate the entire dataset by
computing the average solve rate of Qwen/Qwen3-4B-Thinking-2507 [45] over eight generations
per problem. We use these annotations to filter our samples which are too easy at various stages of
our post-training pipeline.

3.1.2 Code

Our code environmenl[] tasks the model with single-turn programming challenges in Python. The
environment takes inspiration from DeepCoder [31] and makes heavy use of our SYNTHETIC-2
dataset [39]]. Solutions are verified by executing up to 15 test cases per problem inside Prime
Sandboxes. During training, asynchronous and isolated execution per solution is facilitated by
over 4000 concurrent sandboxes. On any sandbox failure, we mask out the corresponding model
completion. For difficulty filtering, we annotate the 8.6K examples with the average solve rate of
Qwen/Qwen3-4B-Instruct-2507 [45] over eight generations per problem.

3.1.3 Science

We use the science environmemﬂ to improve our model’s capabilities in domains such as physics,
chemistry, and biology. Similarly to our math environment, we use both math-verify and an LLM-
judge to verify the answers. The dataset we use consists of 29.3K challenging problems spanning
diverse domains curated and filtered from MegaScience [10]. Again, we annotate the dataset for
difficulty by computing the average solve rate of Qwen/Qwen3-4B-Instruct-2507 [45] over 16
generations per problem, which we use to filter out too easy samples at various stages of the post-
training pipeline.

3.1.4 Logic

Our logic environmenlﬂ includes a diverse set of 29 logical tasks, puzzles and games, such as
evaluating boolean expressions, solving cross-word puzzles or Sudoku, or playing Minesweeper.
Both the 11.6K problems and verifiers were adapted from SynLogic [26]. Similarly to our other
environments, we compute the solve rate of Qwen/Qwen3-4B-Instruct-2507 [45] over 16 trials to
gauge the difficulty of the problems, in order to selectively filter out samples during post-training.

3.1.5 Deep Research

Our web search environmen@ [29] provides the model with a search tool that uses Serper [40] to
return an enumerated list of search results, a click tool to retrieve the markdown-formatted textual
content of webpage chosen by its index in the previous search results, an open tool that returns a
website’s content in the same way as the click tool, given a URL, and a finish tool which the model
uses to provide its final answer. The environment tasks the model with answering questions from the
dataset using the given tools, and rewards it with 1 for a correct answer and O for an incorrect one.
Optionally, a redundancy penalty can be applied to the queries of subsequent searches, which we set
to zero. We leverage a corpus of training examples from z-AI’s DeepDive dataset, which consists
of complex, multi-step questions extracted from open knowledge graphs with the help of LLMs. It
contains 1K samples for SFT trajectory generation and 2.2K samples for RL.

To validate the implementation of our environment, we trained
Qwen/Qwen3-4B-Instruct-2507 [45] using SFT on the public DeepDive traces for 26
steps at batch size 34, for a total of 884 samples, followed by 122 steps of RL at a group size of
16 and a total batch size of 512. Figure[7]shows the mean reward per step over the course of RL

"M environments/primeintellect/i3-code

M environments/primeintellect/i3-science
B environments/primeintellect/i3-logic
% environments/primeintellect/deepdive
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training. The success of a 4 billion parameter model to learn Deep Research via RL on DeepDive
demonstrates the correctness and usability of our DeepDive environment implementation.

Mean Reward

o 20 40 60 80 100 120
Step

Figure 7: Mean reward of Qwen/Qwen3-4B-Instruct-2507 [45]
over RL training steps on DeepDive after a short SFT phase.

3.1.6 Software Engineering

We developed two Software Engineering (SWE) environments EEL They implement two modified
agent scaffolds, R2ZE-Gym [[16}130] and mini-swe-agent-plus [48]]. Further, they include three sandbox
harnesses supporting common formats for SWE datasets, images and test suites like R2ZE-Gym [16],
SWE-smith [52] and Multi-SWE-bench [54]. For the R2E-Gym scaffold, we swapped out the
finish() for the submit () tool as the result parameter serves no use internally and is being
called verbosely by the model. We adapt the mini-swe-agent-plus scaffold for native reasoning and
tool use by changing its prompt and replacing code block parsing with tool calling. Inside a sandbox
the agent can navigate the repository of a given Github project and is tasked with fixing an issue. The
scaffold equips the model with tools for executing Bash commands and editing files. The maximum
number of turns the agent can take is capped at 200. After submitting the solution, the test suite of
the repository runs to determine whether the correct tests change their status from failing to passing.
As with our code environment, when a given sandbox fails we mask out the model’s completion
and cancel the generation. To render ephemeral and nearly instant rollouts possible we deploy our
Custom Registry with Prime Sandboxes hosting over 20,000 images containing pre-installed Github
repositories

3.2 Supervised Fine-Tuning

Prior to RL, we conduct two distinct supervised fine-tuning stages: a large-scale general chat and
reasoning SFT stage, designed to improve the conversational and reasoning capabilities of our model,
and an agentic SFT stage, designed to improve our model’s ability to efficiently use tools in long-
running agentic contexts. Both stages are designed to provide a strong prior for the subsequent RL
stage.

Prior to RL, we run two complementary supervised fine-tuning (SFT) phases. First, we conduct a
large-scale general chat-and-reasoning SFT stage that strengthens the model’s conversational abilities
and core reasoning skills. Second, we run an agentic SFT stage focused on improving the model’s
ability to use tools effectively and operate within long-horizon, agentic workflows. Together, these
stages establish a strong prior and a stable behavioral foundation for the subsequent RL phase.

General Reasoning SFT. For our first SFT stage, we construct a large-scale dataset
spanning diverse domains and leverage many high-quality, permissive open-source datasets.
Our two main sources are the math, code, science, and tool splits from NVIDIA’s
Nemotron-Post-Training-Dataset-v1 [33|/4] and the chat and instruction following splits from
AM’s AM-DeepSeek-R1-0528-Distilled [1]] dataset. Both contain synthetically generated rea-
soning traces from DeepSeek-R1-0528. During training we respect the natural ratios of the datasets.

"M environments/primeintellect/deepswe
'’ environments/primeintellect/mini-swe-agent-plus
B Prime Sandboxes
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Table 1: SFT Data Sources

Dataset Num. Examples Num. Tokens Stage 1 Stage 2
OpenReasoning-Math 2M 78.1B v v
OpenReasoning-Code 1.9M 94.3B v v
OpenReasoning-Science 310K 32B v v
OpenReasoning-Tool 800K 3.8B v v
AM General Chat 952K 8.4B v v
AM Instruction Following 54K 400M v v
SWE Swiss 10.3K 700M v
Toucan Tool 116K 700M v
Environments Mix 38.4K 1.9B v

We train a full epoch with ~33M tokens per step at context length 65K. We use the Muon optimizer
with weight decay 0.01 and learning rate 5e-5, warmed up linearly from 1le-8 over 300 steps. We rely
on FSDP with a world size of 64 to efficiently shard the model and DP replicate size 8, spanning
training across the full cluster of 512 GPUs

Agentic SFT. Following the general chat-and-reasoning SFT phase, we conduct a second supervised
fine-tuning stage targeted at agentic behavior, tool use, and long-horizon control. Whereas the first
SFT phase focuses on conversational competence and long chain-of-thought reasoning in STEM
domains, the agentic SFT phase is smaller, and curated to endow the model with robust capabilities for
calling external tools, maintaining coherent state over long-running tasks, and operating effectively
in extended sequences. To this end, we combine multiple open-source agentic datasets such as
SWE-Swiss [13], and Toucan Tool [51]], as well as synthetically-generated datasets created from other
environments on the Environments Hub using DeepSeek-R1-0528. All datasets were processed to
ensure consistent tool call formatting, filtered for English content, and standardized so that they are
compatible with our trainer.

This stage also serves a complementary purpose: pushing the model toward longer effective context
lengths, ensuring stability and competence beyond 65K context window. We leverage context
parallelism (CP) to effectively scale to 98K context length training, ensuring that our model learns
to maintain consistency in long-running agentic tasks. We train for two epochs, resuming from our
final stage 1 checkpoint. Again, we use the Muon optimizer starting with a learning rate of 5e-8, and
decay it linearly over the full 800 steps of training.
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Figure 8: Supervised Fine-Tuning. We show the loss curves of our general reasoning SFT stage
(left) and the agentic SFT stage (right) over the course of training. Both runs show smooth
optimization without any loss spikes.

Chat Template. The INTELLECT-3 chat template is inspired by Qwen3- and GLM-family
of models. The template uses familiar control tokens—such as <|system|>, <|user|>, and
<|assistant | >—to mark roles in multi-turn conversations, and <|im_start|> and <|im_end|>
to delimit conversational turns. Tool calls follow XML-style tagging format.
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We introduce the following modifications: First, our model always reasons, with no user-exposed
reasoning-effort controls. This is implicitly baked into the model by dominantly training on
reasoning-only SFT traces, and explicitly by setting appending a <|think|> token via the chat
template. To ensure proper usage of our model, use the qwen3_coder tool call parser, and the
deepseek_r1 reasoning parser. To retain thinking across turns, the chat template automatically
parses reasoning_content field to ensure reasoning chains are consistently represented without
requiring manual formatting.

3.3 Reinforcement Learning

For the RL portion of the training, we used a batch size of 256 prompts with 16 rollouts per prompt
and a maximum context length of 65536. We utilize online difficulty filtering, as well as an easy
difficulty pool to remove any prompt with a pass rate of 1 from being sampled again, as these prompts
would contribute no learning signal. Our max_off_policy_steps is set to 8 to ensure we remove
any excessively off-policy rollout. We use Muon with a learning rate of 1e — 6. During training, the
data mix is carefully tuned to balance performance across domains.

We use 60 nodes in total for our RL training, each with 8 H200s. We allocate nodes between training
and inference at about a 1:3 ratio, with 16 nodes for training and 44 nodes for inference to get the best
throughput. We observe a step time of ~ 1500s per step when training at 65, 536 sequence length
with in-flight weight updating. Without in-flight weight updating, we observe an increase in step time
of more than 2x as the inference is significantly less efficient.

Training Algorithm. We adopt masked token-level importance sampling [55]]. For a batch of N
rollouts, we use the formulation below.

Nyl
Ttrain yzt | T, Y, <t79) n
T 0)=E,. . ~Tinfer ) & Ai,
IcePop( ) D {yi } L) ~Tinfer Zl | ‘yz 121; |: (7Tmter yzt ‘ x, Y, <t7001d) 6) '
(1)
koif k€ [a,f]
k = 2
Mk) {0 otherwise @

where 7, refers to the policy that generated the rollout, 7y, refers to the current trainer policy,
M(-; @, B) is the masking function from Eq.[2| The token-level advantage is estimated as A; ; =

S; — mean({S;}$) [28] where S; is the reward given to rollout i, and G being the number of rollouts
for a given prompt and we default to o« = 0.5 and 5 = 5 [53].

We found double-sided masking critical to combat the trainer-inference mismatch: Even when
Tinfer and Ty,n and share the same parameters 6, they can produce significantly different token
probabilities, leading to unexpected distribution shifts that can cause runs to crash multiple days into
the experiments, if not explicitly addressed. This is similar to CISPO [32] (later further validated
in [19]], however, we use masking instead of clipping to avoid noisy updates that come with excessive
importance ratios. We also apply masking to any rollouts if any of its tokens importance ratio falls
under a certain threshold (we use le-5 for our training).

Online Evaluation In Figure [9] we plot the model performance at 15 step intervals on AIME25,
AIME24, LiveCodeBench, HLE and GPQA. The reasoning benchmark scores generally trend up and
do not seem to have reached a plateau. This leads us to believe that allowing the model to continue
training would yield continued improvements in the benchmark scores.
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Figure 9: Reinforcement Learning. Reasoning benchmark scores as training progresses. The
benchmarks scores generally trend up and do not appear to have reached a plateau.
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Figure 10: Training Stability. Early ablations of GSPO against CISPO (our algorithm at the time).
We use async-8 as a testbed for algorithms to test if they would handle high levels of off-policyness.
We observe strange reward (and all other metrics) collapse with GSPO also reported in [38].

4 Evaluations

We evaluate INTELLECT-3 on a wide range of reasoning benchmarks, including AIME 2024@
AIME 20255] LiveCodeBench v'®} GPQA Diamond'’} HLE™] MMLU-Prd}

To ensure a fair comparison, we run evaluations in the exact same settings against API services.
Precise details on the evaluation setup are given in Appendix [A]

[Table 2]summarizes the results across all benchmarks. INTELLECT-3 outperforms the best matching
comparison model, GLM-4.5 Air, which is Z.ai’s post-trained version of the GLM-4.5 Air base model,

'“H primeintellect/aime2024

'SE primeintellect/aime2025

'8 primeintellect/livecodebench
B primeintellect/gpga

188 primeintellect/hle

'°H primeintellect/mmlu-pro
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Table 2: Evaluations. We report benchmark scores on a wide range of reasoning benchmarks, and
compare against models of similar or larger size. All implementations are open-source and
reproducible via the Environments Hub.

Benchmark AIME24 AIME25 LCBv6 GPQA HLE MMLU-Pro
INTELLECT-3 90.8 88.0 69.3 74.4 14.6 81.9
GLM-4.5-Air 84.6 82.0 61.5 73.3 13.3 73.9
GLM-4.5 85.8 83.3 64.5 71.0 14.8 83.5"
GLM-4.6 92.0 90.3 73.0 78.8 13.3° 83.1
DeepSeek R1 0528 83.2 73.4 62.5 71.5 15.9 75.3
DeepSeek v3.2 88.1 84.7 71.6 81.4 17.9 84.6
GPT-OSS 120B 75.8 1.7 69.9 70.0 10.6 67.1

across every tested benchmark. Even the 3 x larger GLM-4.5 is outperformed on many benchmarks
by INTELLECT-3, including AIME 2024, AIME 2025 and LiveCodeBench v6.

At the end of RL training, rewards were still increasing with no sign of plateauing in benchmark
performance. We will continue training INTELLECT-3 with a focus on agentic environments, to
further improve the model’s performance on complex agentic tasks.

5 Conclusion & Future Work

In this report, we present INTELLECT-3, a 100B+ parameters post-train on top of the GLM-4.5-Air
base model. INTELLECT-3 achieves strong performance on math, code, science and broader
reasoning benchmarks, and is competitive with or ahead of significantly larger frontier models. The
model is trained on a diverse mixture of open environments from the Environments Hub, including
math, code, science, logic, deep research and software engineering tasks, which together target long
context tool using agentic behavior.

To support this training run, we introduced a frontier infrastructure stack for reinforcement learning
at scale. prime-rl provides a production grade asynchronous RL framework with disaggregated
trainer and inference, continuous batching, in flight weight updates and efficient support for Mixture-
of-Experts models. The verifiers library and the Environments Hub standardize how environments
and evaluations are expressed, turning them into reusable, versioned artifacts that can be shared,
mixed and reproduced across projects. Prime Sandboxes and make it possible to execute untrusted
code at very high throughput on thousands of concurrent rollouts, and to sustain long multi-week
training runs on a 512 H200 cluster.

By open sourcing INTELLECT-3, the environments, and the complete training framework, we aim
to narrow the gap between proprietary RL pipelines and what independent researchers, small labs
and companies can build. The same code that produced INTELLECT-3 is available for single node
experiments, mid scale research runs, and for production-scale training. Our hope is that this stack
becomes a common foundation for the next generation of open reasoning and agentic models.

There are several directions for future work.

* Scaling Agentic RL. By the end of our current RL run, reward and evaluation curves had still
not flattened, and the training remained extremely stable. This suggests that INTELLECT-3
is very much still in the high return regime of additional RL compute. With more agentic
environments such as DeepDive and Software Engineering in the mix, we expect substantial
further gains from simply continuing to train inside these RL environments, particularly for
complex agentic use cases.

¢ Richer RL environments. Over the last few months, more than 500 RL environments
have been released on the Environments Hub, and we’ve continued scaling this through our
RL Residency and Bounty programs. These environments cover autonomous Al research,
computer use, theorem proving, browser automation, and many domain-specific tasks such
as law, finance, and tax. INTELLECT-3 used only a small slice of what’s already available.

" Reported by AA Index
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A major next step is scaling RL across a much broader set of high-quality community-
contributed environments, covering more tools, modalities, and real-world workloads.

Long Horizon Agents. A key next step on our research roadmap is making long horizon
behavior RLable by letting the model manage its own context. We’ve been exploring simple
tools for cutting context, prompting itself in isolated sub branches, and maintaining an
external memory across turns. These keep the scaffold minimal and let the model learn
end-to-end context handling through RL, with future work scaling training on environments
that reward effective long-horizon reasoning. In line with recent evidence of “context rot”
in long-context models, where the effective reasoning window is much smaller than the
advertised context size and performance degrades on long-range reasoning tasks despite
successful retrieval of relevant spans [23]], we treat the context window as a scarce resource
to be actively managed rather than a passive, ever growing transcript.
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A Reproducing Evaluations

A.1 Evaluation Environments

MATH-500. MATH-500 consists of 500 high-school competition math problems distilled from the
original MATH [14] dataset. To verify responses, we parse reasoning content, extract the final answer
from the last \boxed{. ..}, and use math-verify to compare the answer against the ground truth.
We run two generations per problem, for a total of 1000 generations.

AIME. We evaluate both AIME 2024 and AIME 2025, which each consist of 30 challenging high-
school competition math problems. Similar to the MATH 500 environment, we parse reasoning
content, extract the final answer from the last \boxed{. ..}, and use math-verify to verify re-
sponses. We do not employ a LLM-judge for verification thus our reported numbers are more
conservative compared to e.g. Artificial Analysis Index, which uses LLM judges. To obtain robust
results, we report Avg@32 (Pass@]1 over 32 generations per question).

GPQA. GPQA is a Ph.D.-level STEM MCQA benchmark. We use the diamond subset, which
includes the 198 hardest questions. We ask the model to put the letter of the final answer in a box,
and judge the response by looking for an exact match with the ground truth answer. To obtain robust
results we report Avg@4 (Pass@1 over 4 generations per question).

LiveCodeBench. LiveCodeBench (LCB) is a single-turn coding evaluation benchmark that collects
new problems over time from popular programming contests. We use version v6 and include the 454
latest problems (August 2024 to May 2025) as reported in the official LiveCodeBench leaderboard
at the time of writing. We copy the the verification logic from the official GitHub repository| but
integrate it with our sandboxes to ensure secure and scalable test verification. We report Avg@?2
(Pass@1 with 2 rollouts per problem)

MMLU-Pro. MMLU-Pro [49] is a challenging subset of 12K general STEM MCQA questions from
MMLU. We ask the model to put the letter of the final answer in a box, and grade by checking for an
exact match with the ground truth answer. We report Avg@ 1 over the 12K samples.

HLE. Humanity’s Last Exam (HLE) [36] consists of 2,500 questions across dozens of subjects,
including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-
matter experts and consists of multiple-choice and short-answer questions suitable for automated
grading. We use the text-only subset, which includes 2,158 examples, problems and do not give the
models additional tools. We report the average solve rate across all samples.

A.2 API models

GLM 4.5 Air, GLM 4.5 & GLM 4.6 We evaluate GLM-4.5-Air, GLM-4.5 [44] and GLM 4.6 via
OpenRouter and enforce that requests are routed to the official z-AI API. We adopt the sampling
parameters setup recommended by z-Al. (e.g. we use temperature 0.6 across all benchmarks.)

DeepSeek. We evaluate DeepSeek R1 0528 via OpenRouter and enforce that requests are routed
to the official DeepSeek API. We did not manage to evaluate DeepSeek v3.2 (Thinking) via
OpenRouter as most providers (including the official DeepSeek provider on OpenRouter) would
host the chat version. For this reason, we fall back to using the official DeepSeek API with the
deepseek-reasoner model slug.

OpenAl. We tried evaluating GPT-0SS 120B (High) [35] via OpenRouter but from the average
response length it was clear that we were evaluating the model with lower than advertised reasoning
efforts. We resorted to evaluating GPT-0SS 120B (High) via TogetherAl, where we confirmed that
the hosted version is indeed using high reasoning effort. Our observed scores differ slightly from
those in the OpenAl model card, and reflect an apples-to-apples comparison from running all models
in the same evaluation harnesses, where formatting and scoring logic may differ slightly from other
implementations.
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