
 

TECHNICAL VALIDATION OF AI-OPTIMIZED 
HARDWARE AND SOFTWARE ECOSYSTEM 
Abstract 
This report presents an empirical validation of an AMD MI300X-based 
high-performance computing (HPC) system, designed for machine learning 
and AI workloads. The study assesses operational independence from 
cloud-based resources, and evaluates thermal performance under inference 
workloads. Validation procedures included throughput testing using Stable 
Diffusion v1-4, a text-to-image generative model, and Whisper, an automatic 
speech recognition (ASR) model. Key focus areas were network traffic analysis, 
GPU utilization, and thermal diagnostics to determine on-device processing 
integrity and system reliability under sustained load. Results from three 
experiments confirm the system’s ability to execute compute-intensive 
models on bare-metal infrastructure, maintain stable thermal profiles across 
active and inactive GPU groups, and demonstrate efficient model throughput 
scaling, all without external dependencies. The findings validate the system’s 
suitability for diverse AI workloads requiring local execution, model flexibility, 
and thermal efficiency. 

Introduction 
This study aims to validate the operational independence and reliability of a 
high-performance computing (HPC) system purpose-built for AIML and AI 
inference workloads. The system under evaluation incorporates AMD MI300X 
GPUs and is designed to run entirely on bare-metal infrastructure without 
offloading compute tasks to external cloud services. 

Validation efforts focused on two dimensions: (1) verifying that inference 
workloads were executed locally by monitoring network traffic for external 
activity, and (2) assessing thermal behavior under load to ensure consistent 
and expected temperature profiles across GPU cards. Two models 
representative of real-world AI applications were selected: Stable Diffusion 
v1-4, a generative model that converts text prompts into images, and 
Whisper, a model for transcribing speech to text. These workloads provided 
meaningful inference operations to test system performance under varying 
load and batch-size conditions. 
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Methodology 
The validation methodology consisted of the following five phases: 

1.​ System Configuration and Environment Setup:​
We evaluated the setup process and compatibility of the AMD-based 
HPC system with standard machine learning frameworks. This included 
adapting open-source repositories to run on AMD hardware using 
ROCm libraries, in place of CUDA, ensuring support for PyTorch-based 
workloads without vendor lock-in. 

2.​ Model Selection and Integration:​
Two models were selected based on their widespread usage and 
workload diversity: Stable Diffusion v1-4 for generative text-to-image 
inference and Whisper for automatic speech recognition. Both models 
were sourced via Hugging Face to maintain reproducibility and 
accessibility. 

3.​ Profiling and Instrumentation:​
Custom profiling code was developed to measure performance 
characteristics, including inference throughput and thermal behavior. 
Metrics were collected via on-device sensors and supplemented with 
external thermal-imaging instrumentation. This phase also included 
monitoring network traffic at the system level to ensure that model 
execution—such as image generation via Stable Diffusion—was 
performed locally on the AMD GPUs without transmitting data to 
external compute resources. Traffic logs were analyzed to confirm the 
absence of outbound responses that would indicate remote inference. 

4.​ Thermal and Network Profiling:​
Thermal diagnostics were performed using a TOPDON TC004 thermal 
imaging device mounted on a tripod for stability. Network activity was 
concurrently monitored to verify that inference occurred locally on the 
device with no external API calls or cloud-based computation. 

5.​ Throughput Testing:​
Stable Diffusion was used to evaluate system performance under 
varying batch sizes and process counts. Whisper was evaluated with 
smaller-scale tests to measure average inference time per audio sample 
and to confirm functional compatibility with the ROCm stack. 
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Experimental Setup 

Experiment One: Bare-Metal Validation 
The hardware configuration consisted of 16 AMD MI300X accelerator cards, 
physically arranged in groups of four to facilitate workload isolation and 
thermal comparison. Stable Diffusion v1-4, a text-to-image generative AI 
model, was used as the primary workload. The model was configured to 
generate 512×512 pixel images from textual prompts, where each image is 
composed of 512 horizontal by 512 vertical pixels—representing a moderately 
high-resolution output commonly used in image generation tasks. 

Inference tests were conducted using the following batch configurations: 
1×512, 2×256, 4×128, 8×64, 16×32, 32×16, 64×8, and 128×4. In this context, a batch 
refers to the number of inference requests processed simultaneously, and the 
format N×M indicates that N processes each handle a batch of M images. For 
example, 2×256 refers to two processes each generating 256 images per 
batch. 

To evaluate thermal behavior, a TOPDON TC004 thermal imaging device was 
used to record surface temperatures. The camera was mounted on a tripod 
and aligned with the GPU array for consistent framing across runs. Testing 
was performed by activating a defined set of GPUs—first cards [12–15], then 
cards [0–3]—allowing comparative analysis of thermal output per quadrant. 
Cool-down phases were introduced between runs to track system recovery. 
Idle GPU temperatures ranged from 90–100°F, while actively loaded GPUs 
reached 115–130°F, consistent with AMD's expected operational range under 
sustained AI inference workloads. 

The server’s physical layout is as follows: cards [0–3] are located in the top left 
quadrant; [4–7] in the top right; [8–11] in the bottom left; and [12–15] in the 
bottom right. AMD’s XGMI interconnect links GPUs [0–7] and [8–15] into two 
high-bandwidth domains, while inter-domain communication occurs over 
PCIe. 

Image 1: Physical Layout of AMD MI300X GPU Cards and Junctions in 4x4 
Configuration 
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Image 1 shows the server rack contains 16 MI300X cards arranged into four 
logical quadrants: [0–3], [4–7], [8–11], and [12–15]. Physical junctions (I–VI) are 
labeled to indicate cable aggregation and airflow channels associated with 
each GPU cluster. This configuration facilitates isolated testing for thermal 
profiling and workload distribution. 

Experiment Two: Stable Diffusion Throughput 
This experiment focused on quantifying the throughput and latency 
performance of the system under realistic AIML workloads, without additional 
thermal imaging instrumentation. The Stable Diffusion v1-4 model was again 
used to generate 512×512 pixel images from text prompts. The same batch 
configurations were tested: 1×512, 2×256, 4×128, 8×64, 16×32, 32×16, 64×8, and 
128×4. 

Unlike Experiment One, this test relied solely on system-level telemetry to 
assess performance. Network traffic and onboard sensors were monitored to 
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capture inference duration, throughput (images per second), and GPU 
utilization across varying configurations.  

Experiment Three: Whisper Model Evaluation​
This experiment evaluated the system's compatibility with automatic speech 
recognition (ASR) workloads using the Whisper model. Whisper was selected 
due to its widespread use and computational demand in transcribing audio 
to text, providing a contrasting workload to the image generation tasks used 
in earlier experiments. 

Audio clips were used as input data, and Whisper was executed to generate 
corresponding text transcriptions. Inference latency per sample was recorded 
to assess runtime performance under AMD ROCm environments. 

Model Compilation​
To enhance performance on AMD hardware, the Whisper model was 

compiled using PyTorch’s torch.compile function with the 'inductor' 
backend and 'max-autotune' optimization mode. This compilation step aimed 
to maximize inference efficiency by leveraging kernel fusion and runtime 
tuning during execution. 

Results 

Experiment One: Bare-Metal Validation 

This experiment evaluated thermal behavior and system independence 
under controlled GPU activation. Results confirmed that inference workloads 
were executed locally and that thermal characteristics were consistent with 
vendor-reported expectations for sustained AIML workloads, confirming 
nominal thermal operation. 

Network Traffic Analysis​
Network monitoring during Stable Diffusion inference showed negligible 
transmission activity. Both sent and received data remained within 
kilobyte-scale, validating that all inference operations were conducted on the 
local hardware. 
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Figure 1: Network Activity During 8-Card Inference Run

 

Figure 1 displays network traffic over time, showing minimal inbound and 
outbound data during inference. This confirms that all computation occurred 
locally without cloud-based execution. 

Thermal Imaging and Sensor Observations​
Thermal readings from the tripod-mounted TOPDON TC004 device aligned 
with expected operational ranges. Idle GPUs remained within the 88–100°F 
range, while active cards consistently reached 115–130°F without exceeding 
thermal thresholds. 

Image 2: Thermal Imaging During Inference on Designated GPU Groups 
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Image 2 depicts thermal infrared imagery comparing GPU surface 
temperatures across three states: inference on cards [12–15], inference on 
cards [0–3], and post-inference cooldown. Hottest (red), coldest (green), and 
central (white) temperature readings are marked. Observed thermal profiles 
validate expected heat distribution and recovery behavior consistent with 
GPU activation patterns. 
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Figure 2: GPU Utilization During 8-Card Inference Run

 

Figure 2 shows 3D plot illustrating GPU utilization across all 16 cards. 
Highlights selective activation of 8 cards while the remaining 8 remain idle, 
confirming proper workload distribution. 
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Figure 3: GPU Memory Utilization During 8-Card Inference Run

 

Figure 3 shows GPU memory utilization shows sustained usage patterns that 
correspond with inference sampling intervals. The vertical lines represent the 
time which sampling occurred for each batch. 
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Figure 4: Temperature Profiles by Card (Memory and Junction Sensors) 
During 8 Card Inference Run

 

Figure 4 shows thermal trends per card during the 8-card inference run. 
Memory is in pink, and junction is in purple. Active cards exhibit higher 
junction and memory temperatures than idle cards, demonstrating effective 
thermal containment. 

​ Date Published: May 2025 



 

Figure 5: GPU Power Consumption by Card During 8 Card Inference Run

 

Figure 5 shows power consumption traces the activation of specific cards. 
Consistent draw patterns indicate sustained compute load without anomalies 
or power spikes. 

Summary of Findings​
The system exhibited predictable thermal and power behavior with no 
anomalous spikes. Network traffic confirmed no reliance on cloud APIs or 
external endpoints during execution. 

 

Experiment Two: Stable Diffusion Throughput 

This experiment evaluated inference latency across a matrix of batch sizes 
and process counts. Thermal imaging was excluded, relying instead on 
onboard sensors and profiling instrumentation. 
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Normalized Latency Per Image​
Latency decreased with increasing batch size and process count, up to a point 
of diminishing returns. Efficiency gains plateaued after 4–8 processes, 
indicating potential overhead from inter-process coordination. 

Appendix A: Full latency distribution tables, including mean, median, min, 
max, and standard deviation values. 

Overall Inference Time Per Batch​
Raw batch inference time scaled linearly with batch size. As expected, larger 
batches (e.g., 128x4) introduced greater memory and processing demands, 
with a corresponding increase in total inference time. 

Figure 6: 3D Surface Plot of Median Batch Inference Latency

 

Figure 6 shows 3D surface plot of median batch inference latency, 
highlighting nonlinear scaling effects at higher GPU and batch counts. 

​ Date Published: May 2025 



 

Figure 7: Inference Speed Across Batch Size and GPU Count

 

Figure 7 shows line plots showing min, median, and max inference time 
across multiple batch/sample sizes and GPU counts (1, 2, 4, 8, 16 cards). 
Demonstrates consistent improvements in latency as batch size increases. 

Appendix B: Full batch latency datasets, including results with and without 
compilation overhead. 

Summary of Findings​
The system showed consistent performance scaling with increasing batch 
size and GPU process counts. Performance benefits diminished after a 
moderate level of parallelism, aligning with standard compute scaling trends. 

Experiment Three: Whisper Model Evaluation 

This experiment assessed the system’s ability to execute an automatic speech 
recognition (ASR) model, Whisper, compiled using torch.compile for 
performance optimization. The goal was to verify runtime compatibility and 
measure token throughput under inference conditions. 
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Model Execution and Optimization​
The Whisper model was compiled using PyTorch’s torch.compile with the 
'inductor' backend and 'max-autotune' setting. Compilation completed 
without errors, and the model executed successfully on AMD MI300X 
hardware, confirming compatibility with the ROCm stack. 

Token Throughput Results​
Inference was performed on a single GPU using audio-based input. 
Performance results were extracted from the inference logs and are 
summarized below: 

●​ Total Tokens Generated: 49,664 
●​ Tokens per Second per GPU: 3,507.09 
●​ Total Tokens per Second: 3,507.09 

Summary of Findings​
The Whisper model executed reliably and achieved stable throughput during 
evaluation. With a processing rate of over 3,500 tokens per second, the system 
demonstrated functional support for ASR workloads alongside vision-based 
generative models. 

Conclusion 
This validation study demonstrates that the AMD MI300X-based HPC system 
performs reliably and efficiently across a range of AI inference workloads. 
Through a combination of thermal profiling, network activity monitoring, and 
performance benchmarking using real-world models, the system was 
confirmed to operate independently of cloud resources and to maintain 
consistent thermal and utilization characteristics. 

In Experiment One, the absence of significant network traffic during Stable 
Diffusion inference confirmed that all compute operations were executed 
locally. Thermal imaging showed expected heat distribution and recovery 
behavior aligned with GPU activation patterns, further validating the system’s 
physical and operational design. 

In Experiment Two, inference latency decreased with increasing batch size 
and GPU parallelism up to a point, after which gains plateaued. These results 
align with expected compute scaling behavior and confirm the system's 
ability to handle large-scale generative workloads efficiently. 
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In Experiment Three, the Whisper ASR model compiled and executed 
successfully on the ROCm stack, achieving high token throughput and 
validating compatibility with non-vision model architectures. 

Together, these findings confirm the system’s suitability for AI-centric 
workloads requiring on-premises compute, thermally stable operation, and 
cross-model framework support. 
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Appendices 
Appendix A:  

Efficiency metrics demonstrate performance scalability and efficiency 
changes at various batch sizes and process counts. 

Mean of Normalized Inference Latency per Image Across Runs 
N-processe

s Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.04937738 1.67688545 1.50562806 1.38864324 1.33875865 1.32402607 1.3038516 1.30606513 

2 AMD Instinct 
MI300X 2.0514481 1.67303323 1.50188426 1.38439498 1.334242 1.31144887 1.29422006 1.29530868 

4 AMD Instinct 
MI300X 2.11751366 1.72171293 1.54571841 1.42257879 1.3745507 1.35176751 1.33468633 1.34251853 

8 AMD Instinct 
MI300X 2.08910996 1.70630638 1.52815795 1.41297805 1.36694539 1.33996125 1.32829781 1.336932 

16 AMD Instinct 
MI300X 2.10870393 1.7306104 1.55280419 1.43723724 1.38852501 1.36064278 1.34712118 1.37611377 

 

Median of Normalized Inference Latency per Image Across Runs 
N-process

es 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 

2.04846008
6 

1.67556909
7 

1.50463421
8 

1.38760977
2 

1.33832078
5 

1.32320066
7 

1.30347223
3 

1.30100267
7 

2 AMD Instinct 
MI300X 

2.03997018
3 

1.66668432
3 

1.49912687
6 

1.38186757
4 

1.33776851
2 

1.31496440
6 

1.29493734
8 1.30062523 

4 AMD Instinct 
MI300X 

2.10372816
1 

1.71247023
9 

1.53188989
5 1.4084997 1.35503809 1.33447187

9 
1.31131437

8 
1.32435823

8 

8 AMD Instinct 
MI300X 

2.07114262
8 

1.69244274
4 

1.51614182
7 

1.40071370
9 1.35786866 1.33106778

8 
1.31794246

7 
1.32396913

9 

16 AMD Instinct 
MI300X 2.09040995 1.71124849

1 
1.53855877

6 
1.42353612

4 
1.37520641

5 
1.34969963

5 
1.33597485

9 
1.35722254

2 

 
Standard Deviation of Normalized Inference Latency per Image Across 
Runs 

N-process
es 

Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 

0.03918252
8 

0.02714756
9 

0.01811791
7 

0.01163888
4 

0.00742766
2 0.00480842 0.00203962

6 
0.01118029

4 

2 AMD Instinct 
MI300X 0.05022018 0.03562427

3 
0.02824515

6 
0.02082360

1 
0.01688482

5 
0.01522875

3 
0.01572083

6 
0.02029517

2 

4 AMD Instinct 
MI300X 0.06636672 0.04740295

1 
0.04307172

9 
0.04011920

3 
0.04122222

7 
0.03948517

2 
0.04405716

9 
0.04349621

4 

8 AMD Instinct 
MI300X 

0.06337422
9 

0.04859210
5 0.03947595 0.03592266 0.03779239

4 
0.03653706

5 
0.04153237

9 
0.04364906

7 

16 AMD Instinct 
MI300X 

0.06773906
6 

0.05424558
6 

0.04408327
8 

0.03992105
4 

0.03647860
2 

0.03425076
2 

0.03537482
9 

0.04648045
5 

 

Minimum of Normalized Inference Latency per Image Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.01280901 1.6497543 1.48249553 1.37439937 1.32773081 1.31985466 1.30130218 1.29945726 

2 AMD Instinct 
MI300X 1.9892524 1.6242746 1.46312807 1.35103946 1.30978927 1.29135364 1.27712383 1.27312046 

4 AMD Instinct 
MI300X 2.01280646 1.65398145 1.47800774 1.36359664 1.32448185 1.31565482 1.30175421 1.30194866 

8 AMD Instinct 
MI300X 2.00933665 1.63771693 1.47543046 1.36447407 1.32391899 1.30406315 1.29145796 1.29438778 
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16 AMD Instinct 
MI300X 1.98884452 1.63314601 1.48334736 1.37159906 1.33040549 1.31986681 1.30772843 1.32971598 

 

Maximum of Normalized Inference Latency per Image Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.92184331 2.10286945 1.7040881 1.47727355 1.37689271 1.34169307 1.308369 1.32279791 

2 AMD Instinct 
MI300X 3.02066629 2.07819498 1.72500152 1.49121443 1.38728978 1.3364744 1.31290286 1.32796377 

4 AMD Instinct 
MI300X 3.0737592 2.18527845 1.77364023 1.544476 1.45191687 1.42342357 1.41504747 1.42505076 

8 AMD Instinct 
MI300X 3.02687987 2.19131281 1.76296769 1.55244651 1.4693952 1.44504316 1.44059505 1.4497343 

16 AMD Instinct 
MI300X 3.15538601 2.20775351 1.8199441 1.56292522 1.49577937 1.47913266 1.47236326 1.51122326 
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Appendix B:  

Speed and latency metrics present the latency impact of varying batch sizes 
and process counts. 

Mean Batch Inference Latency (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.04937738 3.35377089 6.02251223 11.1091459 21.4201383 42.3688341 83.4465025 167.176337 

2 AMD Instinct 
MI300X 2.0514481 3.34606646 6.00753706 11.0751598 21.347872 41.9663639 82.8300837 165.79951 

4 AMD Instinct 
MI300X 2.11751366 3.44342585 6.18287366 11.3806303 21.9928111 43.2565603 85.419925 171.842371 

8 AMD Instinct 
MI300X 2.08910996 3.41261276 6.1126318 11.3038244 21.8711263 42.87876 85.0110596 171.127296 

16 AMD Instinct 
MI300X 2.10870393 3.4612208 6.21121674 11.4978979 22.2164001 43.5405691 86.2157554 176.142563 

 

Mean Batch Inference Latency with Overhead (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.05326045 3.35750884 6.02781091 11.1145124 21.4261503 42.3759959 83.4551713 167.183234 

2 AMD Instinct 
MI300X 2.0562849 3.35077684 6.01421656 11.0815582 21.3550591 41.9747526 82.8401003 165.806787 

4 AMD Instinct 
MI300X 2.1224004 3.44817848 6.18960965 11.3873803 22.0000574 43.2649855 85.4303632 171.849771 

8 AMD Instinct 
MI300X 2.09390903 3.41714873 6.11903774 11.3104556 21.8780608 42.8868093 85.0209367 171.134947 

16 AMD Instinct 
MI300X 2.1134949 3.46585856 6.21781897 11.5046974 22.2235046 43.5487896 86.2255751 176.149991 

 

 

Median Batch Inference Latency (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.04846009 3.35113819 6.01853687 11.1008782 21.4131326 42.3424213 83.4222229 166.528343 

2 AMD Instinct 
MI300X 2.03997018 3.33336865 5.99650751 11.0549406 21.4042962 42.078861 82.8759903 166.480029 

4 AMD Instinct 
MI300X 2.10372816 3.42494048 6.12755958 11.2679976 21.6806094 42.7031001 83.9241202 169.517854 

8 AMD Instinct 
MI300X 2.07114263 3.38488549 6.06456731 11.2057097 21.7258986 42.5941692 84.3483179 169.46805 

16 AMD Instinct 
MI300X 2.09040995 3.42249698 6.15423511 11.388289 22.0033026 43.1903883 85.502391 173.724485 

 

Median Batch Inference Latency with Overhead (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.05228547 3.35478727 6.02405715 11.1057544 21.4188836 42.3490363 83.4299891 166.532347 

2 AMD Instinct 
MI300X 2.04456923 3.33794803 6.00257753 11.0619376 21.4111982 42.0898759 82.8887236 166.490507 

4 AMD Instinct 
MI300X 2.10876148 3.42971152 6.13445825 11.2749947 21.6873721 42.7154409 83.9332451 169.526877 

8 AMD Instinct 
MI300X 2.07582038 3.38916006 6.07064265 11.2120556 21.7311971 42.6043258 84.3568671 169.479389 

16 AMD Instinct 
MI300X 2.09512208 3.42711112 6.16064313 11.3944493 22.010583 43.1999151 85.5118221 173.731471 
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Standard Deviation Batch Inference Latency (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 0.03918253 0.05429514 0.07247167 0.09311107 0.11884259 0.15386945 0.13053609 1.43107768 

2 AMD Instinct 
MI300X 0.05022018 0.07124855 0.11298063 0.16658881 0.2701572 0.4873201 1.0061335 2.59778205 

4 AMD Instinct 
MI300X 0.06636672 0.0948059 0.17228692 0.32095363 0.65955564 1.26352549 2.81965883 5.56751539 

8 AMD Instinct 
MI300X 0.06337423 0.09718421 0.1579038 0.28738128 0.60467831 1.16918608 2.65807225 5.58708061 

16 AMD Instinct 
MI300X 0.06773907 0.10849117 0.17633311 0.31936843 0.58365763 1.09602439 2.26398903 5.94949825 

 

Standard Deviation Batch Inference Latency with Overhead (Seconds) 
Across Runs 

N-processe
s 

Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 0.03960407 0.05489274 0.07318702 0.09417166 0.1201096 0.15563419 0.1324915 1.4359491 

2 AMD Instinct 
MI300X 0.05052636 0.07163744 0.11329914 0.16725654 0.27052923 0.48797874 1.00590845 2.60022924 

4 AMD Instinct 
MI300X 0.06652602 0.09528355 0.17274183 0.3211265 0.65991532 1.26330906 2.819671 5.56832499 

8 AMD Instinct 
MI300X 0.06373757 0.09761949 0.15841658 0.28784039 0.60480792 1.16924444 2.65807841 5.58745754 

16 AMD Instinct 
MI300X 0.06806096 0.1088199 0.17670834 0.31951163 0.58387727 1.0959963 2.26365179 5.94860981 

 

Minimum Batch Inference Latency (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.01280901 3.29950859 5.92998213 10.995195 21.243693 42.2353492 83.2833397 166.330529 

2 AMD Instinct 
MI300X 1.9892524 3.24854921 5.85251228 10.8083157 20.9566283 41.3233164 81.7359254 162.959419 

4 AMD Instinct 
MI300X 2.01280646 3.30796291 5.91203096 10.9087731 21.1917096 42.1009542 83.3122694 166.649429 

8 AMD Instinct 
MI300X 2.00933665 3.27543386 5.90172184 10.9157926 21.1827039 41.7300208 82.6533093 165.681636 

16 AMD Instinct 
MI300X 1.98884452 3.26629202 5.93338943 10.9727925 21.2864878 42.235738 83.6946195 170.203645 

 

Minimum Batch Inference Latency with Overhead (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.01593523 3.30337435 5.93536172 11.0006177 21.2494134 42.2426788 83.2911503 166.335829 

2 AMD Instinct 
MI300X 1.99379033 3.25292941 5.85914429 10.8145572 20.9636421 41.331643 81.7455672 162.963513 

4 AMD Instinct 
MI300X 2.01731929 3.31241412 5.91781562 10.9167669 21.1982575 42.1089589 83.3219129 166.653276 

8 AMD Instinct 
MI300X 2.0128021 3.28052639 5.90814021 10.9220689 21.1907683 41.7377447 82.6622635 165.6862 

16 AMD Instinct 
MI300X 1.99244164 3.27145581 5.93924869 10.9830173 21.2930679 42.2427844 83.702913 170.208359 
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Maximum Batch Inference Latency (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.92184331 4.2057389 6.8163524 11.8181884 22.0302834 42.9341783 83.7356163 169.318132 

2 AMD Instinct 
MI300X 3.02066629 4.15638997 6.90000607 11.9297155 22.1966366 42.7671809 84.0257831 169.979363 

4 AMD Instinct 
MI300X 3.0737592 4.3705569 7.09456093 12.355808 23.2306699 45.5495542 90.5630381 182.406497 

8 AMD Instinct 
MI300X 3.02687987 4.38262562 7.05187076 12.4195721 23.5103232 46.2413811 92.1980833 185.56599 

16 AMD Instinct 
MI300X 3.15538601 4.41550703 7.2797764 12.5034018 23.9324699 47.332245 94.2312487 193.436577 

 

Maximum Batch Inference Latency with Overhead (Seconds) Across Runs 
N-processe

s 
Accelerator 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4 

1 AMD Instinct 
MI300X 2.93519776 4.21912168 6.82964362 11.8322366 22.0436549 42.948205 83.7497089 169.332411 

2 AMD Instinct 
MI300X 3.03417587 4.1724408 6.91334813 11.9439843 22.2099778 42.7838285 84.0395535 169.994472 

4 AMD Instinct 
MI300X 3.0870205 4.38794597 7.11045614 12.3686837 23.2375394 45.5572552 90.5730299 182.422601 

8 AMD Instinct 
MI300X 3.04215726 4.3989565 7.0677703 12.435573 23.5170206 46.248684 92.2081061 185.570252 

16 AMD Instinct 
MI300X 3.16835645 4.42896407 7.29380542 12.5192374 23.9393882 47.340783 94.2403654 193.442049 
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Appendix C: ResNet50 Fused Kernels 

As an extension to the core validation experiments, engineering teams 
demonstrated two real-time, end-to-end ResNet50 application executions 
across varied image and batch sizes. These examples highlighted kernel-level 
optimization strategies in a fused execution environment. 

Real-Time Demonstration 
Two ResNet50 inference pipelines were shown live, operating on differing 
batch and input dimensions. 

Demonstrations validated that the system could execute complex fused 
kernel operations without runtime instability. 

Fused Kernel Architecture Overview 
The fused kernel demonstrated integration across four distinct compute 
classes: FPGA, CPU, GPU, and ASIC. 

This multi-class orchestration forms the basis for efficient and flexible 
hardware abstraction within AI workloads. 

Future Roadmap Discussion 
A future-state vision was shared in which fused kernel workloads would be 
distributed across multiple servers. 

The orchestration layer would optimize kernel placement dynamically for 
throughput and energy efficiency. 

Codebase Access and Highlights 
Access to the fused kernel codebase was provided for review. 

Code examples illustrated how smaller sub-kernels could be individually 
tuned for specific architectural features and datatypes. 

These sub-kernels could then be integrated into the larger fused kernel 
framework as reusable, composable components. 

Design Philosophy 
The guiding principle is to iteratively optimize atomic kernels once and reuse 
them as stable, callable units within broader kernel compositions. 

Over time, the system would expand the library of fused-in kernels, enabling 
scalable inference pipelines with minimal re-optimization overhead. 
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