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Abstract

Background: Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important
molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug
treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven
multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the
tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to
generate sample-specific models of cancer. Results: By combining published models of different cells relevant to pancreatic
ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment,
formally describing cell type–specific molecular interactions and cytokine-mediated cell-cell communications. We used an
ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the
viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator
between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC.
Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations
suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis.
Conclusions: The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant
PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC), the most common
form of pancreatic cancer, is the fourth leading cause of cancer-
associated death in the United States and is predicted to be the
second in 2030 [1]. With a 5-year survival rate of only 3%, it has

a poor prognosis. Across all types of cancer, it is becoming in-
creasingly clear that interactions within the tumor microenvi-
ronment (TME) have a strong effect on tumor growth. This is
particularly relevant for PDAC research, where previous studies
have revealed high heterogeneity and complexity in the TME,
where a mixture of interacting immune cells, stromal tissue, and
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cancer cells coexist. However, much remains to be learned re-
garding how differences in the TME affect the behavior of cancer
cells. For instance, there is a debate concerning whether stroma-
cancer interactions are associated with progression of pancre-
atic cancer or, rather, provide protective measures [2]. Thus, to
make progress in the treatment of PDAC, new strategies must
be developed to improve our understanding of the effects of the
TME on cancer states and progression.

In silico models are frequently used in systems biology for
the discovery of general principles and novel hypotheses [3–5].
Moreover, it is eventually possible that when combined with rel-
evant data, in silico models will be able to make predictions with
sufficient accuracy for therapeutic treatment. Despite their po-
tential, concrete examples of predictive models of cancer pro-
gression are scarce. One reason is that most models have fo-
cused on single–cell type dynamics, ignoring the interactions
between cancer cells and their local microenvironment. Indeed,
there have been a number of models that were used to study
gene regulation at the single-cell scale, such as macrophage dif-
ferentiation [6–8], T cell exhaustion [9], differentiation and plas-
ticity of T helper cells [10, 11], cell cycle [12–14], and regulation
of key genes in different tumor types [15].

Although not as numerous as single cell–type models, mul-
ticellular models have progressively been developed to study
different aspects of cancer biology, including tumor immuno-
surveillance [16–20], hypoxia [21, 22], angiogenesis [23, 24], and
epithelial-mesenchymal transition [25, 26], among others; we re-
fer the reader to Metzcar et al. [27] for a recent and comprehen-
sive review. Typically, these models are based on phenomenolog-
ical rules to model cell behavior and therefore use limited data
to calibrate their parameters. Although multicellular models are
being increasingly used in cancer biology, there remains a need
for a modeling framework that is capable of integrating different
multiscale properties of the TME, such as molecular and cellu-
lar heterogeneity and non-uniform spatial distributions of cells,
with the capacity to leverage diverse -omics datasets for model
building, calibration, and validation, allowing researchers to ex-
plore novel molecular therapies in silico [3, 28–30].

In this work, we developed a modeling framework designed
to study the interaction between cancer cells and their microen-
vironment. Fig. 1 shows a schematic of the modeling framework.
The framework is a combination of two well-established ap-
proaches: Boolean networks [31] (BNs) and agent-based model-
ing [27] (ABM), used at the molecular and cellular levels, respec-
tively. The cancer signaling and regulatory networks are mod-
eled with BNs, while ABM is used to simulate intercellular net-
works consisting of different cell types and intercellular signal-
ing molecules. We used BNs because of their efficient and sim-
ple formulation that minimizes the number of parameters in the
multicellular model. This vertical (“multiscale”) integration, us-
ing ABM and BNs, enables the exploration of therapeutic inter-
ventions on the molecular level for inducing transitions of the
tumor into less proliferative states, while using currently avail-
able high-throughput molecular data.

Voukantsis et al. [32] proposed a multicellular model for tu-
mor growth in which cells are placed in a lattice. Each cell
is endowed with a Boolean network that controls cellular ac-
tions, such as proliferation and apoptosis, that are key for tumor
growth. Letort et al. [33] integrated stochastic Boolean signal-
ing networks into ABMs by combining MaBoSS [34, 35], an open
source package for BNs, with PhysiCell [17], an ABM-based sim-
ulation platform. The main goal of the previous ABM/BN combi-
nations was the simulation of tumor growth, which requires not
only parameters that regulate cell-cell communication and in-

tracellular gene regulation but also parameters for cell division,
cell death, oxygen uptake, mechanical interactions, extracellu-
lar matrix properties, and so forth, resulting in highly complex
models that require data currently not available for validation
and calibration [36]. In this article, our focus is modeling how the
cancer cell state is affected by communication with other cells
in the TME. Therefore, we included model components, such as
gene regulation, cell proportions, and cellular spatial distribu-
tions, that can be directly compared with commonly used omics
and imaging data, aiming at integration between the model and
experimental data needed in cancer research [28].

We built a network of cell type–specific intracellular interac-
tions and cytokine-mediated intercellular communications by
combining published models of different cell types relevant to
PDAC, namely, the ductal cancer cells, stellate cells, CD4+ T cells,
CD8+ T cells, and macrophages. Through computational simu-
lations, using an ensemble modeling approach whereby multi-
ple simulations are aggregated into statistically summarized re-
sults, this framework was used to study how the TME, charac-
terized by a set of cytokines, stromal cells, and somatically het-
erogeneous cancer cells, affects the viability of cancer cells.

Modeling Framework

In this section, we describe our approach to model a block of
cancerous tissue with a mixture of cancer, stromal, and immune
cells randomly located inside a 3D rectangular simulation do-
main (Fig. 1). Each cell contains a BN that determines its cellular
phenotype (functional state), such as proliferation or apoptosis,
the possible secretion of cytokines, and the state of membrane
receptors. The model is built on the following assumptions and
considerations:

� Because our main goal was to study the interplay between
cell-cell communication and gene regulation, other interac-
tions and processes, such as cell motility and mechanical
interactions, were not included in the model. Moreover, the
model simulations focus on a time window relevant to cell
signaling and gene regulation, which is a few hours. Consid-
ering these time scales, we assumed that the number of cells
and the initial positions of cells do not change during simu-
lations.

� The model uses two time scales, one for gene regulation and
one for cell-cell communication. Although they are biologi-
cally related, we assume that cell communication takes place
on a faster time scale than gene regulation.

� The parameters that characterize cell behavior are the same
for all cells of a given type. Thus, all cells of a single type are
governed by the same BN and share the same parameters of
cell communication.

The following subsections present a detailed description of
each component of the modeling approach.

Cells as Boolean networks

Signal transduction and gene regulation in a given cell are mod-
eled with synchronous BNs, a well-known modeling approach
used to study several cellular processes important in cancer
[37, 38]. It is termed synchronous because all nodes in the BN
(in all cells) are updated simultaneously at each time step. The
BN of a cell i is defined on a set of n binary-valued variables
Xi = {xi

1, . . . , xi
n}, where a node xi

j ∈ {0, 1} represents the expres-
sion of a gene, a cellular behavior, or secretion of a cytokine to
the TME. The binary vector Xi represents the phenotypic state
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Figure 1: Schematic representation of the multiscale model including multiple cell types and cytokines of the TME.

of cell i . Thus, for a cellular BN of n nodes, there are 2n possi-
ble states. We divided the binary nodes xi

j into 2 groups: signal
receptors and regulatory nodes. Receptor nodes sense the pres-
ence of signaling molecules in the local TME, with their updating
rules being specified in the next subsection. Regulatory nodes
are updated in discrete time steps by conventional logic rules.
Specifically, the regulatory node j of a cell i at time step t + 1
(i.e., the next time step) is determined by the values of the nodes
(“genes”), xi

j1 , xi
j2 , . . . , xi

jkj,i
at time t by means of the Boolean

function F i
j : {0, 1}kj,i → {0, 1}. There are kj,i nodes assigned as

inputs to regulatory node xi
j , thereby determining the wiring of

the BN. Thus, the Boolean value of a regulatory node xi
j is given

by

xi
j (t + 1) = F i

j

(
xi

j1 (t) , . . . , xi
jkj,i

(t)
)

. (1)

It is worth noting that regulatory genes of all cells are up-
dated synchronously using the states of nodes of the same cell,
whereas membrane receptors are updated by the TME, i.e., by
the presence of cytokines right before the update of regulatory
genes. Moreover, cells of the same type are regulated by the
same set of Boolean functions. Thus, all cells of type I are regu-
lated by {F I

1 , F I
2 , . . .}, which do not change during simulations.

These regulatory functions represent existing knowledge of in-
tracellular gene regulation in a given cell type and are typically
obtained from the literature.

Additionally, to model stochastic dynamics, following the
convention used in random BNs [31, 39, 40], we introduce a
perturbation probability q and a random perturbation vector,
γ = [γ1, γ2, . . . , γn], where γ j ∈ {0, 1} and P { γ j = 1} = q, such
that

Xi (t + 1) = Xi (t) ⊕ γ, with probability 1 − (1 − q)n

Xi (t + 1) = [
F i

1, F i
2, . . . , F i

n

]
, otherwise,

where ⊕ indicates the modulo-2 sum. The fact that any state
transition has a nonzero probability under this perturbation
model implies that the dynamics of the network are described
by an ergodic Markov chain with a (unique) steady-state dis-
tribution [40, 41]. It is worth noting that we use the same
gamma value (γ j = q) for all the genes regardless of the
cell type.

Some of the regulatory nodes are associated with important
cellular behaviors, such as proliferation, apoptosis, or migra-
tion. Moreover, some of the regulatory nodes are associated with
the secretion of cytokines in such a way that a state of 0 or 1
of these nodes corresponds to low or high rates of secretion,
respectively.

Cell-cell communication via diffusion of cytokines

We include communication between cells by modeling the se-
cretion, sensing, and diffusion of cytokines. The formulation of
cell-cell communication is similar to the model developed by
Olimpio et al. [42]. For simplicity we made the following assump-
tions. First, the concentration of cytokines is not affected by
cellular uptake of molecules. Second, the cytokine diffusion is
much faster than gene regulation.

A cell i releases cytokine m with a secretion rate of ηi
m(x i

Sm
)

molecules per time step, which depends on the Boolean state of
its designated signal node x i

Sm
(Sm is the label of one of the regu-

latory nodes of cell i ). We assume that ηi
m(0) = 1 and ηi

m(1) = Ri
m ,

Ri
m > 1, to account for basal and active expression, respectively.

We make this assumption with no loss of generality because it is
equivalent to normalizing active expression by the lower basal
expression [42]. The concentration, C , of cytokine m changes in
space and time according to a diffusion degradation equation.
For cells randomly scattered in a regular 3D lattice, the concen-
tration of cytokine m in a voxel v is approximated by solving the
following diffusion degradation equation with periodic bound-
ary conditions:

∂C v
m/∂t = D � C v

m − γDC v
m + h−3

∑
i∈v

ηi
m

(
xi

Sm

)
(2)

for each voxel v of the lattice containing a set of cells. D is the
diffusion coefficient, γD is the constant degradation rate, and h is
grid spacing used to solve the diffusion degradation equation by
the finite difference method. Assuming that diffusion is much
faster than gene regulation, we use the steady state of the diffu-
sion equation above,

0 = D � C v
m − γDC v

m + h−3
∑

i∈v
ηi

m

(
xi

Sm

)
, (3)

and use a numerical solver for calculating C v
m in the simulations.

An important component of the steady state solution is the ef-
fective interaction distance, λ, where λ = (D/γD )1/2 [43, 44].

Integration of gene regulation and cell-cell
communication

The coupling between signal diffusion and BNs was adapted
from Olimpio et al. [42], where a cellular automata model was
used to analyze the consequences of cell-cell communication.
Figure 1 shows a representation of the integration between BNs
and cell-to-cell signaling. The cellular BNs can influence the spa-
tial distribution of cytokines. A cytokine p is secreted by cell i of
type C with secretion rate RC

p (high) or 1 (low) according to the
Boolean state of an output node of its BN, xC

S, p, in Fig. 1.
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Figure 2: A. Top views of 3D spatial configuration of a 2-cell model; stellate cells are in grey while cancer cells are in red for those with proliferation nodes in ON
state and blue for those with proliferation nodes in OFF state; for cancer cells we used s = 0.07. The top panel shows the spatial configuration at the beginning of
a simulation and the bottom panel shows the configuration after 100 time steps. B. The average proportion of cancer cells with active proliferation (red solid line)
and apoptosis (black solid line) as a function of time steps. Averages and standard deviations were computed from 10 simulations. More details about simulation

parameters can be found in Supplementary Table S2.

The concentration of cytokines can influence the behavior
of cellular BNs. To sense cytokine m, cell i checks the local con-
centration of the signal, i.e., the concentration at its containing
voxel. If the local concentration of m is above a threshold value,
K i

m, then the signal receptor is activated; otherwise it is deacti-
vated. This is depicted by the blue triangles in Fig. 1. Formally,
the state of the receptor node x i

R, m of cell i , located in voxel v,
follows the equations:

x i
R,m (t + 1) = 1, if C v

m (t) > K i
m,

x i
R,m (t + 1) = 0, otherwise,

(4)

where C v
m is the concentration of m in voxel v that contains cell i .

The thresholds K i
m are parameters of the model that characterize

the sensitivity of cells to cytokine concentration. All cells of the
same type share the same activation threshold associated with
a given cytokine.

Note that while our model assumes diffusion-based cell-cell
communication, the effective interaction distance can be short-
ened, such that the system behaves as if signaling were contact-
mediated, the latter effectively being a special case of the for-
mer. This is possible by setting a spacing resolution (h) equal to
the cell diameter, such that changes in concentration between
nearest-neighbor cells can be captured by the model of signal
diffusion.

Tissue architecture

We constructed a lattice-free model tissue as a 3D point process
of cells, each represented by a BN and a spatial point in a rectan-
gular block of size L . We assume a fixed density of cells, ρ, and
divide cell types into cancer and stromal. The density of can-
cer cells is ρC = rC ρ, where rC is the fraction of cancer cells in
the tissue sample. The density of stromal cells is ρS = (1 − rC )ρ.
The positions of cancer cells were generated by a Thomas pro-
cess [45] in which points are scattered around cluster centers
according to a 3D Gaussian distribution with zero mean and co-
variance matrix σ 2 I , where I is the 3 × 3 identity matrix. The
cluster centers are generated by a simple Poisson process with

intensity ρcc . Stromal cells are generated by a void process [46] in
which points are removed if they are within a distance Rex from
a cluster center. The same cluster centers were used for cancer
and stromal cells. The cluster centers are generated using a Pois-
son process with density ρcc = sρC , where s is a parameter that
determines the clustering of cancer cells.

To avoid unrealistic high densities of cancer cells, we used a
fixed value of σ, such that the density of cells inside the sphere
with radius σ is limited by a parameter ρmax. We set up ρmax = 8ρ,
so that clusters of cancer cells are more concentrated than stro-
mal cells. Fig. 2A shows an example of the spatial distribution
of a system with 2 cell types using a value of s = 0.7, and Sup-
plementary Fig. S1 shows the distribution of cells for different
values of s, showing that changing s changes the distribution of
cancer cells from clustered to homogeneous.

Methods
Simulations and simulation framework

In a tissue model with N cells and n genes per cell, there are
2Nn possible states. Assuming the tissue model reaches a steady
state distribution, owing to the ergodic dynamics induced by the
perturbation probability q [31], the expectation of expression of
node g in cancer cells is

E [ fg] =
∑

s
ps fs (g) , (5)

where ps is the probability of state s ∈ {1, 2, . . . , 2Nn} in the steady
state distribution and fs(g) is the fraction of cancer cells with
gene g in the ON state. Similar equations are used for the ex-
pression of other cell types of the system. The distribution of ps

depends on model parameter set θ and the BN for each cell type.
Because the number of possible states is very large, we need to
approximate the expectation above by performing M indepen-
dent simulations and considering the last K steps of each sim-
ulation. Thus, the approximation of the expression of gene g is

f̂g (θ ) = 1
MK

∑M

i

∑K

j
fsi j (g) , (6)
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where fsi j (g) is the fraction of cancer cells with active gene g in
the state si j of the system in step j of simulation i . The gene
expression profile of cancer cells from the simulations is as fol-
lows:

Ḡ (θ ) =
{

f̂1 (θ ) , f̂2 (θ ) , . . . , f̂n (θ )
}

. (7)

Simulations of our model were implemented in Biocellion
[47], a high-performance computing platform designed for sim-
ulation of multicellular systems. At every time step t of the sim-
ulation, the concentration of signaling molecule m is updated by
numerically solving equation (3), after which the Boolean states
of the cells are updated using the computed concentrations. Fig-
ure 2A shows the spatial cellular distribution of a system with
2 cell types (pancreatic cancer cells and stellate cells). Figure 2B
shows how the fraction of cancer cells with activated prolifer-
ation and apoptosis nodes changes during the simulation; the
proportion of cells reaches a steady state after ∼25 time steps.
The standard deviations and averages of cell fractions were com-
puted from 10 independent simulations using the same param-
eter values. In remaining sections, if the values are not specified,
then results were collected from M = 20 independent simula-
tions of 400 time steps, using the last K = 200 time steps.

Within the proposed model, the phenotype of the tissue seg-
ment is characterized by the average proportion of cells with the
corresponding phenotypic node in the ON state (activated); for
instance, the cancer proliferation phenotype of the 2 cell types
system in Fig. 3 is estimated by averaging the fraction of cancer
cells with an activated proliferation node over the last 50 steps of
the simulation, which is the time window in which the system
is stable (see Fig. 2B).

Boolean networks

Cancer and stellate cells
The BNs of pancreatic cancer cells (PCCs) and pancreatic stellate
cells (PSCs) were obtained from Wang et al. [48]. The network
includes pathways that were found to be important in PDAC
progression, such as the Ras-ERK and PI3K-Akt, TGFβ-SMAD4,
and p53 signaling. The network also includes pathways that are
important for activation of stellate cells. The cytokines that are
used to communicate between these 2 BNs are also available
in Wang et al. [48]. Furthermore, we have modified the model
to include relevant mutations of PDAC cells including KRAS,
TP53, CDKN2A, and SMAD4 mutations, which are present in
>30% of the samples from patients with PDAC in The Cancer
Genome Atlas (TCGA) [49]. The effect of mutations is modeled
by permanently setting nodes to ON or OFF, depending on
whether the mutation is functionally activating or inactivating.
The mutations are applied to a randomly selected fraction of
cancer cells, which in our model is characterized by a parameter
(α). Moreover, we have removed the HER2-JAK1-STAT pathway
because mutations in HER2 only appear in a small number of
TCGA PDAC samples.

CD4+ T cells
The BN for CD4+ cells was obtained from Tieri et al. [11], who
model the differentiation of naive CD4+ T cells into 4 commonly
characterized subtypes: 3 effector cells, type 1 helper (TH1) T cell,
TH2, and TH17, and regulatory T cells (Tregs). Each subtype se-
cretes specific sets of cytokines that can influence the behaviors
of other cells. The model includes cytokines such as interferon-

γ (IFN-) secreted by TH1 subtypes, interleukin 10 (IL-10) and IL-4
secreted by TH2, and IL-17 and IL-6 secreted by TH17.

Macrophages
We implemented the BN model of macrophage cells developed
by Palma et al. [6]. Their BN models macrophage differentia-
tion into 4 commonly characterized subtypes: the immunogenic
M1 and 3 immunosuppressive subtypes, M2a, M2b, and M2c.
Each of these subtypes is determined by a particular set of ex-
pressed genes and cytokines including IL-12 and IL-10. We have
extended the model by adding the secretion of TNF-α and IL-6
secreted by M1 and M2b subtypes, and TGF- β secreted by M2a
and M2c [50, 51].

CD8+ T cells
We obtained a BN model of CD8+ T cells from a recently pub-
lished article by Bolouri et al. [9], in which the authors study TCR
activation and the response of CD8+ T cells to cytokines. They
developed a BN that models the transition of T cells from naive
to acute and exhausted states in response to chronic antigen
stimulation. The exhausted CD8+ T cell state is characterized by
high expression of immune checkpoint molecules and lowered
proliferation capacity, cytokine production, and cytotoxic activ-
ity compared with effector or memory CD8+ T cells [52, 53].

Parameter calibration

Our tissue model is characterized by a set of parameters listed
in Supplementary Table S1; some of these parameters are es-
timated from data available in TCGA. Specifically, cell fractions
were estimated from gene expression data using “cell deconvo-
lution” [54]. The mutation states of patient samples were sum-
marized from a TCGA Pan-Cancer dataset [55], and deconvolved
gene expression of cancer cells was generated using the DeMix
algorithm [56]; see Estimation of cell fractions section for details
concerning cell fraction estimation. Most parameters were cali-
brated using deconvolved gene expression data. It is worth not-
ing that BNs are static and are not optimized.

The optimization protocol is represented in Supplementary
Fig. S2. Our strategy is to optimize the unknown parameter set
θ , including secretion rates, activation thresholds, and mutation
rates, by minimizing a cost function C p(θ ) defined as the devia-
tion (ε in Supplementary Fig. S2) between the gene expression
Gmodel(θ ) of cancer cells in the model and the gene expression of
cancer cells obtained from TCGA samples GTCGA(p):

C p (θ ) = ε
(

Gmodel (θ ) , GTCGA (p)
)

, (8)

where p is a TCGA sample. We used ε(x, y) = 1 − R(x, y)
as a cost function C p(θ ), where R(x, y) is the Spearman cor-
relation coefficient between x and y. Other alternatives of
ε(Gmodel(θ ), GTCGA(p)) can be tested in the future.

Thus, the optimization problem is to find the set of optimal
parameters:

θ∗
p = arg [minθ⊂� C p (θ )] (9)

for each TCGA sample p. We used simulated annealing (SA) [57,
58] to minimize C p(θ ). For our particular case, SA consists of the
following steps:

1. Initialize θi randomly from �, the space of parameters listed
in Supplementary Table S1.
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Figure 3: Network of molecular interactions in pancreatic cancer cells (A, green area) and pancreatic stellate cells (B, yellow area). Extracellular cytokines between

these 2 cells are in the orange area. Adapted from Wang et al. [48] and illustrated in Biotapestry [59]. The Boolean functions for each gene of the 2 cells are available
in Supplementary Tables S3 and S4.
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2. Run W steps of the Metropolis algorithm [57] at tempera-
ture Tk. Select a new parameter θ j from a distribution Pi j and
compute  Ci j = C p (θ j ) − C p(θi ). If Ci j ≤ 0, accept the new
parameter set, letting θi = θ j ; otherwise accept the new pa-
rameter set θ j with probability exp(−Ci j/Tk).

3. Update the temperature, Tk+1 = 0.8Tk. If Tk+1 < Tmin, then
stop the algorithm; otherwise, go to step 2.

We used Pi j = P (θ j |θi ) = Gaussian(θi , σ (T )), where σ (T ) =
σo T and T is the temperature. We have used To = 0.5, σ0 = 1.0,
and W = 60 (number of steps in step 2) to generate the optimum
parameters for each TCGA sample.

Estimation of cell fractions

Cellular deconvolution [60] was used to estimate cellular frac-
tions from bulk RNA sequencing (RNA-seq) data. In this work, we
used the ADAPTS R package [54] and in particular, the SVMDE-
CON method, which makes estimations based on support vector
regression. This method solves the linear model Y = AX, where
Y is the gene expression of a given sample and A is a matrix of
gene expression signatures for each cell (in columns). This ma-
trix (A) is typically derived from experiments where cells have
been physically isolated and then measured in bulk for gene ex-
pression. However, the pancreas is composed of cell types not
typically found in deconvolution resources. To create a signa-
ture matrix that includes pancreatic cells, similar to the meth-
ods found in the ADAPTS package [54], we used a pancreatic
single-cell RNA sequencing (scRNA-seq) dataset in conjunction
with expression signatures for 22 immune cell types (LM22) [61].
The cells found in the scRNA-seq data were previously labeled,
providing a set of cells for each type. The median expression for
each gene was computed by cell type, giving an expression value
per gene per cell type. The goal is to produce a matrix of genes by
cell types, where each signature is predictive of that particular
cell type, and the matrix overall has a low condition number.

Iterating over cell types using a t-test, we selected genes to
maximize the difference between one cell type and all others,
building up the matrix. As the matrix grows in the number of
genes, the condition number is also computed. The number of
genes is selected to minimize the condition number. The final
cell signature matrix comprises 566 genes for 33 cell types, with
11 cell types specific to the pancreas. The expression values were
normalized first independently by data source, then merged and
renormalized. The final cell signature matrix is available in Ad-
ditional File 1.

Non-metastatic pancreatic tumor data from TCGA (PDAC)
were used, providing 119 samples. The cancer cell quantities
were estimated using ductal cells as a proxy and were found
to correlate with tumor purity, the proportion of cancer cells in
each sample, which is calculated from publicly available TCGA
copy number variation data (Supplementary Fig. S4). A file with
estimated cellular fractions for cancer cells, stellate cells, CD4+

T cells, macrophages, and CD8+ T cells is available in Additional
File 2.

Mutation state of cancer cells from TCGA

For each TCGA sample, we used the MC3 Pan-Cancer somatic
mutation table to generate a probability of a cancer cell having
a mutated gene [55]. We compute probabilities for KRAS, TP53,
CDKN2A, and SMAD4 mutations, which are present in 93%, 73%,
30%, and 32% of the TCGA samples of PDAC, respectively [49].
This was done by taking the number of sequencing reads with

a detected mutation and dividing that count by the number
of total reads, assuming that the mutated reads come from
cancer cells. Thus, for each sample and each gene, we have
a probability of gene mutation. A sample-level instantiation
is produced by sampling from these Bernoulli distributions. A
file with the presence (1) or absence (0) of mutation in TP53,
CDKN2A, SMAD4, or KRAS for each TCGA sample of PDAC is
available in Additional File 3.

Gene expression of cancer cells

Deconvolution of expression into portions of cancer cells and
stromal (and immune) tissue compartments was performed us-
ing the DeMix software [56]. Expression values had previously
been computed and were supplied by the authors of the soft-
ware. A file with the expression values of cancer genes is avail-
able in Additional File 4.

Results
Analysis of the interplay of cancer and stellate cells

Previous experimental studies in mice and in vitro experiments
[62] show that PSCs promote the proliferation of PCCs during the
progression of disease. In this section, we use our framework to
study the mechanisms that drive the interactions between these
two cell types. The BNs and the cytokines that regulate the phe-
notypic behavior of PSCs and PCCs were adapted from the model
published by Wang et al. [48]. Fig. 3 shows the network of in-
teractions between nodes that regulate proliferation, apoptosis,
and other important phenotypic behaviors of PSCs and PCCs. We
used a standard sensitivity analysis [63] in which random pa-
rameter sets are generated using Latin hypercube sampling [63]
(LHS) and used for performing simulations. Partial ranked cor-
relation coefficients [63] (PRCC) let us determine the strength of
association between model parameters and important proper-
ties of tumor samples, such as cancer proliferation and apopto-
sis states. These properties are characterized in simulations by
the average fraction of cells with the corresponding phenotypic
node set to ON (see Methods section for details).

The heat map in Fig. 4 shows the PRCC between model pa-
rameters and population-level properties. The parameters con-
sidered in the sensitivity analysis, parameter ranges, and more
details of model simulations are specified in Supplementary Ta-
ble S2. We generated 1,000 parameter sets using LHS and then
performed 100 simulations for each parameter set using the net-
works in Fig. 3. Each of the 100 simulations started from random
initial conditions of the Boolean genes and random cellular po-
sitions. The tissue-level properties were averaged over the 100
simulations.

The results suggest that the interaction between cancer and
stellate cells can be harmful for cancer cells, inducing apop-
tosis, or helpful for cancer cells, inducing cancer proliferation.
This is evident by the significant positive (red) and negative
(green) correlations between model parameters and apoptosis
and proliferation, as shown in Fig. 4. Moreover, the results of
Fig. 4 show that the secretion rate of cytokines by PCCs and the
sensitivity of cytokine receptors in PCCs are most associated
with cancer cell behavioral states. Specifically, an increase
in secreted cytokines by cancer cells trends with increases
(positive correlation) in proliferation and reductions (negative
correlation) in apoptosis. The secretion and the sensitivity
of receptors of PSC cells also play a role in the phenotypes
of cancer cells. In summary, parameters related to cell-cell
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Figure 4: Association of model parameters (columns) with cancer cell phenotypes (rows). Color scale shows partial rank correlation coefficient (PRCC) obtained from
simulations of 1,000 random parameters.

Table 1: Partial rank correlation coefficient (PRCC) between the fraction of stellate cells (rPSC) and cancer phenotypes (proliferation, apoptosis,
and autophagy).

Secretion rates
PRCC

rPSC vs proliferation rPSC vs apoptosis rPSC vs autophagy

RPSC = RPCC = 5 0.0555 0.0718 −0.0841
RPSC > RPCC = 5 0.1173 0.1121 −0.1204
RPSC > RPCC = 2 0.4999 −0.2651 0.4406

Simulations were performed with constant values of RPCC and for different ranges of RPSC. For the second and third row, 500 random values for RPSC were selected in
the range [RPCC

, 10.0].

communications, e.g., secretion rates and activation thresholds,
have a significant impact on cancer cell behavior.

Although the correlation between cancer cluster density
(a measure of spatial structure) and most phenotypic proper-
ties of cancer cells is almost zero, there are several properties
that are influenced by spatial organization of cells, namely, the
population-level expression of EGFR and the apoptosis state of
cancer cells. Thus, the spatial organization of cells, in this case
the clustering of cancer cells, is another multicellular property
that can potentially influence the interplay between cancer and
stellate cells and should be explored in future studies.

A surprising result is the negligible correlation between the
fraction of stellate cells and cancer cell proliferation. A posi-
tive correlation was expected because it has been previously re-
ported that the stellate cells increase the survival of cancer cells
[62, 64, 65]. This may point to the possibility that intercellular
communication mechanisms between stellate and cancer cells
may play a more dominant role than population numbers alone.

The role of paracrine and autocrine loops

To explore potential molecular interactions that are key in the
relationship between PSC population and PCC proliferation, we
have performed a sensitivity analysis after fixing the secretion

rates of cancer or stellate sets. These parameters effectively
change the strength of intercellular communication and au-
tocrine loops present in both cell types (see Fig. 3). First, sim-
ulations with constant and equal secretion rates of cancer and
stellate cells were run (RPSC = RPCC = 5). In these simulations
all paracrine and autocrine loops are allowed and were given
similar weights. The results (Table 1) showed that in this case
there are negligible correlations between the population of stel-
late cells and cancer phenotypes. When the secretion rate of RPSC

≥ RPCC, e.g., when the signal from PSC to PCC is stronger, the cor-
relation between the stellate fraction and cancer proliferation
increases substantially. This correlation increases to 0.5 when
RPSC ≥ RPCC = 2. In summary, these results suggest that asym-
metric cytokine-mediated communication between stellate and
cancer cells plays a role in the observed positive effect on cancer
survival.

According to the model (Fig. 3), cancer cells secrete 4 cy-
tokines, 3 of which (EGF, bFGF, TGFβ) are involved in autocrine
loops. To determine the relevance of cancer autocrine loops in
the stellate-cancer cells relationship, we assigned different val-
ues of secretion rates to the different cytokines secreted by can-
cer cells, namely, REGF, RbFGF, and RTGFβ . Table 2 shows that when
only the EGF autocrine loop is active (REGF > RbFGF = RTGFβ = 2.0)
the population of stellate cells is negligibly correlated with can-
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Table 2: Partial rank correlation coefficient (PRCC) between fraction
of stellate cells (rPSC) and cancer phenotypes

Secretion rates
PRCC
rPSC vs proliferation rPSC vs apoptosis

REGF > RbFGF = RTGFβ = 2.0 −0.0474 0.0549
RbFGF > REGF = RTGFβ = 2.0 0.2974 −0.0293
RTGFβ > REGF = RbFGF = 2.0 0.5203 −0.4422

Simulations were performed with different values of secretion rates of EGF, bFGF,
and TGFβ secreted by cancer cells.

cer phenotypes. The correlation between stellate cell popula-
tion and cancer proliferation increases to 0.3 when the bFGF au-
tocrine loop is the only active autocrine loop. The highest (low-
est) correlation between stellate cell correlation and cancer pro-
liferation (apoptosis) occurs when the only autocrine loop in-
volved is TGFβ. These results suggest that cancer cell autocrine
loops that involve EGFR are key modulators of the interaction be-
tween stellate and cancer behaviors. This is consistent with the
known role of EGFR in modulating the stroma to support cancer
growth [66].

Patient-specific models for TCGA samples

Owing to inter-patient heterogeneity in terms of somatic
alterations or tissue-level properties such as cell fractions, it
is important to construct patient-specific models. Toward that
end, we have developed methods for the integration of high-
throughput molecular data into our modeling framework. Fig. 5
shows a diagram of the analysis workflow, including the used
data types from TCGA (yellow), and the methods (arrow labels)
for integrating the data and existing knowledge into the process
of initialization, parameter calibration, and model validation
(green rectangles). Moreover, Table 3 provides additional details
of the different data types, the software we used to analyze
the data, the outputs, and how those are integrated into the
analysis workflow.

We built a network of interactions involving intracellular re-
lationships and cytokine-mediated intercellular relations that
combine published models of different cell types relevant to
PDAC, namely, (epithelial) cancer cells, stellate cells, CD4+ T
cells, CD8+ T cells, and macrophages. The set of BNs for each
cell is provided in Supplementary Tables S3–S7. Furthermore,
we used cellular deconvolution techniques to estimate cell frac-
tions for each TCGA sample to be used in our model instanti-
ation (see Methods for details of the deconvolution methods).
For each sample, DNA sequencing data were used to determine
the presence or absence of mutations in KRAS, TP53, CDKN2A, or
SMAD4. If a mutation in one of the 4 genes (g) is absent in a sam-
ple, then αg = 0; otherwise αg is calibrated by SA, as described in
the Methods section. Although data from histology images can
be used to get estimates of the density of cancer clusters [46],
these data are not available in TCGA for PDAC samples.

Model parameters that cannot be directly estimated from
TCGA data are listed in Supplementary Table S1. These in-
clude rates of cytokine secretion by cancer cells and other cell
types, spatial distribution of cancer cells, and receptor activa-
tion thresholds. These parameters are calibrated by an optimiza-
tion process that aims to find an optimum parameter set (θ∗) to
maximize the Spearman correlation between the deconvolved
gene expression of cancer cells obtained from TCGA and sim-
ulations of the framework; Supplementary Fig. S2 shows a dia-
gram of the optimization protocol; more details of the optimiza-
tion process can be found in the Parameter Calibration section
above. The optimum parameters (θ∗) together with parameters
estimated directly from TCGA samples represent personalized
models for each TCGA patient sample. Figure 6 shows the his-
tograms of the correlation coefficient of the optimal parameter
set compared to random parameters. On average, the correla-
tion coefficient of optimum models over TCGA samples is 0.26,
considerably higher than random parameter models, which had
an average correlation coefficient of 0.04. Although on average,
0.26 can be improved, there are some samples with correlation
coefficient closer to 0.5. By adding more data such as histol-
ogy images and more detailed models of gene regulation and
cell communication, we expect that the accuracy can be further
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Table 3: List of molecular data (inputs), methods, and descriptions of how the data are integrated into the modeling framework and the analysis
pipeline

Input Method Output Usage

Gene expression from RNA-seq
data

ADAPTS [54] Cellular composition for each sample Instantiate the proportions of cell types for
each model sample

Gene expression from RNA-seq
data

DeMix [56] Gene expression of cancer cells Used in the parameter optimization process to
find errors between simulations and data

Gene expression from RNA-seq
data

ssGSEA [67] Proliferation and apoptosis scores for
each sample

Evaluate the optimized models. These scores
are compared with phenotypic scores from
simulations

Somatic mutation calls from DNA
sequence data

CGC [68] The presence/absence of important
mutations found in samples

Used in the calibration process to determine
the set of mutation parameters that will be
optimized

Figure 6: Histogram of correlation (corr.) coefficient between gene expression
(exp.) obtained from simulations and those from DeMix expression deconvo-
lution. Blue bars represent the best correlation coefficient obtained testing an

ensemble of random parameters. The grey bars represent the correlation coeffi-
cient from a random set of parameters.

improved. For validating these personalized models, we used
gene set scores that can be computed from TCGA gene expres-
sion data, using ssGSEA, which is part of the GSVA R package
[67]. The Spearman correlation between the fraction of cancer
cells in the proliferation state and the proliferation gene set
scores from TCGA samples was 0.17, while the correlation be-
tween the fraction of cells in the apoptosis state and the apop-
tosis gene set scores was 0.2.

Characterizing TCGA subtypes with model parameters

We investigated whether the model parameters, calibrated on
TCGA samples, were associated with the previously described
subtypes of PDAC. If so, this may reveal an aspect of the model
that is more important in particular subtypes, possibly leading
to mechanistic hypotheses. Specifically, we measured the differ-
ence in parameter values using analysis of variance (ANOVA) fol-
lowed by Tukey Honest Statistical Difference. The association of
model parameters (Supplementary Table S1) was performed us-
ing the 4 subtypes discovered by Bailey et al. [69] (squamous, im-
munogenic, progenitor, and aberrantly differentiated endocrine
exocrine [ADEX]) and 2 from Moffitt et al. [70] (basal and classical
subtypes).

Our results (Fig. 7) showed that among the model parameters,
both the probability of KRAS mutation (αKRAS, ANOVA P-value

= 0.013) and the secretion rate of EGF from cancer cells (RPCC
EGF ,

ANOVA P-value = 0.038) were associated with Bailey subtypes
(Fig. 7A). Also, for Moffitt et al. [70] subtypes (Fig. 7B) associations
were found with probability of TP53 mutation (αTP53, P-value =
0.01) and EGF secretion rate (RPCC

EGF , P-value = 0.009). Probability of
KRAS mutation was not significantly associated with the Moffitt
subtypes (P-value = 0.08). It is worth noting that these results
and the results of the PCC and PSC interactions (Table 2) rein-
force the notion that the EGF autocrine loop plays an important
role in PDAC.

Exploration of Therapeutic Interventions

After the process of parameter calibration and validation, the
personalized models can be used to explore the effect of molec-
ular perturbations. A molecular perturbation of a gene is mod-
eled by forcing the state of the gene (a node k in the BN of cell
type T ) to 0 to model gene repression, or to 1, to model gene
overexpression on a fraction (αT

k ) of the cells in the model. By in-
creasing αT

k , we model the strength of the potential therapeutic
intervention.

To do this, we performed simulations with different values
of αT

k and computed Spearman correlation coefficients between
the values of αT

k and the apoptosis state of cancer cells to de-
termine whether the perturbation would have an effect. Fig-
ure 8A shows the histogram of correlation coefficients between
perturbation fractions and apoptosis scores across TCGA sam-
ples, focusing on perturbations of bFGF and VEGF nodes in stel-
late cells. On average perturbing VEGF secretion of stellate cells
had a small but negligible effect on cancer apoptosis (average
correlation of 0.01). On the other hand, perturbing bFGF had on
average a slightly positive impact on cancer apoptosis, with an
average of 0.05 across all TCGA samples. It is worth noting that
although the estimated effect of bFGF perturbation on apoptosis
is small, there are samples with significant positive correlation
between perturbation in bFGF in stellate cells and apoptosis of
cancer cells. With the null hypothesis that the slope between
perturbation fractions and cancer apoptosis is zero, we com-
puted P-values and found several samples with P-values <0.05,
and some examples with P-values considerably <0.05 (Fig. 8B).

Fig. 8C and D, comparing 2 TCGA samples, show the apop-
tosis scores for different fractions of perturbed cells, clearly
showing the positive trend of apoptosis induced by perturbation
in bGFG, in contrast to the perturbation of VEGF. These results
show that TCGA PDAC samples have a heterogeneous response
to a perturbation in bFGF cytokine secretion, accounting for the
rather weak overall correlation across all samples. Using the
model, we can speculate that perturbing the secretion of bFGF
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Figure 7: A. Fraction of cells with KRAS mutation (alpha KRAS) within each subtype defined by Bailey et al. [69], squamous (1), immunogenic (2), progenitor (3), and
ADEX (4). B. EGF secretion rate of pancreatic cancer cells (Ron PCC EGF) within each subtype defined by Moffitt et al. [70], basal (1) and classical (2). We used 119 samples
of PDAC available in TCGA; the barcode identifiers of these samples are available in Additional File 2.

Figure 8: Effects of gene perturbation in stellate cells on apoptosis states in cancer cells. A. Distribution of correlation coefficients between apoptosis scores and the
percentage of perturbation in bFGF and VEGF in stellate cells, over 119 TCGA samples of PDAC (Additional File 2). B. The slope of the linear fit between apoptosis scores

and the percentage of perturbed stellate cells vs the P-value of the hypothesis that the slope is zero. The blue (red) circles represent samples with a perturbation in
bFGF (VEGF) and the dashed vertical line represents a P-value = 0.05. C. Average apoptosis scores for cancer cells within 1 sample as a function of the percentage of
perturbations of bFGF and VEGF for the 2 samples with the largest correlation coefficient; error bars represent standard deviations. Averages and standard deviations
were computed from 15 simulations performed with a constant percentage of perturbed cells.

by stellate cells could increase cancer cell apoptosis rates for
some patients.

Discussion

It is becoming increasingly evident that interactions between
cancer cells and the TME are closely linked to patient outcomes.
In this work, we developed a multicellular modeling framework
designed to study the molecular interactions between cancer

cells and the TME, including stromal and immune cells. This al-
lows model-driven hypotheses to be generated regarding ther-
apeutically relevant PDAC states with potential molecular and
cellular drivers, indicating specific potential intervention strate-
gies for further analysis.

The focus of this work is to study how cancer cell states are
affected by cell-cell communication within the TME. Only the
components of the TME necessary to determine cellular states
and intercellular signaling are considered, including gene regu-
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lation, spatial distribution of cells, cytokine diffusion, and cell
type proportions; other interactions that play a role in tumor
growth such as oxygen uptake, mechanical interactions, cell mi-
gration, and so forth are not included. Our motivation was to
generate multicellular models of cancer with a tractable number
of parameters that permits the validation and instantiation of
the model with omics data, and efficient parameter exploration.
Importantly, many of the model parameters can be directly es-
timated from omics and imaging data.

Our modeling framework can incorporate intracellular inter-
actions by implementing BNs for each cell type of the TME as
well as cell-cell communication by modeling the diffusion of
cytokines secreted by the cells in the TME. Moreover, each cell
is determined by its spatial position and the state of its corre-
sponding BN. The molecular interactions can be obtained from
previous studies that use gene networks to study cell behav-
iors relevant to the TME. Public datasets of molecular interac-
tions can further facilitate model creation and expansion [71,
72]. Thus, the BNs represent current knowledge about gene reg-
ulation of cell behavior. The BNs are not further optimized with
experimental data, although BN optimization is a future venue
worth exploring.

Given the specific features of the modeling approach, it is
worth discussing the implications of the model assumptions.
The main assumption is that, with the time scales considered by
the model (hours), population changes induced by proliferation,
migration, and so forth will not substantially affect the interplay
between gene regulation and cell signaling. This implies that
the phenotypic estimates generated by model simulations rep-
resent instantaneous properties of a sample; extensions need to
be added to the model for longer time scales. Another important
assumption is that the gene expression data used for param-
eter calibration is assumed to represent a steady state regime
of cellular behavior. This assumption is imposed by the nature
of the data used for calibration and validation, which is static;
it represents a single time point in the cancer dynamics. The
consequences of this assumption can be evaluated using high-
throughput data at multiple time points that are currently not
available.

Using ensemble simulations over random model parameters,
one can investigate the degree of association between poten-
tial molecular interactions and important multicellular proper-
ties, such as tumor survival or degrees of apoptosis. We have
used that strategy on a previously developed 2-cell model of
pancreatic cancer. The model consists of interactions between
pancreatic cancer cells and stellate cells, connected by inter-
cellular interactions mediated by cytokines. Our results show
that the EGF-mediated autocrine loop in cancer cells is a poten-
tial player in the interactions between stellate and cancer cells.
When the EGF autocrine loop is partially repressed, increases
in the stellate cell population lead to increases in the prolifer-
ation of cancer cells. Moreover, the spatial clustering of cancer
cells can affect the expression of important genes, such as the
EGF receptor. The last result highlights one of the key compo-
nents of this modeling framework, namely, the ability to study
the influence of spatial cellular properties on the tumor phe-
notype. A more detailed analysis of the role of the spatial dis-
tribution of cells on cancer behavior will require further exten-
sion of the model because, for simplicity, we assumed that the
stromal cells are uniformly distributed in space and that sig-
nal degradation is independent of the spatial organization of
the cells.

The molecular scale of the computational framework per-
mits the integration of molecular data from high-throughput

omics technologies, such as gene expression and sequencing
data. We have developed methods for data integration that al-
low for the construction of personalized models of PDAC sam-
ples. Specifically, gene expression was used to estimate the rel-
ative fractions of the cell types included in the models while
sequencing data were used to estimate the percentage of cells
with mutations in relevant genes. Additionally, tissue histol-
ogy images could potentially be integrated in the model frame-
work using methods such as those described by Saltz et al. [73].
Images could be used to estimate parameters of spatial prop-
erties of tissue samples and improve model instantiation. We
have used knowledge of point processes to generate the posi-
tions of cancer cells with a user-specified parameter of cancer
cell clustering. Recently, it was demonstrated that this parame-
ter can be estimated from histological images [46]. This could
lead to complex point processes able to generate more real-
istic spatial arrangements of cancer or stromal and immune
cells.

We built a network of interactions by combining published
models of different cell types relevant to PDAC, namely, stellate
cells, CD4+ T cells, CD8+ T cells, and macrophages. Additional
BN models can be added to the framework in a straightforward
manner. Using this 5–cell type model, we found that KRAS muta-
tions and the secretion rate of EGF from cancer cells were associ-
ated with Bailey subtypes while TP53 mutations and EGF secre-
tion rate were associated with the Moffitt subtypes, indicating
their potential clinical significance.

In addition to cellular BNs, the modeling framework requires
parameters related to cell-cell communication and spatial or-
ganization of cells. Some of the parameters can be estimated
from molecular data; but for the estimation and calibration of
the rest of the parameters (Supplementary Table S1), we pro-
posed an optimization procedure that minimizes the difference
in gene expression obtained by simulations and those observed
in deconvolved samples from TCGA. The expression of other cell
types can also be used in the procedure, but that would require
more involved deconvolution techniques or perhaps scRNA-seq.
Our optimization procedure is based on SA, but other optimiza-
tion methods suitable for discrete stochastic dynamics can also
be implemented [74]. In particular, recent parameter exploration
methods based on machine learning techniques applied to ABM
have the potential to generate new and more robust conclusions
regarding the influence of cell-cell communication on cancer be-
havior [75, 76].

The estimation and calibration of the model parameters by
using data available in TCGA generates personalized models
that are characterized by unique model parameter sets. The gen-
erated sample-level models have a mean correlation coefficient
of 0.26 between simulated and TCGA-based cancer gene expres-
sion, with some samples reaching values of 0.5. We also compute
gene set scores of proliferation and apoptosis for each TCGA
sample and use these values to assess the personalized mod-
els. Overall, the correlation coefficients between gene set scores
of apoptosis and proliferation and the fraction of cells in apop-
tosis and proliferation states obtained from the model simula-
tions are 0.17 and 0.2, respectively. Although these correlation
coefficients are relatively low, they are much better than random
parameter sets and are expected to improve progressively with
the addition of more data, such as imaging data, as well as with
more detailed models of gene regulation and cell-cell communi-
cation. However, it is worth considering that more detailed mod-
els typically require more unknown parameters, which, in the
absence of pertinent data, can compromise the model valida-
tion process and parameter exploration. Because the proposed
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model already includes spatial distributions of cells, we antici-
pate that the integration of images into the proposed model will
not substantially increase the model complexity (number of pa-
rameters).

The calibrated model parameters can provide additional
knowledge about the PDAC samples that cannot readily be ob-
tained by pure data analysis. We have shown that the model pa-
rameters are associated with known disease subtypes defined
by 2 different studies [69, 70]. This framework also allows re-
searchers to model the effect of potential molecular perturba-
tions, generating hypotheses to be tested using more compre-
hensive models and analysis, and subsequent experimental set-
ups.

Availability of Source Code and Requirements

Project name: Multicellular BNs
Project home page: https://github.com/boaguilar/multicell boo
lean networks
Code Ocean reproducible capsule: https://doi.org/10.24433/CO.
2337238.v1
Operating system(s): Linux
Programming language: C++ and Python
Other requirements: The code requires Biocellion1.2 and
Threading Building Blocks library, both free for academic use.
We included both dependencies in the repository, so the code is
self-contained and ready to be compiled and executed.
License: MIT License

Availability of Supporting Data and Materials

Snapshots of our code and other supporting data are openly
available in the GigaScience repository, GigaDB [77].

Additional Files

Supplementary Figure S1. Examples of generated spatial cellular
distributions.
Supplementary Figure S2. Optimization protocol used to cali-
brate the model parameters.
Supplementary Figure S3. An example of the Simulated Anneal-
ing process.
Supplementary Figure S4. Comparison of the estimated cell
quantities with tumor purity and leukocyte content.
Supplementary Table S1. List of parameters used in the param-
eter calibration pipeline.
Supplementary Table S2. List of parameters used in the Sensi-
tivity Analysis.
Supplementary Table S3. Boolean network of pancreatic cancer
cells.
Supplementary Table S4. Boolean network of pancreatic stellate
cells.
Supplementary Table S5. Boolean network of CD4+T cells.
Supplementary Table S6. Boolean network of macrophages.
Supplementary Table S7. Boolean network of CD8+T cells.
Additional File 1. Signature matrix including pancreatic cells for
the estimation of cell fractions.
Additional File 2. Barcodes and cellular fractions for each TCGA
sample of PDAC.
Additional File 3. Presence (1) or absence (0) of mutation in TP53,
CDKN2A, SMAD4, or KRAS for each TCGA sample of PDAC.
Additional File 4. Gene expression of cancer cells obtained by
DeMix [56].
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