PREDICATE CALCULUS IN-CLASS EXERCISES
State the rules of inference and replacement used in the following proofs:
Example
1. ∀x(Fx → Gx)
2. Ǝx(Fx & Hx) / ˫ Ǝx (Hx & Gx)
3. Fa & Ha [2 ƎE]
4. Fa → Ga [1 ∀E]
5. Fa [3 &E SIMP]
6. Ga [4, 5 →E MP]
7. Ha & Fa [3 COM]
8. Ha [7 &E SIMP]
9. Ha & Ga [8 &I CONJ]
10. ˫ Ǝx (Hx & Gx) [9 ƎI]
(1)
1. ∀x(Fx → Gx) / ˫ Ǝx[~Fx v (Gx v Hx)]
2. Fa → Ga
3. ~Fa v Ga
4. (~Fa v Ga) v Ha
5. ~Fa v (Ga v Ha)
6. ˫ Ǝx[~Fx v (Gx v Hx)]
(2)
1. Ǝx(~Fx)
2. Ǝx (~Gx) / ˫ Ǝx(Fx ↔ Gx)
3. ~Fa
4. ~Ga
5. ~Fa & ~Ga
6. (Fa & Ga) v (~Fa & ~Ga)
7. Fa ↔ Ga
8. ˫ Ǝx(Fx ↔ Gx)
Adding one or two statements to the premises will produce a formal proof of validity. Supply the statement and indicate the rule:
Example
1. Fy / ˫ ∀x(Fx)
2. ˫ ∀x(Fx) [1 ∀I (UG)]
(3)
1. ∀x(Fx) / ˫ Fy
2. ˫
(4)
1. Ǝx(Fx) / ˫ Fa
2. ˫
(5)
1. ∀x(Fx) / ˫ Ǝx(Fx)
2.
3. ˫
Adding two or three statements to the premises will produce a formal proof of validity. Supply these statements and indicate the rules of inference and replacement used:
Example
1. ∀x(Fx → Gx)
2. Fa / ˫ Ga
3. Fa → Ga [1 ∀E]
4. ˫ Ga [3, 2 MP (→E)]
(6)
1. ∀x (Fx → Gx) / ˫ ~Ga → ~Fa
2.
3. ˫
(7)
1. ∀x (Fx → Gx) / ˫ ∀x(~Gx → ~Fx)
2.
3.
4. ˫
(8)
1. ∀x(Fx → Gx)
2. Fy / ˫ ∀x(Gx)
3.
4.
5. ˫
(9)
1. ∀x(Fx → Gx) / ˫ ∀x(~Fx v Gx)
2.
3.
4. ˫
(10)
1. ∀x(Fx → Gx)
2. ∀x(Gx → Hx) / ˫ ∀x(Fx → Hx)
3. Fy → Gy [1 ∀E]
4.
5.
6. ˫
(11)
1. ∀x (~Fx → ~Gx) / ˫ Ǝx (~Gx v Fx)
2.
3.
4.
5. ˫ Ǝx (~Gx v Fx) [4 ƎI (EG)]
(12)
1. Ǝx(~Fx v ~Gx) / ˫ Ǝx~(Fx & Gx)
2.
3.
4. ˫
(13)
1. Ǝx(~Fx) / ˫ Ǝx~(Fx & Gx)
2.
3.
4.
5. ˫ Ǝx~(Fx & Gx) [4 ƎI (EG)]
(14)
1. Ǝx (Fx & Gx)
2. Fa → (Ga → Ha) / ˫ Ǝx (Hx)
3.
4.
5.
6. ˫ Ǝx(Hx) [5 ƎI (EG)]
(15)
1. ∀x(~Gx → ~Fx)
2. Ǝx(Fx) / ˫ Ǝx(Gx)
3. ~Ga → ~Fa [1 ∀E]
4.
5.
6.
7. ˫ Ǝx(Gx) [6 ƎI (EG)]
The following examples involve relational predicates. Adding three statements to the premises will produce a formal proof of validity. Supply these statements and indicate the rules of inference and replacement used.
Example
1. Ǝx Ǝy(Fxy & Fyx) / ˫ Fba
2. Ǝy(Fay & Fya) [1 ƎE (EI)]
3. Fab & Fba [2 ƎE (EI)]
4. Fba [3 SIMP (&E)]
(16)
1. ∀x ∀y(Fxy → Fyx)
2. Fab / ˫ Fba
3.
4.
5. ˫
(17)
1. ∀x ∀y (Rxy → Sxy)
2. ∀x ∀y (Sxy → Txy) / ˫ ∀x ∀y (Rxy → Txy)
3. ∀y (Ruy → Suy) [1 ∀E]
4. Ruz → Suz [3 ∀E]
5.
6.
7.
8. ∀y (Ruy → Tuy) [7 ∀I]
9. ˫ ∀x ∀y (Rxy → Txy)
The following problems involve identity predicates. Adding three statements to the premises will produce a formal proof of validity. Supply these statements and indicate the rules of inference and replacement used.
Example
1. ∀x(Fx → Hx)
2. a=b
3. Fa / ˫ Hb
4. Fa → Ha [1 ∀E (UI)]
5. Ha [3, 4 MP (→E)]
6. ˫ Hb [2, 5 ID]
(18)
1. ∀x(Fx → Gx)
2. a=b
3. ~Gb / ˫ ~Fa
4. Fa → Ga [1 ∀E (UI)]
5.
6.
7. ˫
(19)
1. Ǝx(Fx & Gx)
2. a=b / ˫ Ǝx(Gx)
3. Fa & Ga [1 ƎE]
4.
5.
6. ˫
The following problems involve quantifier equivalence rules. Adding three statements to the premises will produce a formal proof of validity. Supply these statements and indicate the rules of inference and replacement used.
Example
1. ∀x(Fx → Gx)
2. ∀x(Fx) / ˫ Ǝx(Gx)
3. Fy → Gy [1 ∀E variable form]
4. Fy [2 ∀E variable form]
5. Gy [3, 4 MP (→E)]
6. ∀x(Gx) [5 ∀I variable form]
7. ˫ Ǝx(Gx) [6 QE1]
(20)
1. ∀x(Fx → Hx)
2. ∀x~(Hx) / ˫ ~Ǝx(Fx)
3. Fy → Hy [1 ∀E variable form]
4. ~Hy [2 ∀E variable form]
5. ~Hy → ~Fy [3 TRANS]
6.
7.
8. ˫
(21)
1. ∀x(Fx → Gx)
2. ~∀x~(Fx) / ˫ Ǝx(Gx)
3.
4. Fa [3 ƎE constant form]
5.
6.
7. ˫ Ǝx(Gx) [6 ƎI constant form]