Invasive fungal sinusitis in an ENT subunit of a tertiary care facility in Sri Lanka

Samaranayake RPGMD, Jayawardana WATT, Thelikorala SM, Sheri AMM

Abstract

Invasive fungal sinusitis is a life-threatening condition encountered in ENT practice which has a significant morbidity and mortality to the patient while the treatment itself consists of potential risks. The pathology carries a high economic burden on the healthcare infrastructure. This case series presents a series of six patients diagnosed and managed for invasive fungal sinusitis at an ENT subunit of the National Hospital Sri Lanka within a three-month duration.

Key words: Invasive fungal sinusitis, mucormycosis, aspergillosis

Copyright: © 2024 Samaranayake RPGMD et al.

This is an open access article distributed under the Creative Commons Attribution License (CC BY 4.0). This license lets others distribute, remix, tweak, and build upon the work, even commercially, as long as they credit the original author for the creation.

Funding: None

Competing interest: None

Correspondence: Mithun Samaranayake (mithundiyumantha@gmail.com)

Accepted Date: 18th January 2024
Published Date: 11th February 2024
<table>
<thead>
<tr>
<th>Case</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
<th>Case 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>38</td>
<td>55</td>
<td>72</td>
<td>38</td>
<td>56</td>
<td>48</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Defined comorbidities¹</td>
<td>Diabetes mellitus CBS: 416 mg/dl</td>
<td>Diabetes mellitus CBS: 380 mg/dl</td>
<td>Diabetes mellitus CBS: 345 mg/dl</td>
<td>Diabetes mellitus CBS: 400 mg/dl</td>
<td>Post kidney transplant</td>
<td>Diabetes mellitus CBS: 400 mg/dl</td>
</tr>
<tr>
<td>Presentation</td>
<td>Right sided facial pain, swelling and numbness, ptosis, loss of vision</td>
<td>Severe right-side headache followed by facial asymmetry</td>
<td>Left side facial pain, swelling and peri-orbital oedema, ptosis, loss of vision</td>
<td>Right side facial pain, swelling and numbness, loss of vision in the right eye</td>
<td>Cough, fever, and left-side headache.</td>
<td>Right-side facial swelling, right-side complete ptosis, and ipsilateral facial swelling</td>
</tr>
<tr>
<td>Cranial nerves involved</td>
<td>Right II, III, IV, VI, VII (lower motor), XII</td>
<td>Left VII (lower motor)</td>
<td>Left II, III, IV, VI, VII (lower motor)</td>
<td>Right II, VII (lower motor)</td>
<td>-</td>
<td>Right II, III, IV, VI, VII (lower motor)</td>
</tr>
<tr>
<td>Key surgical interventions</td>
<td>Right-side full house FESS and orbital decompression</td>
<td>Endoscopic right-side middle meatal antrostomy and anterior ethmoidectomy</td>
<td>Left-side full house FESS with left orbital decompression</td>
<td>Right-side full house FESS and orbital decompression</td>
<td>Left-side full house FESS</td>
<td>Left-side full house FESS</td>
</tr>
<tr>
<td>Sinuses involved</td>
<td>Maxillary, anterior ethmoid</td>
<td>Maxillary, anterior ethmoid</td>
<td>Sphenoid, anterior, and posterior ethmoid</td>
<td>Maxillary, anterior ethmoid</td>
<td>Maxillary, anterior, and posterior ethmoid</td>
<td>Maxillary, frontal, sphenoid, anterior and posterior ethmoid</td>
</tr>
<tr>
<td>Medical treatment</td>
<td>IV liposomal amphotericin B for 50 days</td>
<td>IV conventional amphotericin B 150 mg daily for given 25 days followed by IV liposomal amphotericin B 50 mg daily for 42 days</td>
<td>IV conventional amphotericin B was given for 15 days</td>
<td>Initially treated with IV conventional amphotericin B 50 mg daily for 15 days followed by IV liposomal amphotericin B for 45 days</td>
<td>IV liposomal amphotericin B for 48 days</td>
<td>intra-orbital injections of amphotericin B, IV conventional amphotericin B for 40 days</td>
</tr>
<tr>
<td>Side effects</td>
<td>Hypomagnesaemia, nausea, vomiting</td>
<td>Elevated serum creatinine, nausea, vomiting</td>
<td>Persistent hyponatremia and hypomagnesaemia, nausea, vomiting</td>
<td>Elevated serum creatinine, nausea, vomiting</td>
<td>Nausea, vomiting</td>
<td>Nausea, vomiting</td>
</tr>
</tbody>
</table>

¹ CBS level on admission

Table 1: Key details of the cases
Introduction

Invasive fungal sinusitis is known for its high morbidity and mortality as well as heavy burden on the healthcare infrastructure. This is an opportunistic infection which is predominantly associated with immunocompromised hosts. The first case of invasive fungal sinusitis was reported in 1953 simultaneously with the introduction of cytotoxic chemotherapy and corticosteroid therapy\(^1\). There is a surge of reported invasive fungal sinusitis cases following COVID-19 infection during the post pandemic period\(^2\). Histology stays as the mainstay of diagnosis while the angioinvasion of the fungal septate is the hallmark of invasive fungal sinusitis.

Discussion

Basic Socio-demographic characteristics

Our case series consisted of six individual cases which were diagnosed and managed for invasive fungal sinusitis at an ENT subunit of a tertiary care facility. Basic socio demographic profile of the case series is depicted below

There was a majority of males (66.67%, \(n=4\)). The six individuals were ranging in age between 38 and 72 years, with a mean age of 51.17± 12.87 years.
Risk factors

All the cases have shown possible risk factors as below.

Risk factors distribution:

- Diabetes mellitus: 5 cases
- Post kidney transplant: 1 case

Total: 6 cases

Chart 3: Distribution of prevailing risk factors for invasive fungal sinusitis

Invasive fungal infections are highly associated with immunocompromised status of the host. Specially rhinocerebral mucormycosis develops more commonly among patients with poorly controlled diabetes mellitus, chronic malnutrition, iron overload and iatrogenic immunosuppression followed by transplant etc. As shown in the graph above 83.33% (n=5) were diagnosed with poorly controlled diabetes mellitus. All the patients had elevated capillary blood sugar levels on admission, ranging from 345 to 410 mg/dl and the mean CBS level was 388.2±27.31 mg/dl. The remaining case had a previous kidney transplant. Similar cases associated with renal transplant were described in the case series done by M. Coutiel et al. in 2020.

Symptom analysis

<table>
<thead>
<tr>
<th>Laterality</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>4</td>
</tr>
<tr>
<td>Left</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral facial pain</td>
<td>3</td>
</tr>
<tr>
<td>Unilateral facial swelling</td>
<td>3</td>
</tr>
<tr>
<td>Facial numbness</td>
<td>2</td>
</tr>
<tr>
<td>Drooping of the eyelid</td>
<td>3</td>
</tr>
<tr>
<td>Unilateral headache</td>
<td>2</td>
</tr>
<tr>
<td>Facial asymmetry</td>
<td>1</td>
</tr>
<tr>
<td>Peri-orbital oedema</td>
<td>1</td>
</tr>
<tr>
<td>Cough</td>
<td>1</td>
</tr>
<tr>
<td>Fever</td>
<td>1</td>
</tr>
<tr>
<td>Loss of vision</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Distribution of cases based on symptoms
According to the table above, most of the cases of this case series initially presented with facial swelling, facial pain, and ptosis. Case 2 was presented with facial asymmetry and case 5 presented with cough, fever and headache resembling a clinical picture of a lower respiratory tract infection with pulmonary manifestations. Compared to the other studies, initial symptomatology is similar in aspects such headache, sudden loss of vision and proptosis but features like nasal obstruction, aphasia, and diplopia were not evident1,3,5. Mean time duration taken to access a medical care facility from the onset of the symptoms is 7.83 ± 7.03 days. The following charts illustrate the symptomatologic profile of the case series.

![Chart 4: Distribution of cases based on symptoms](image)

![Chart 5: Distribution based on laterality](image)
Involvement of the cranial nerves

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Cranial nerves involved</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>II, III, IV, VI, VII, XII</td>
<td>Orbital decompression, FESS</td>
</tr>
<tr>
<td>2</td>
<td>VII</td>
<td>FESS, endoscopic MMA</td>
</tr>
<tr>
<td>3</td>
<td>II, III, IV, VI</td>
<td>Orbital decompression, FESS</td>
</tr>
<tr>
<td>4</td>
<td>II, VII</td>
<td>Optic nerve decompression, FESS</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>FESS for symptom relief</td>
</tr>
<tr>
<td>6</td>
<td>II, III, IV, VI, VII</td>
<td>Intra-orbital amphotericin B injection, FESS</td>
</tr>
</tbody>
</table>

Table 3: Involvement of cranial nerves

Cranial nerve involvements of the cases are summarised in the table above. Three cases presented with total ophthalmoplegia. Three cases presented with lower motor neuron type CN VII palsies. In case 1, MRI brain showed focal areas with diffuse restriction to the right sided pre and post central gyri, posterior to post central gyri and right anterior centrum semi ovale possibly representing septic emboli, right side proptosis and evidence of right-side optic neuritis but, in case 2 and case 4 intracranial radiological evidence were normal. In the case 5, the patient was given intra-orbital amphotericin B due to the suspicion of intra-orbital extension of the disease. The following chart illustrates distribution of the cases based on the involvement of cranial nerves.

Chart 6: Distribution of cases based on involvement of the cranial nerves

In most of the cases, CN II and CN VIII were affected. In 50% of the cases, total ophthalmoplegia was observed due to combination of CN III, CN IV and CN VI palsies.

Microbiological diagnosis

Direct microscopic examination of the tissue specimen on wet KOH mounts from all the cases were suggestive of aseptate fungal filaments which suggestive of zygomycotic infection. In 33.33% (n=2) of the cases culture on Sabouraud dextrose agar were positive for Mucor spp. Rhizopus was isolated in the cultures of 66.67% (n=4) cases. Simultaneously Aspergillus flavum was isolated in 33.33% (n=2) of the cases.

Pharmacological management

Two of the cases were initially managed as bacterial sinusitis. In the case 2, the patient was treated with IV ceftriaxone and IV metronidazole for 6 days. In the case 4, IV meropenem, vancomycin, and
co-amoxiclav for 3 days. In both cases, patients had initial electrolyte imbalances and optimization was required prior to commence the anti-fungal therapy. Amphotericin B remains as the first line of medication of choice due to its broad coverage on *Mucor* species and *Aspergillus*4. Conventional amphotericin B is known for its nephrotoxic side effect profile and liposomal amphotericin B has an improved toxicity profile comparatively5. The following chart shows the anti-fungal treatment that which received by the cases in this case series.

![Anti-fungal treatments receivied by the patients](chart7)

Chart 7: Distribution of anti-fungal treatment received by the patients

IV liposomal amphotericin was received by the patients for a mean duration of 45.0±4.12 days ranging from 40 to 50 days. IV conventional amphotericin B was received for mean duration of 18.33±5.78 days within the unit. Intra-orbital amphotericin B was given in the case 6. Usage of intra-orbital amphotericin B to treat the orbital extension of the invasive fungal sinusitis was reported in case several case studies7. Intra-orbital amphotericin B is reported as a globe sparing treatment for orbital fungal infections8. In case 3, the treatment had to be withheld and recommenced due to an electrolyte imbalance. 50.0% of the cases had a significant elevation of the serum creatinine level. Hyperkalemia was present in 16.67% (n=1) and hyponatremia was present in 16.67%(n=1) of the cases. Hypomagnesaemia was detected in 33.33%(n=2) of the cases and corrected with IV magnesium sulfate. All the patients experienced severe vomiting and nausea. The following chart shows the profile of the side effects in the case series.

![Distribution of cases based on side effects of anti-fungal treatment regime](chart8)

Chart 8: Distribution of cases based on side effects of anti-fungal treatment regime
Summary

This case series elaborates on six individuals who were diagnosed and treated for invasive fungal sinusitis in the background of immunocompromised state predominantly due to poor glycaemic control. They were presented with a variety of symptoms and a majority of the cases had a cranial nerve involvement. Majority of the cases were confirmed for isolated mucormycosis while a few had concomitant aspergillosis. The management of the cases were a combination of both surgical interventions and prompt and adequate pharmacological therapy which is associated with positive outcomes.

References