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Abstract: Natural phenomena or physical systems can be 
described using Partial Differential Equations (PDEs), such as 
wave equations, heat equations, Poisson’s equation, and so on. 
Consequently, investigations of PDEs have become one of the 
key areas of modern mathematical analyses, attracting a lot of 
attention. Many authors have recently expressed an interest in 
researching the theoretical framework of fuzzy Initial Value 
Problems (IVPs). The Method of Directly Defining the inverse 
Mapping (MDDiM) was effectively employed in this research 
to obtain the second-order approximate fuzzy solution of heat-
like equations in one and two dimensions, and the results were 
compared with exact solutions. In each illustrated example, all the 
results achieved using Maple 16 were graphically depicted. This 
is the first time MDDiM was utilized to solve nonlinear Fuzzy 
Partial Differential Equations (FPDEs).  
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INTRODUCTION  

FPDEs are a branch of mathematics that extends classical 
partial differential equations by incorporating uncertainty 
and ambiguity. In FPDEs, the coefficients, boundary 
conditions, and even the solutions themselves are described 
using fuzzy logic, which allows for a more flexible 
representation of complex and imprecise systems. These 
equations are particularly useful in modeling phenomena 
where precise information is lacking or when dealing 
with data that possesses inherent fuzziness or vagueness. 
By embracing uncertainty, FPDEs provide a powerful 
framework for analyzing and solving problems in a wide 
range of fields, including physics, engineering, finance, 
and environmental science.  

Zadeh introduced fuzzy sets for the first time (Zadeh, 1965) 
and hundreds of examples have been shown in which the 
nature of the uncertainty in the behavior of certain system 
processes is fuzzy rather than stochastic. Dubosi and Prade 
presented the extension principle, (Dubois & Prade, 1982) 
and concept of fuzzy derivative was introduced by Chang 
and Zadeh (Chang & Zadeh, 1996). Recently, Osman et al. 
applied the reduced differential transform method (RDTM) 
to solve fuzzy nonlinear PDEs by considering solutions as 
infinite series expansions which converge rapidly to the 
solutions (Osman et al., 2021). 

MDDiM refers to a technique used in mathematics to 
determine the inverse of a given function without explicitly 
finding the formula for the inverse. Instead of solving for 
the inverse function symbolically, this method involves 
defining the inverse mapping through a set of equations or 
conditions. Let us consider a function f : X → Y, where 
X and Y are sets. The inverse of f, denoted as f -1, is a 
function that maps elements from Y back to X such that
f (f  -1(y)) = y for every y in Y. The method of directly defining 
the inverse mapping involves defining the inverse function 
f -1 through a set of equations or conditions that relate the 
input y to the output x. This approach is particularly useful 
when finding an explicit formula for the inverse function is 
difficult or impractical. By following this method, we can 
define the inverse function f -1 directly without explicitly 
finding the formula through algebraic manipulation. 

With this motivation Liao and Zhao introduced MDDiM 
by directly defining the inverse map to Optimal Homotopy 
Analysis Method (OHAM) and applied it to solve nonlinear 
single Ordinary Differential Equations (ODEs) (Liao & 
Zhao, 2016). As time went by many researchers embedded 
this method in their projects. Nave and Elbaz successfully 
applied prostate cancer immunotherapy - mathematical 
model (Nave & Elbaz, 2018) and later, Nave introduced 
a new method to find the base functions for the MDDiM 
(Nave, 2018).

In 2018, Dewasurendra et al. extended MDDiM to solve a 
system of coupled nonlinear ODEs (Dewasurendra et al., 
2018; 2020), and Gangadhar et al. successfully applied 
to obtain a series-form solution of the coupled nonlinear 
equations by the MDDiM and SRM (Gangadhar et al., 
2022).  Recently we further developed this novel technique 
to solve single and coupled nonlinear PDEs (Sahabandu et 
al., 2021; 2022). In this paper, we applied MDDiM to solve 
heat-like equations which describe single nonlinear FPDEs 
with some illustrative examples. 

MATERIALS AND METHODS

Fuzzy numbers are a specific type of fuzzy set that 
represent numbers with uncertain or imprecise values. 
They are characterized by a membership function that 
assigns degrees of membership to different values within 
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the number.

Definition 1: Let ũ be a fuzzy number defined in F(R̅̅). 
For each r ∈ [0,1] indicated by ũr , the r-level set of ũ is 
a crisp set that contains all the elements in R such that 
the membership value of ũ is higher or equal to r, that is,
ũr = {x ∈ R̅ | ũ(x) > r}.

When we express a fuzzy number with an r-level set, we 
mean that it is closed and bounded, as represented by
[ ur , u̅̅r ], where they represent the lower and upper bounds 
r-level set of a fuzzy number. 

Definition 2: The parametric form of a fuzzy number ũ is a 
pair [ ur , u̅̅r ] of functions ur and u̅̅r for any r ∈ [0,1], which 
satisfies the following requirements,

i. ur is a bounded non-decreasing left continuous function 
in (0,1],

ii. u̅̅r is a bounded non-increasing left continuous function 
in (0,1], 

iii. ur ≤ u̅̅r ; r ∈ [0,1]. 

Thus ũr can be written as ũr = [ ur , u̅̅r ].

Extend MDDiM to solve FPDEs

Consider the nth- order nonlinear partial differential 
equation N[ũ] = 0. In the frame of MDDiM, the series 
solution of ũ is given by,

Ssuch that ũ0 is the initial guess which satisfying the initial 
condition or boundary conditions and ũk is defined as in 
equation (1).

 for k ≥ 1   (1)

Here, L-1 is the inverse liner operator, N is the nonlinear 
operator, ak,n is a real constant, χk is the step function defined 
in equation (2), and h is the convergence control parameter; 
which should be determined (Sahabandu, 2021). 

       (2)

By applying MDDiM to lower and upper bounds separately, 
we obtained the equations (3) and (4), respectively.

 (3)

   (4)

In the frame of MDDiM we have great privilege to choose 
an inverse linear operator with the following rules:

L-1 should be, 

i. linear,
ii. injective,

iii. contains each base function, and
iv. finite.

We considered inverse linear operator given in equation (5) 
for each example explore in this study for different values 
of A.

 A is an arbitrary constant   (6)

Only adding first n terms, the nth - term approximate 
solution can be written as ũ = ũ0 +  ũk for the nonlinear 
FPDE. Since this is not the exact solution, N[ũ] ≠ 0. Hence, 
N[ũ](r) for r in the domain (D) of the problem gives the 
residual error. Now, taking the square of L2-norm, we 
defined square residual error function

Example 1: Consider the following one-dimensional 
IVP describing fuzzy heat-like equation which is a single 
nonlinear FPDE.

 0 < x < 1, t > 0  (6)

subject to the initial condition

ũ(x, 0) = [rn,(2 – r)n ] ʘ (x2+x), where 0 < r < 1, n = 1,2,3, .... 

The parametric form of (6) is given by

 0 < x < 1, t > 0,  (7)

and

 0 < x < 1, t > 0,  (8)

for r ∈ [0,1] where u(x,t; r) and u̅̅(x,t; r) are the lower bound 
and the upper bound solutions respectively, subject to the 
initial conditions, 

u(x,0) = rn(x2 + x),  (9)

and

u̅̅(x,0) = (2 –r)n (x2 + x).  (10)

Here ũ (x,t; r) = [u(x,t; r), u̅̅(x,t; r)].

By considering,

 

and,

 

with initial conditions in equations (9) and (10), we 
obtained initial guesses as,

 and

Now, the three term solution can be written as, ũ(x,t;r) = 
ũ0(x;r) + ũ1(x,t;r) + ũ2(x,t;r) by considering u(x,t;r) = u0(x;r) 
+ u1(x,t;r) + u2(x,t;r) and u̅̅(x,t;r) = u̅̅0(x;r) + u̅̅1(x,t;r) + 
u̅̅2(x,t;r) which are lower bound and upper bound solutions, 
respectively. We obtained the following three-term 
approximate solution using Maple 16 for r ∈ [0,1]. 

Exact solution for this example is (Osman et al., 2021),
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Example 2: Consider the following two-dimensional 
IVP describing fuzzy heat-like equation which is a single 
nonlinear FPDE.

 x > 0, y < 1, t > 0  (11)

subject to the initial condition

where 0 < r < 1, n = 1,2,3, .... 

The parametric form of (11) is given by,

x > 0, y < 1, t > 0,  (12)

and

x > 0, y < 1, t > 0,    (13)

for r ∈ [0,1] where  u(x, y, t; r) and u̅̅ (x, y, t; r) are the lower 
bound and the upper bound solutions, respectively, subject 
to the initial conditions,

     (14)

and

  (15)

Here, 

By considering,

= 0

and,

= 0

with initial conditions in equations (14) and (15), we 
obtained initial guesses as,

 and

Now, the three term solution can be written as, ũ(x,y,t;r) = 
ũ0(x,y;r) + ũ1(x,y,t;r) + ũ2(x,y,t;r) by considering u(x,y,t;r) 
= u0(x,y;r) + u1(x,y,t;r) + u2(x,y,t;r) and u̅̅(x,y,t;r) = u̅̅0(x,y;r) 
+ u̅̅1(x,y,t;r) + u̅̅2(x,y,t;r) which are lower bound and upper 
bound solutions respectively. We obtained the following 
three-term approximate solution using Maple 16 for  r ∈ 
[0,1].  

Exact solution for this example is (Osman et al., 2021),

0 ≤ r ≤ 1.

Example 3: Consider the following two-dimensional 
IVP describing fuzzy heat-like equation which is a single 
nonlinear FPDE.

 x > 0, y < 1, t > 0  (16)

subject to the initial condition ũ(x, y, 0) = Õ� , where

where  0 < r < 1, n = 1,2,3, .... 

The parametric form of (16) is given by,

x > 0, y < 1, t > 0,  (17)

and

x > 0, y < 1, t > 0,  (18)

for r ∈ [0,1], where u(x, y, t; r) and u̅̅ (x, y, t; r) are the lower 
bound and the upper bound solutions, respectively, subject 
to the initial conditions, 

   (19)

and

   (20)

Here,  ũ (x,y,t; r) = [u(x,y,t; r), u̅̅(x,y,t; r)].

By considering, 

 

             

          

and, 
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with initial conditions in equations (19) and (20), we 
obtained initial guesses as,

 and 

Now, the three term solution can be written as, ũ(x,y,t;r) = 
ũ0(x,y;r) + ũ1(x,y,t;r) + ũ2(x,y,t;r) by considering u(x,y,t;r) 
= u0(x,y;r) + u1(x,y,t;r) + u2(x,y,t;r) and u̅̅(x,y,t;r) = u̅̅0(x,y;r) 
+ u̅̅1(x,y,t;r) + u̅̅2(x,y,t;r) which are lower bound and upper 
bound solutions respectively. We obtained the following 
three-term approximate solution using Maple 16 for  r ∈ 
[0,1]. 

Exact solution for this example is (Osman et al., 2021),

 

Example 4: Consider the following IVP describing fuzzy 
heat-like equation which is a single nonlinear FPDE.

 0 < x < 1, t > 0,  (21) 

subject to the initial condition

where 0 < r < 1, n = 1,2,3, .... 

The parametric form of (21) is given by,

0 < x < 1, t > 0,  (22) 

and

0 < x < 1, t > 0,  (23)

For r ∈ [0,1] where u(x, y, t; r) and u̅̅ (x, y, t; r) are the lower 
bound and the upper bound solutions, respectively, subject 

to the initial conditions,

   (24)

and

  (25)

Here, ũ (x,t; r) = [u(x,t; r), u̅̅(x,t; r)].

By considering, 

and,

 

with initial conditions in equations (24) and (25), we 
obtained initial guesses as, 
and  

Now, the three term solution can be written as, ũ(x,t;r) = 
ũ0(x;r) + ũ1(x,t;r) + ũ2(x,t;r) by considering u(x,t;r) = u0(x;r) 
+ u1(x,t;r) + u2(x,t;r) and u̅̅(x,t;r) = u̅̅0(x;r) + u̅̅1(x,t;r) + 
u̅̅2(x,t;r) which are lower bound and upper bound solutions, 
respectively. We obtained the following three-term 
approximate solution using Maple 16 for r ∈ [0,1]. 

Exact solution for this example is (Osman et al., 2021),

0 ≤ r ≤ 1.

RESULTS AND DISCUSSION 

The following graphs obtained for three-term approximate 
solutions of MDDiM and exact solutions for each example 
using maple 16.

Now, taking squared residual error for above examples 
as;  , we obtained the following 
results for the converge control parameter h when minimum 
error occurs.

Table 1: Values of corresponding squared residual errors E(h) and values of convergence control parameter h.

Example
u (x, t) u̅̅ (x, t)

h E(h) h E(h)

1 -1.21320 2.0146 × 10-9 -1.21320 4.4022 × 10-9

2 -2.90514 9.9354 × 10-18 -2.90514 9.9354 × 10-18

3 -2.45000 8.8415 × 10-43 -2.4500 8.8415× 10-43

4 -0.00100 2.0805 × 10-3 -0.00100 2.0805× 10-3



137Sahabandu C.W. and Dewasurendra M. 

Figure 1: Example 1: A = 1, x = 0.2, t = 0.3, n = 1 (left), Example 2: A = 19, x = 0.0004, y = 0.0005, t = 7, n = 7 (right); 
In each example, curves 1, 2 and curves 3, 4 represent MDDiM and the exact solutions, respectively. Furthermore, the 
curves 1, 3 and curves 2, 4 represent the lower bound and the upper bound solutions, respectively.

Figure 2: Example 3: A = 0, x = 0.000002, y = 0.000003, t = 5, n = 5 (left), Example 4: A = 0, t = 0.4, n = 9 (right); In each 
example, curves 1, 2 and curves 3, 4 represent MDDiM and the exact solutions, respectively. Furthermore, the 
curves 1, 3 and curves 2, 4 represent the lower bound and the upper bound solutions, respectively.

Figure 3: Corresponding error graphs of lower (curve 1) and upper (curve 2) bounds verses h for Example 1(left) and 
Example 2 (right) respectively.
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CONCLUSION

In this paper, MDDiM has been successfully applied to solve 
fuzzy heat-like equations in one and two dimensions with 
variable coefficients. We obtained three-term approximate 
solutions for the nonlinear FPDEs using Maple 16.  All the 
solutions are accurate enough with the squared residual 
errors as given in table 1. Figures 1 and 2 illustrate that, the 
lower functions of the r-level set of ũ are always increasing 
functions of r, whereas the upper functions of the r-level set 
of ũ are always decreasing functions of r. Additionally, we 
can see that the MDDiM approximate solutions converge 
to the exact solutions.   

DECLARATION OF CONFLICT OF INTEREST 

The authors declare no conflict of interest.

REFERENCES 

Chang, S. S., & Zadeh, L. A. (1996). On fuzzy mapping 
and control. In Fuzzy Sets, Fuzzy Logic, and Fuzzy 
Systems: selected papers by Lotfi A Zadeh. IEEE 
Transactions on Systems Man and Cybernetics, pp. 
180-184. doi:10.1109/TSMC.1972.5408553. 

Dewasurendra, M., Baxter, M., & Vajravelu, K. (2018). A 
Method of Directly Defining the Inverse Mapping for 
Fourth Order Non-Linear Systems Arising in Combined 
Free and Forced Convection in a Second Grade Fluid. 
Applied Mathematics and Computation, 339, 758-767.  
doi: https://doi.org/10.1016/j.amc.2018.07.015.

Dewasurendra, M., Zhang, Y., Boyette, N., Islam, I., & 
Vajravelu, K. (2020). A Method of Directly Defining 
the inverse Mapping for a HIV infection of CD4+ 
T-cells model. Applied Mathematics and Nonlinear 
Sciences, 6(2), 3921, pp.469-482. doi:10.2478/
amns.2020.2.00035.

Dubois, D., & Prade, H. (1982). Towards fuzzy differential 
calculus part 3: Differentiation. Fuzzy sets and Systems, 
8(3), 225-233. doi: https://doi.org/10.1016/S0165-
0114(82)80001-8.

Gangadhar, K., Rao, M.V.S., Kumar, S., Sharma, S., & 
Munjam, S.R. k(2022). A series-form solution of the 
coupled nonlinear equations by the method of directly 
defined inverse mapping and SRM, International 
Journal of Ambient Energy, 43(1), 1345-1354, doi: 
10.1080/01430750.2019.1688679.

Liao, S., & Zhao, Y. (2016). On the method of directly 
defining the inverse mapping for nonlinear differential 
equations. Numer Algorithm, 72,989–1020. doi: https://
doi.org/10.1007/s11075-015-0077-4.

Nave, O. (2018). A New Method to Find the Base Functions 
for the Method of Directly Defining the Inverse 
Mapping (MDDiM), Journal of Multiscale Modelling, 
9, NO. 04. doi:10.1142/S1756973718500087.

Nave, O., & Elbaz, M. (2018). Method of directly defining 
the inverse mapping applied to prostate cancer 
immunotherapy-Mathematical model, International 
Journal of Biomathematics, 11, No. 05, 1850072. 
doi:10.1142/S1793524518500729.

Osman, M., Gong, Z., & Mustafa, A.M. (2021). A fuzzy 
solution of nonlinear partial differential equations. 
Open journals of Mathematics, MSC: 42B10, 42C40. 
doi: 10.30538/psrp-oma2021.0082.

Sahabandu, C.W., Dewasurendra, M., Juman, Z.A.M.S., 
Vajravelu, K., & Chamkha, A.J. (2022). Semi-analytical 
method for propagation of harmonic waves in nonlinear 
magneto-thermo-elasticity. Computers & Mathematics 
with Applications, 105, 2022, Pages 107-111, ISSN 
0898-1221.  doi:10.1016/j.camwa.2021.11.020.

Sahabandu, C.W., Karunarathna, D., Sewvandi P., Juman, 
Z.A.M.S., Dewasurendra, M., & Vajravelu, K. (2021). 
A Method of Directly Defining the inverse Mapping 
for a nonlinear partial differential equation and for 
systems of nonlinear partial differential equations. 
Computational and Applied Mathematics, 40(6), 1-16.  
doi:10.1007/s40314-021-01627-y.                    

Zadeh, L. A. (1965). Fuzzy sets. Information and Control. 
Information sciences, 8, 338-353. doi: https://doi.
org/10.2307/2272014.


