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Highlights

• Boundary layer approximation of modified second-grade fluid flow can be successfully modelled.

•  Fluid motion is enhanced by thermal and solutal Grashof number and second-grade fluid parameters.

• Magnetic, porous, and chemical reaction parameters suppress velocity, while they motivate temperature and
concentration.

•  Thermal and solutal Grashof numbers, second-grade fluid parameters, demotivate temperature and concentration,

•  Flow variables of both shear-thickening and shear-thinning fluids behave similarly.
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Abstract: Here, we have improved a model to describe 
the flow variables, velocity, mass and heat transfer in the 
boundary layer region of modified second-grade fluid 
flow over a linearly stretched sheet in a porous media. 
The modified model is used to study the qualitative impact 
of buoyancy parameter, second-grade fluid parameter, 
magnetic parameters, porous parameter, power-law 
index, and chemical reaction parameter on the flow 
profiles, radial and axial velocities, temperature, and 
concentration. Starting with the steady-state governing 
equations of mass, momentum, heat, and concentration 
of the fluid flow, we obtained the boundary layer 
approximations of the flow near the linearly stretched 
sheet with the no-slip boundary condition. Similarity 
transformation has been used to convert the partial 
differential equations system into a nonlinear ordinary 
differential equations system. The radial velocities, 
temperature, and concentration profiles have been 
solved numerically, and the qualitative influence of 
the flow parameters on the flow variables has been 
simulated and graphically presented for comparison. 
We have observed that radial and axial velocities 
were increasing for the shear-thinning and shear-
thickening fluids with solutal Grashof number, thermal 
Grashof number and second-grade fluid parameters. 
In contrast, the porous and chemical reaction 
parameters slow down both fluids’ radial and axial 
velocities. The temperature and concentration increase with 
the porous and magnetic parameters. However, thermal and 
solutal Grashof and second-grade fluid parameters suppress 
temperature and concentration. In shear-thickening fluids, 
chemical reaction parameters enhance concentration but 
suppress in shear-thinning fluids.

Keywords: Second-grade fluid, Shear-thinning, Shear 
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 INTRODUCTION

Many industrial processes widely use the boundary layer 
flow and heat and mass transfer of Newtonian and non-
Newtonian fluids past a stretching sheet. Specifically, 
aerodynamics, food processing, chemical engineering, 

crystal growing, and polymer extrusion use heat and mass 
transfer methods. Compared to Newtonian fluids, non-
Newtonian fluid is more in use in applications due to the 
viscosity variation and the complexity of the applications. 
Non-Newtonian fluids have a non-linear relation between 
viscosity and shear rate. However, in the absence of a 
unique relation between shear stress and viscosity in 
non-Newtonian fluids, various rheological models have 
been used to close the problem. The power law model, 
also known as the Ostwald de Waele model is one 
possible candidate. The model is much simpler than 
other non-Newtonian models and it assumes that the 
shear stress is propositional to some power of rate of 
strain and has only two fitting constants. In the power 
law model, there is a connoisseur description of the 
shear-thinning and shear-thickening behaviors of the 
fluids. The magnetohydrodynamic flow of an electrically 
conductive power-law fluid flow past a stretching sheet 
has been investigated by Andersson et al (Anderson et al. 
1992). Their study considered the presence of a uniform 
transverse magnetic field. The power law model has been 
used by Andersson et al. (1996) to describe the unsteady 
fluid flow of a thin liquid film over a stretching surface. 
They used similarity transformation to reduce the non-
linear boundary layer equations to a non-linear ordinary 
differential equation. One drawback of the power law 
model is that it cannot capture the normal stress behavior 
of some fluid flows, especially in shallow and very high 
shear rate regions. To address the issue, some researchers 
propose to combine the power law model with the second-
grade fluid model, and the resulting model is known as 
the generalized (or modified) second-grade model. Aksoy 
et al. (2007) studied the two-dimensional incompressible 
fluid flow in the boundary layer region of a stretched sheet 
by using the modified second-grade non-Newtonian 
fluid model (Aksoy, 2007). In their research work, Lie 
Group theory has been used to calculate the boundary 
layer equations and the effects of the power-law index 
and second-grade coefficient on the boundary layers 
have been observed. They have shown that solutions are 
contrasted with the usual second-grade fluid solutions. 
The thermodynamic behavior and boundary layer flow of 
viscous incompressible fluid over a solid surface moving 
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continuously with constant speed has been studied by 
Sakiadis et al. (1961). Furthermore, the same authors 
discussed the numerical and integral methods to describe 
the incompressible, two-dimensional boundary layer flow 
on a continuous plane with constant speed in a fluid medium 
at rest (Hayat et al. 2017). Erikson et al. (1966) modified 
the work by considering heat and mass transfer in boundary 
layer flow. The author uses a moving surface with a non-zero 
transverse velocity. The heat transfer properties of a fluid 
flow over a stretching sheet were theoretically investigated 
by Carragher and Crane (Carraagher et al., 1982). Gupta & 
Gupta (1977) discussed momentum, heat, and mass transfer 
in the boundary layer flow past a stretching sheet under 
the effect of suction and blowing. Heat and mass transfer 
properties of a viscoelastic, electrically conducting, and 
viscous incompressible fluid over a vertical porous plate 
were studied by Nayak et al. (2014), who analyzed the 
effect of heat and mass transfer processes on the natural 
convection flow. Furthermore, Nayak et al. (2016) extended 
the study numerically by considering a stretching sheet 
in a porous medium under a magnetic field and chemical 
reaction effects. Hayat et al. (2017) recently studied the 
three-dimensional magnetohydrodynamic second-grade 
nanofluid flow past an exponentially stretching sheet 
under convective boundary conditions. Moreover, Hayat 
et al. (2016) studied the ferromagnetic second-grade fluid 
flow over a stretching sheet under the influence of viscous 
dissipation and magnetic dipole effects.

Very little attention has been given to the heat and mass 
transfer analysis of chemically reacting modified second-
grade fluid over a linearly stretching sheet through a porous 
medium subjected to a magnetic field with a homogeneous 
first-order chemical reaction. Thus, this research study 
focuses on developing a mathematical model considering 
all effects, as mentioned earlier, and qualitative results can 
be utilized in many industrial processes. 

Mathematical Formulations

A steady-state, incompressible, two-dimensional flow 
of a modified second-grade fluid flow over a linearly 
stretching sheet in a porous media is studied. The X-axis 
of the Cartesian coordinate-system runs parallel to the 
horizontal sheet, and the Y-axis is perpendicular to the 
sheet. The flow of the fluid is restricted to the plane y > 0. 

The stretching of the sheet along the X-axis generates fluid 
flow. The chemical reaction is assumed to occur uniformly 
everywhere within the fluid. The flow is considered 
to be over a linearly stretching sheet on the plane y = 0 
with a porous medium. Figure 1  illustrates the physical 
configuration of the fluid flow domain with the necessary 
conditions.

Navier Stokes equation, Heat equation, Concentration 
equation, Ohm’s law, and Maxwell’s equations are starting 
governing equations and are given below.

∇.V = 0	  (1)

	 (2)

J = σ (E + V × B)	 	  (3)

∇.B = 0	  (4)

	  (5)

where V is the velocity of the fluid, J is the current density, 
B is the total magnetic field, βT and βC are the buoyancy 
parameters, T is the dimensional temperature, C is the 
dimensional concentration of the fluid, T∞ and C∞ represents 
the temperature and concentration of the ambient fluid.

Here, B = B0 + b with B0 as the imposed magnetic field 
and b as the induced magnetic field. It is assumed that b is 
negligible compared to B0. Since no electric field is present 
in the fluid flow region,  from Ohm’s law (3), the current 
density J = σ (V× B). The Cauchy stress tensor for the 
modified second-grade fluid is given by,

	  (6)

where p is the pressure, μ is the dynamic coefficient 
of viscosity, m is the power-law index, α1 and α2 are the 
normal stress coefficients and 

A1 = ∇.V + (∇.V)T		   (7a)

	  (7b)

This study assumes that the second-grade fluid model 
obeys the Clausius-Duhem inequality and is compatible 
with the fundamental Helmholtz free energy assumption.

Figure 1: Flow Domain
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Heat and mass concentration equations are given by.

	           

	          	  (8)

	  (9)

Here,  is the specific heat capacity at 
constant pressure and T is the dimensional temperature, 
C is the dimensional concentration and D is the Brownian 
diffusion coefficient. 

Boundary conditions are given by 

A linear velocity profile has been selected for the 
horizontal velocity at the boundary as the the sheet is 
stretched linearly.

Boundary layer approximation (See [Oleinik et al., 1999] ) 
of the equations (1), (2), (8), and (9) take the form. 

		   (10)

	        

	        	  (11)

	      

	      	  (12)

	  (13)

In the Blasius boundary layer approximation view, 
we propose the following non-dimensional similarity 
transformation to convert the above nonlinear partial 
differential equations into a system of nonlinear ordinary 
differential equations

    

The corresponding system of ODE takes the form.

	               

	               	  (14)

 		   (15)

	  (16)

The continuity equation is trivially satisfied by the 
above similarity transformation. 

The dimensionless parameters are defined as follows.

 – Second-grade fluid parameter,  – 

Magnetic field parameter,  - Thermal 

Grashof number,  – Solutal Grashof 

number,  – Porous parameter,  – Prandtl 

number,  – Eckert number,  – Chemical 

reaction parameter, and  – Schmidt number.

The corresponding boundary conditions are transformed as 
follows.

At η = 0
	 f (0) = 0, f ′(0) = 1, θ(0) =1, ϕ(0) = 1
As η → ∞ 

      f ′(∞) → ∞, f ″(∞) → 0, θ(∞) → 0, ϕ(∞) → 0
The non-linear ODEs (14), (15), and (16) are converted 
into a linear system of ODEs using the following 
transformations.

,

Then the resulting linear system of ODE takes the form.

         

           

	  (17)

And the corresponding boundary conditions are,

at η = 0,

f (0) = 0, f2(0) = 1, f5 =1, f7 = 1
as η → ∞ 

f2(∞) → 0, f3(∞) → 0, f5(∞) → 0, f7(∞) → 0,
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RESULTS AND DISCUSSION

The Boundary Value Problem (17) is a two-point boundary 
value problem, and we have used bvp4c MATLAB solver 
to obtain the desired solutions. We compute the solution 
in the similarity variable interval [0; 2]. The impact of 
the flow parameters on the radial velocity, axial velocity, 
temperature and concentration has been analyzed and 
presented graphically for comparison.

Effect of Fluid Parameters on Flow Profiles of the Shear 
Thickening Fluid Flow

In this section, we exhibit the impact of the fluid 
parameter on radial and axial velocities, temperature, and 
concentration for shear-thickening fluids.

The thermal Grashoff number represents the relation 
between inertia force, buoyant force, and viscous force 
in the fluid flow region. Figure 2 describes the impact of 
the thermal Grashof parameter. It can be observed that 
both radial and axial velocity fields are increased with the 
increase of the thermal Grashof number, but in contrast, 
both the temperature and concentration decrease. Hence, 
the velocities are motivated by inertia and buoyant forces 
over viscous forces. However, inertia and buoyant forces 
demotivate the temperature and concentration.

The solutal Grashoff number represents the ratio between 
the species’ buoyancy force to the viscous hydrodynamic 
force. Figure 3 depicts the impact of the solutal Grashof 
number. The solutal Grashof number enhances both 
radial and axial velocities, but the temperature and the 
concentration decrease. Hence, the species’ buoyancy force 
motivates the fluid motion compared to the viscous force. 
However, it has a converse effect on the temperature and 
the concentration.

Figure 4 demonstrates the impact of the second-grade 
parameter on fluid flow variables. We observe that the 
second-grade fluid parameter enhances both radial and axial 
velocities, thereby thickening the boundary layer region but 
degenerates the temperature and the concentration. Hence, 
the parameter thickens the boundary layer. However, the 
impact on concentration is insignificant compared to the 
temperature.

The chemical parameter represents the rate of chemical 
reaction. The variations of the flow variables with the 
chemical parameter is demonstrated in Figure 5. The 
scrutiny of the figures reveals both radial and axial velocity 
profiles and concentration profiles decrease with increasing 
chemical parameter values. Hence, the motion of the fluid 
is decelerated and the chemical reactions lower mass 
concentration. However, the temperature increases with 
the increase of the thermal Grashof number. Therefore, the 
chemical reactions generate heat.

The porous parameter is the ratio of pore volume to its total 
fluid volume, and it describes the porosity of the fluid region. 
Variations of the flow variables with the porous parameter 
are plotted in Figure 6. It is found that both velocities are 
decreased with the increase of the porous parameter. Hence, 
the porosity decelerates the fluid motion. The temperature 
and concentration increase with the increase of the porous 

parameter. Thus, porosity enhances the temperature and the 
concentration. However, the effect is not so significant.

The magnetic parameter represents the strength of the 
magnetic field in the boundary layer region. The effect of 
the magnetic parameter is demonstrated in Figure 7. Both 
radial and axial velocities are decreased by increasing the 
magnetic parameter. Hence, the presence of strong magnetic 
deaccelerated the fluid motion. However, both temperature 
and concentration are enhanced by the presence of the 
magnetic field.

Impact of the flow parameters in shear-thinning fluids

The impact of the fluid parameters on the flow variables for 
shear-thinning fluids is illustrated in this section.

Figure 8 describes the impact of the thermal Grashof 
parameter. It can be observed that both radial and axial 
velocity fields are increased with the increase of the thermal 
Grashof number, but in contrast, both the temperature and 
concentration decrease. Hence, the velocities are motivated 
by inertia and buoyant forces over viscous forces and the 
temperature and concentration are demotivated, although 
the impact on the concentration is insignificant.

Figure 9 demonstrates the impact of the solutal Grashof 
number. The solutal Grashof number enhances both 
radial and axial velocities, but the temperature and the 
concentration decrease. Hence, the species’ buoyancy 
force motivates the fluid motion compared to the viscous 
force. However, it has a converse effect on the temperature 
and the concentration. However, we can observe that the 
impact on the concentration is insignificant compared to 
the impact on the other flow profiles.

Figure 10 demonstrates the trends of second-grade 
parameters on the flow profiles. It can be inspected that 
both radial and axial velocities are inspired by the second-
grade parameter and temperature, and the concentration of 
the fluid gets lowered for the increment of the second-grade 
parameter. Hence, the low viscosity enhances the fluid 
motion and compresses temperature and concentration. 
However, the impact of the second-grade parameter on the 
concentration is insignificant compared to the impact on 
the other flow variables.

The variations of the flow variables with the chemical 
parameter are visualized in Figure 11. The e figures reveal 
both radial and axial velocity profiles and concentration 
profiles decrease with increasing chemical parameter 
values. Hence, the motion of the fluid is decelerated, and 
the chemical reactions lower mass concentration. However, 
the temperature increases with the increase of the thermal 
Grashof number. Therefore, the chemical reactions 
generate heat. It can be noticed further that the impact 
of the parameter on the velocities and the temperature is 
insignificant compared to the impact on the concentration.

Variations of flow variables with the porous parameter are 
illustrated in Figure 12. From the figure, it is perceived 
that an increase in the value of the porous parameter, the 
velocities of the fluid in the boundary layer region are 
decreasing. Thus, porosity degenerates the fluid motion. 
However, we notice that the temperature and concentration 
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Figure 2: Impact of thermal Grashof number

Figure 3: Impact of solutal Grashof number

increase with the parameter increase. Hence, the presence 
of porosity boosts the temperature and concentration.

The impact of the magnetic parameter is demonstrated in 
Figure 13. It can be observed that an increase in the value 
of the magnetic parameter, the axial velocity of the fluid in 

the boundary layer region is decreasing. Thus, the magnetic 
field degenerates the axial velocity. However, we notice that 
the axial velocity, temperature and concentration increase 
with the parameter increase. Hence, the presence of porosity 
boosts radial velocity, temperature and concentration.
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Figure 5: The impact of chemical reaction parameter

Figure 4: Impact of second-grade fluid parameter
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Figure 6: Impact of porous parameter

Figure 7: Impact of magnetic parameter
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Figure 8: Impact of thermal Grashof number

Figure 9: Impact of solutal Grashof number
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Figure10: Impact of second-grade fluid parameter

Figure 11: Impact of chemical reaction parameter
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Figure 12: Impact of porous parameter

Figure 13: Impact of magnetic parameter
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CONCLUSION

The following outcomes can be concluded from the analysis 
and the simulation results.  For the shear-thickening fluids, 
both axial and radial velocity profiles are increasing for the 
increasing values of thermal and solutal Grashof number 
second-grade fluid parameter and are decreasing for the 
increasing values of the magnetic, porous, and chemical 
reaction parameters.  Temperature profile is enhanced by 
the increasing values of chemical, porous and magnetic 
parameters and is demotivated by increasing values of 
thermal and solutal Grashof numbers, second-grade fluid 
parameter. Concentration profile is increasing for the 
increasing values of porous and magnetic parameters but is 
decreasing for the increasing values of thermal and solutal 
Grashof numbers and second-grade fluid and chemical 
parameters.

For the shear-thinning fluids, both axial and radial velocity 
profiles are increasing for the increasing values of thermal 
and solutal Grashof number second-grade fluid parameters 
and are decreasing for the increasing values of the porous and 
chemical reaction parameters. Axial velocity decreases with 
the increase of magnetic parameter, but the radial velocity 
increases. The temperature profile is enhanced by the 
increasing values of chemical, porous and magnetic 
parameters and is demotivated by increasing values of 
thermal and solutal Grashof numbers, second-grade fluid 
parameters. The concentration profile is increasing for the 
increasing values of porous and magnetic parameters but is 
decreasing for the increasing values of thermal and solutal 
Grashof numbers and second-grade fluid and chemical 
parameters.
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