
ENGINEER21

ENGINEER - Vol. XXXXVI,, No. 03, pp. [page range], 2013 
© The Institution of Engineers, Sri Lanka 

 1 ENGINEER 

 

A Multi-tenancy Aware Architectural Framework for 
SaaS Application Development 

 
W. N. T. de Alwis and C. D. Gamage 

 
Abstract: In the era of cloud computing, multi-tenant based Software as a Service (SaaS) 
applications have been widely identified as the next generation of cloud applications. SaaS allows 
multiple user organizations to customize an application in a reliable and secure manner. However, 
this customization is a complex and error prone exercise. In response, researchers and practitioners 
have come up with SaaS architectures based on frameworks, platforms and modelling approaches to 
ease the complexity of SaaS application development. However, these methods and tools have not 
focused on aspect of development methodology being tuned to support long-term maintenance of the 
SaaS application.  
 
This paper presents an architectural framework for SaaS application development that incorporates 
long-term maintenance requirements arising from multi-tenancy of the application. It consists of a 
methodology coupled with a tool chain, which brings multi-tenancy aware features to develop SaaS 
solutions that meet critical architectural requirements. It also includes a UML 2.0 based Profile named 
SaaSML for designing of main components, a skeletal framework to position these components and a 
methodology for benchmark evaluation of key design criteria. 
 
Keywords: Multi-Tenant SaaS web application, SaaS Framework, Software Architecture tools, 
UML based modelling tool 
 
 
1. Introduction 
 
Software as a Service (SaaS) business model is 
impacting the software industry on how 
customers acquire business functionality and 
solutions [1]. In this model, application 
functionality is delivered through an online 
subscription model. A customer does not take 
ownership of the software, but instead rents a 
total solution that is delivered remotely. SaaS 
has been widely identified as the next 
generation of cloud applications [1]. This allows 
multiple users of di erent organizations 
(Whom we call as tenants) to use the same 
software in a reliable and secure manner. Users 
will be given the liberty to customize the 
application according to their needs by 
changing user interfaces, work-flows and 
business processes [2]. With the SaaS model, 
customers can reduce up-front support costs; 
because they no longer need to support 
multiple platforms and versions [3]. The end 
user’s customized solution is hosted over the 
Internet giving customers the opportunity 
access the service on demand basis [4]. 
 
For SaaS architectures, multi-tenancy is 
considered as the main design principle when 
developing SaaS software [5]. Multi-tenancy 
can be defined as a single instance of the 

software running on the vendor’s servers, 
serving multiple tenants. With a multi-tenant 
architecture, a software application is designed 
to virtually partition its data and configuration 
so that each client organization works with a 
customized virtual application instance. Multi-
tenancy may be the most significant paradigm 
shift that an architect accustomed to designing 
isolated, single-tenant applications has to make 
in the era [5]. This requires an architecture that 
maximize the sharing of resources across 
tenants, but that is still able to differentiate data 
belonging to different customers.  

In single-tenant software, challenges like 
configuration and versioning are solved by 
creating a branch in the development tree and 
deploying a separate instance. In a multi-tenant 
software, this is no longer acceptable, which 
means that features like these must be 
integrated in the application architecture, 
which inherently increases the code complexity 
and therefore makes maintenance more 
difficult [3]. Wrong architectural choices might 

W. N. T. de Alwis, MSc (Moratuwa), BSc (Hons) 
Information Systems (MMU), attune Lanka (Pvt) Ltd, 
Colombo, Sri Lanka 
Eng. (Dr.) C. D. Gamage, PhD (Monash), MEng (AIT), 
BSc Eng (Hons) (Moratuwa), MIE(Sri Lanka), CEng, 
University of  Moratuwa, Moratuwa, Sri Lanka 

ENGINEER - Vol. XXXXVI, No. 03, pp. [21-31], 2013
© The Institution of Engineers, Sri Lanka



ENGINEER 22ENGINEER 2  

degrade the quality attributes of the multi-
tenant SaaS application over its evolution.  

2. Related Work 
 
Software Architects from Microsoft and 
Salesforce.com have said that meta-data driven 
architectures are the core logic that gets applied 
within multi-tenant SaaS applications [5], [6], 
[7]. Within a layered architecture of a SaaS web 
application, the components within each layer 
can be conceptually virtualized into tenant 
compartments and they will be governed by 
tenant specific and shared meta-data based 
XML or runtime specific objects. Salesforce.com 
allows changing application behaviour in the 
runtime by changing some of these meta-data 
structures. Changed e ects can be felt 
immediately to tenant users through this. 
 
Force.com provides Software Engineers to build 
SaaS based applications on Force.com platform 
to deliver robust, reliable, Internet-scale 
applications. The design concepts used with the 
Force.com platform were derived from over ten 
years of development on Salesforce.com 
application where millions of tenants make use 
of Customer Relationship Management (CRM) 
features [6]. Force.com’s foundation is a 
metadata-driven software architecture that 
enables multi-tenancy to meet the extreme 
demands of its large user population. But it is 
considered as one of the most expensive cloud 
platforms out there. 
 
A SaaS platform called  ApprendaCloud, 
developed by Apprenda, Inc. allows 
Independent Software Vendors (ISVs) to 
transform a Microsoft .Net based single tenant 
web application to a multi-tenant web 
application [8]. This platform allows a 
mechanism to support development and 
distribution of applications in the SaaS model. 
It contains an ApprendaCloud SDK that can be 
integrated with Visual Studio as the IDE to 
develop SaaS solutions. Tight vendor lock-in 
from data and application is a major limitation 
within ApprendaCloud.  
 
Some ISVs have extended their web application 
frameworks to support SaaS features and they 
would act in similar nature the Application 
Service Provider (ASP) model based web 
applications. This paper explores the 
requirements and challenges of the native 
multi-tenancy pattern for SaaS applications [9]. 
A framework with a set of multi-tenancy based 

common services is discussed to help Software 
Engineers to design and develop a high quality 
native multi-tenant application more e ciently. 
Due to the essential requirement to guarantee 
service quality with high share e ciency, this 
paper presents approaches and principles to 
support better isolations among tenants in 
many aspects such as security, performance, 
availability and administration [9]. 
Implementation and deployment viewpoints of 
framework are not described fully.  
 
Development of SaaS architectures can be done 
through custom SaaS platforms following 
Service Oriented Architecture (SOA) style [10]. 
SOA requires loose coupling of services, which 
requires extensive planning and analysis to be 
done by the Software Architect to ensure the 
right SOA components and constructs to be 
placed to get a high degree of performance, 
scalability and security [10], [11].  
 
An SOA based framework on a series of model 
engines, model templates, and model 
description files can be used to come up with a 
multi-tenant architecture using modelling as an 
approach [12]. Here the execution platform and 
the core engine remains as the core modules of 
the architecture. Execution platform is mainly 
for service execution management and core 
module engine is the core business and 
controlling layer for managing models. Once an 
end user organization gets registered, a model 
description file will be created and saved. 
Model description files will contain SaaS multi-
tenant-aware features on di erent layers. 
Mainly XML based model description files are 
used to describe the menu details per user and 
Extensible Stylesheet Language 
Transformations (XSLT) engine is used to 
generate HTML. Based on versions of this 
model description files, SaaS features will get 
active on certain tenants. As the number of 
tenants increase, the complexity of the model 
description files will increase and maintenance 
will become more di cult in the long run.  
 
An approach name vSaaS in iVIC platform, 
which is considered a virtual computing 
environment for Hardware as a Service (HaaS) 
is proposed for SaaS applications [13]. The 
required software is deployed on iVIC platform 
to ensure it is accessible through remote 
streaming approach. The disadvantage of this 
approach is that only standard software is 
provided to all users with no customization 
options. Remote streaming applications tend to 
take more bandwidth compared to HTTP based 



ENGINEER23ENGINEER 2  

degrade the quality attributes of the multi-
tenant SaaS application over its evolution.  

2. Related Work 
 
Software Architects from Microsoft and 
Salesforce.com have said that meta-data driven 
architectures are the core logic that gets applied 
within multi-tenant SaaS applications [5], [6], 
[7]. Within a layered architecture of a SaaS web 
application, the components within each layer 
can be conceptually virtualized into tenant 
compartments and they will be governed by 
tenant specific and shared meta-data based 
XML or runtime specific objects. Salesforce.com 
allows changing application behaviour in the 
runtime by changing some of these meta-data 
structures. Changed e ects can be felt 
immediately to tenant users through this. 
 
Force.com provides Software Engineers to build 
SaaS based applications on Force.com platform 
to deliver robust, reliable, Internet-scale 
applications. The design concepts used with the 
Force.com platform were derived from over ten 
years of development on Salesforce.com 
application where millions of tenants make use 
of Customer Relationship Management (CRM) 
features [6]. Force.com’s foundation is a 
metadata-driven software architecture that 
enables multi-tenancy to meet the extreme 
demands of its large user population. But it is 
considered as one of the most expensive cloud 
platforms out there. 
 
A SaaS platform called  ApprendaCloud, 
developed by Apprenda, Inc. allows 
Independent Software Vendors (ISVs) to 
transform a Microsoft .Net based single tenant 
web application to a multi-tenant web 
application [8]. This platform allows a 
mechanism to support development and 
distribution of applications in the SaaS model. 
It contains an ApprendaCloud SDK that can be 
integrated with Visual Studio as the IDE to 
develop SaaS solutions. Tight vendor lock-in 
from data and application is a major limitation 
within ApprendaCloud.  
 
Some ISVs have extended their web application 
frameworks to support SaaS features and they 
would act in similar nature the Application 
Service Provider (ASP) model based web 
applications. This paper explores the 
requirements and challenges of the native 
multi-tenancy pattern for SaaS applications [9]. 
A framework with a set of multi-tenancy based 

common services is discussed to help Software 
Engineers to design and develop a high quality 
native multi-tenant application more e ciently. 
Due to the essential requirement to guarantee 
service quality with high share e ciency, this 
paper presents approaches and principles to 
support better isolations among tenants in 
many aspects such as security, performance, 
availability and administration [9]. 
Implementation and deployment viewpoints of 
framework are not described fully.  
 
Development of SaaS architectures can be done 
through custom SaaS platforms following 
Service Oriented Architecture (SOA) style [10]. 
SOA requires loose coupling of services, which 
requires extensive planning and analysis to be 
done by the Software Architect to ensure the 
right SOA components and constructs to be 
placed to get a high degree of performance, 
scalability and security [10], [11].  
 
An SOA based framework on a series of model 
engines, model templates, and model 
description files can be used to come up with a 
multi-tenant architecture using modelling as an 
approach [12]. Here the execution platform and 
the core engine remains as the core modules of 
the architecture. Execution platform is mainly 
for service execution management and core 
module engine is the core business and 
controlling layer for managing models. Once an 
end user organization gets registered, a model 
description file will be created and saved. 
Model description files will contain SaaS multi-
tenant-aware features on di erent layers. 
Mainly XML based model description files are 
used to describe the menu details per user and 
Extensible Stylesheet Language 
Transformations (XSLT) engine is used to 
generate HTML. Based on versions of this 
model description files, SaaS features will get 
active on certain tenants. As the number of 
tenants increase, the complexity of the model 
description files will increase and maintenance 
will become more di cult in the long run.  
 
An approach name vSaaS in iVIC platform, 
which is considered a virtual computing 
environment for Hardware as a Service (HaaS) 
is proposed for SaaS applications [13]. The 
required software is deployed on iVIC platform 
to ensure it is accessible through remote 
streaming approach. The disadvantage of this 
approach is that only standard software is 
provided to all users with no customization 
options. Remote streaming applications tend to 
take more bandwidth compared to HTTP based 

 

 3 ENGINEER 

web applications. Limitations within virtualize 
platform may bring in scalability issues for 
individual software installed. As for this report, 
remotely installed software virtualization will 
not be taken into consideration.  
 
Web Services Conversation Language (WSCL) 
is used to express the views of tenants within 
SaaS applications [14]. Here the business logic 
can be described in a conversation manner and 
the model used is composed of a business 
model and  tenant model. The two parts 
involved in the conversation have the same 
interaction; but individualized operations. 
Through guidelines in the conversation 
manner, WSCL expresses the procedure for 
obtaining the relevant tenant model and 
business model in the runtime. As the tenant 
needs increase, changes to the models will 
impact on the WSCL files. This will make 
maintenance a di cult engineering task. 
 
Summary of the SaaS application development 
architectural approaches are discussed below in 
Table 1. 

Table 1 - Summary SaaS Architecture 
development approaches 

Approach Description 
SaaS purpose 
built platforms 
(Eg: Force.com) 

Acts as a powerful web 
server with a platform API, 
for SaaS application 
development. They 
circumvent SaaS 
architectural challenges. 
Governance limitations 
within platforms open up 
problems during 
production stage. Migration 
from one platform to 
another will be difficult.  

SOA  This approach deals with 
designing software services 
in a bottom up approach 
and ensures that multi-
tenant features remain 
intact. This approach 
requires extensive planning 
and analysis to be done by 
the Software Architect to 
ensure the right SOA 
components and constructs 
to be placed to get high 
degree of performance, 
scalability and security. In a 
short time frame, this is a 
difficult task and failing to 
plan, could lead to an 
architectural collapse. 

Extend ASP 
based web 
application 
framework 

ISVs extend their 
frameworks to support SaaS 
features and they would act 
in similar nature of the ASP 
model base web 
applications. With 
evolution, such applications 
collapse as the requirements 
from different tenant 
increase during the 
production stage. The main 
reason is that the 
foundation of such 
architectures was not 
targeted towards SaaS 
multi-tenant principle.  

Standard 
software 
remotely 
streamed over 
virtualized 
environment 
(iVIC platform) 

Provide a SaaS solution for 
users to access software 
transparently without 
considering hardware or 
software installation and 
configuration. OS level 
virtualization and remote 
display technologies are 
used. Only standard 
software is provided to all 
users with no customization 
options.  

Model driven 
architecture 

WSCL is a XML based 
modelling notation used to 
express the views & 
business logic of tenants in 
a conversation manner [14]. 
As the tenant needs 
increase, changes to the 
models will impact on the 
WSCL files. This will make 
maintenance a di cult 
engineering task. 

 
3. Approach 
 
As the approach to develop SaaS applications, 
we propose a methodology using SaaS 
architectural framework based on tenant-aware 
services defined within XML files. Third party 
web application frameworks with specialized 
capabilities within di erent layers were 
integrated as components to solve SaaS 
challenges. Model Driven Architecture (MDA) 
based tool was incorporated to allow Software 
Engineers to generate models and express 
di erent architectural viewpoints on functional 
requirements and design decisions. MDA tool 
artifacts will be placed within the SaaS 
application framework that will be used at 
di erent layers of the web application.  



ENGINEER 24ENGINEER 4  

MDA is a software design approach that 
provides a set of guidelines for the structuring 
of specifications, which are expressed as models 
[15], [16], [17]. MDA allows developing 
applications and writing specifications, based 
on a platform-independent model (PIM) of the 
application or specification’s business 
functionality and behaviour [18]. Figure 1 
represents these models as boxes, and their 
transformations as arrows. MDA tools are used 
to develop, interpret, compare, align, measure, 
verify and transform models or meta-models 
[18], [19]. Unified Modelling Language (UML) 
has been successfully applied in Software 
Engineering as a general purpose modelling 
language [20].  

 
 

Figure 1 - Models and transformations in 
MDA 

 

  
 

Figure 2 - SaaSML and UML representation 
Venn diagram 

 
UML is a large and a complex language and it 
provides mechanisms to allow extensions via 
stereo-types [20]. UML profile can be defined as 
an extension of the UML standard language 
with specific elements. Since standard UML 2.0 
doesn’t fully cater the exact modelling needs or 
problems of SaaS multi-tenant architectures, a 
new UML based profile will be introduced to 
model SaaS applications called: Software as a 
Service Modelling Language (SaaSML). Based 
on SaaSML diagrams, Eclipse EMF tool will be 
used to generate Java code from UML diagrams 
where Java classes supporting the SaaS 
framework will be developed as SaaS 
application business components and multi-
tenant based domain models. Using this 
approach, we ensure that the SaaS application 
can be developed and maintained within a 
short time frame using SaaSML models. 
Evolution of the SaaS application will be done 

by changes on the models which will reflect on 
the application code and XML file.  
 
SaaSML is based on UML and involves 
modelling tenant blocks instead of modelling 
classes, thus providing a vocabulary that’s 
suitable for Software Engineering on SaaS 
based web application. A tenant block 
encompasses software components within 
di erent layers of the web application. As 
specified in Figure 2, SaaSML reuses a subset of 
UML2.0. Therefore SaaSML includes ten 
diagrams based on UML2 Usecase, Class and 
Object diagrams. SaaSML can be easily 
understood by the Software Engineering 
community, due to its direct relation with 
UML2.  
 
SaaSML makes it possible to generate a UML2 
based specifications for Software Engineering 
teams, dealing with the realization of multi-
tenant systems with cloud based hardware and 
software. Knowledge is thereby captured 
through models stored in a single repository, 
enhancing communication within the Software 
Engineering team. In the long term, tenant 
blocks can be reused as their specifications and 
models enable suitability assessment for tenant 
based customization projects.  
 
SaaSML structure diagrams are discussed: 
“Core Usecase diagram” is a Usecase diagram 
to model core solution of the SaaS application. 
“Tenant Org Usecase diagram” is a Usecase 
diagram to model tenant specific customization.  
“Core Domain diagram” is a class diagram to 
model core solution of the SaaS application. 
“Tenant Org Domain diagram” is a class di-
agram to model different tenant specific 
customizations. The “User Hierarchy diagram” 
is an Object diagram considering authorization 
User Rights and standard user hierarchies 
within a tenant organization. The “Tenant User 
Provisioning diagram” is a component diagram 
which represents the User repositories (Eg: Ms 
Exchange/Gmail) which require integration as 
services. The “Billing Plans and Metering 
diagram” is a class diagram which represents 
the SaaS services, billing plans and metering 
options.  The “SaaS Deployment diagram” is a 
deployment diagram that identifies the 
required hardware and software considering 
SaaS application deployment.  “SaaS Global 
Settings” is an  Object diagram which 
represents the global settings that needs to in-
cooperated into the SaaS application. The “SaaS 
Governance Rules diagram” is a  based Class 
diagram which represents rules which needs to 



ENGINEER25ENGINEER 4  

MDA is a software design approach that 
provides a set of guidelines for the structuring 
of specifications, which are expressed as models 
[15], [16], [17]. MDA allows developing 
applications and writing specifications, based 
on a platform-independent model (PIM) of the 
application or specification’s business 
functionality and behaviour [18]. Figure 1 
represents these models as boxes, and their 
transformations as arrows. MDA tools are used 
to develop, interpret, compare, align, measure, 
verify and transform models or meta-models 
[18], [19]. Unified Modelling Language (UML) 
has been successfully applied in Software 
Engineering as a general purpose modelling 
language [20].  

 
 

Figure 1 - Models and transformations in 
MDA 

 

  
 

Figure 2 - SaaSML and UML representation 
Venn diagram 

 
UML is a large and a complex language and it 
provides mechanisms to allow extensions via 
stereo-types [20]. UML profile can be defined as 
an extension of the UML standard language 
with specific elements. Since standard UML 2.0 
doesn’t fully cater the exact modelling needs or 
problems of SaaS multi-tenant architectures, a 
new UML based profile will be introduced to 
model SaaS applications called: Software as a 
Service Modelling Language (SaaSML). Based 
on SaaSML diagrams, Eclipse EMF tool will be 
used to generate Java code from UML diagrams 
where Java classes supporting the SaaS 
framework will be developed as SaaS 
application business components and multi-
tenant based domain models. Using this 
approach, we ensure that the SaaS application 
can be developed and maintained within a 
short time frame using SaaSML models. 
Evolution of the SaaS application will be done 

by changes on the models which will reflect on 
the application code and XML file.  
 
SaaSML is based on UML and involves 
modelling tenant blocks instead of modelling 
classes, thus providing a vocabulary that’s 
suitable for Software Engineering on SaaS 
based web application. A tenant block 
encompasses software components within 
di erent layers of the web application. As 
specified in Figure 2, SaaSML reuses a subset of 
UML2.0. Therefore SaaSML includes ten 
diagrams based on UML2 Usecase, Class and 
Object diagrams. SaaSML can be easily 
understood by the Software Engineering 
community, due to its direct relation with 
UML2.  
 
SaaSML makes it possible to generate a UML2 
based specifications for Software Engineering 
teams, dealing with the realization of multi-
tenant systems with cloud based hardware and 
software. Knowledge is thereby captured 
through models stored in a single repository, 
enhancing communication within the Software 
Engineering team. In the long term, tenant 
blocks can be reused as their specifications and 
models enable suitability assessment for tenant 
based customization projects.  
 
SaaSML structure diagrams are discussed: 
“Core Usecase diagram” is a Usecase diagram 
to model core solution of the SaaS application. 
“Tenant Org Usecase diagram” is a Usecase 
diagram to model tenant specific customization.  
“Core Domain diagram” is a class diagram to 
model core solution of the SaaS application. 
“Tenant Org Domain diagram” is a class di-
agram to model different tenant specific 
customizations. The “User Hierarchy diagram” 
is an Object diagram considering authorization 
User Rights and standard user hierarchies 
within a tenant organization. The “Tenant User 
Provisioning diagram” is a component diagram 
which represents the User repositories (Eg: Ms 
Exchange/Gmail) which require integration as 
services. The “Billing Plans and Metering 
diagram” is a class diagram which represents 
the SaaS services, billing plans and metering 
options.  The “SaaS Deployment diagram” is a 
deployment diagram that identifies the 
required hardware and software considering 
SaaS application deployment.  “SaaS Global 
Settings” is an  Object diagram which 
represents the global settings that needs to in-
cooperated into the SaaS application. The “SaaS 
Governance Rules diagram” is a  based Class 
diagram which represents rules which needs to 

 

 5 ENGINEER 

be taken governance aspects to derive SLAs 
against Billing Plans.  
 
4. Multi-Tenant SaaS 
Architectural framework Overview 
 
A general form of SaaS architectural goals and 
constraints are discussed in the Table 2.  

Table 2 - SaaS architectural goals and 
constraints 

Requirement  Architectural Goal/Decision  
Modifiability  Change the presentation layer, 

business process layer and 
service layer based on tenant 
[21].  

Database 
Configuration  

Store individual tenant data 
within a shared DB schema or 
different DB schemas [22].  

Performance  SLA based tenant fair usage 
policies for SaaS Services [5].  

Security  User authentication and au-
thorization, data security and 
Web Service Service security 
[5].  

Usability  Improve user experience of the 
software [21]  

Fault Toler-
ance  

Ensure proper monitoring 
mechanisms are in place to 
recover from infrastructure 
failures [5].  

Scalability  Automatically scale 
infrastructure based on service 
usage [5]  

 
In the methodology of the multi-tenant SaaS 
architectural framework, SaaS application will 
be designed by formulating architecture views: 
such as business usecase view, logical view, 
process view, deployment view, 
implementation view and architectural 
strategies to overcome SaaS challenges. Below 
we have explained these views and strategies in 
detail. 

4.1. Business Usecase View  

SaaS applications allow ISVs to run global 
businesses on the cloud. At the start of design 
phase, Software Engineers need to plan the 
following parameters for a global live run: 
regions or  countries, languages, currencies and 
regulations within regions. Business Analysts 
need to perform a thorough analysis on the 
given business domain considering these global 
factors. Based on the administrative isolation 
levels, SaaS applications will be mainly divided 
into two software components: [9].  

 Admin Portal - SaaS vendor, vendor’s 
partners (such as resellers & distributor) 
and tenant organizations’ administrators 
would login to this portion of the SaaS 
application for administrative purposes. 
This application will cater tenant user 
organization management, billing plan 
management and usage reports 
(operational, financial and quality 
attributes). It will serve as a governance 
module to manage all aspects of the SaaS 
application. Common features supported: 
management of users, billing plans, pay-
ment mechanisms, selection of application 
services & selection of global parameters 
(currencies, languages, time zones, number 
display format &, date formats).  

 User Portal - End users (tenant users) will 
be served through this portion of the 
application. Based on settings configured 
within Admin portal, the software services 
offered by the SaaS solution will be used by 
end users of the tenant. Most of the 
discussions on SaaS functional and non-
functional requirements are discussed on 
this area of the application. End user must 
feel the application is personalized to cater 
organization specific business needs.  

z

Data Access Layer Service Integration Layer

Presenatation Layer

Business Service Layer

Service Provider Layer

Domain 
Layer

Meta-
Data 

Service 
Layer

Technical 
Services 

Layer 

Database External 
Serices

Service 
Consumer Layer

SaaS Client 
Layer

Domain 
Model

SaaS application

 
Figure 3 - SaaS Logical Architecture 

 
SaaS application

Persistence layer 
(Spring-Hibernate)

Business Service Layer (Spring)

Presentation 
Layer (Struts and 

Tiles)

Service Integration 
(Spring Web Services 

based clients)

Domain 
Layer 
(Java)

Technical 
Services 

Layer 
(Spring 
AOP)

Service Layer (Spring 
Web Services)

Meta-
data 

services 
Layer 
(XML)

 
Figure 4 - Detailed Implementation 

Architecture 
 
4.2. Logical View  
 
We have proposed a SaaS reference architecture 
in Figure 3 and we have used this for SaaS web 
application proto-type development. The 
following is a description of each of its layers.  
 SaaS Client layer - browser, plugin or 



ENGINEER 26ENGINEER 6  

mashup  
 Presentation layer - Presentation 

component such as UI components, work-
flow controller components, Validation 
and Model objects  

 Service Provider layer - External/Internal 
services layers retrieve information within 
the application  

 Business Service layer - Business Process 
layer containing domain specific business 
logic, rules and constraints  

 Data Access layer - Data persistent and 
retrieval layer to backend Databases, local 
file systems, cloud storage (Amazon S3 or 
Google Storage)  

 Domain Model will represent business 
domain objects which will be common for 
all layers above. To support SaaS 
Architectural Cross Cutting concerns:  

 Tenant-aware Services Layer - Tenant 
specific customization of the presentation, 
business process, data access, EAI layer 
and Service Provider layer.  

 Technical Services Layer - Which includes 
security, logging, performance and SLA 
based governance restrictions.  

 
The Figure 4 represents the third party web 
application frameworks used for the SaaS 
application framework. Here we used JSPs, 
Apache Struts, Tiles, Custom Tag libraries, 
Spring and Hibernate. All these layers are 
connected through Spring framework which 
drives SaaS multi-tenant based injection. Spring 
uses Dependency Injection and Aspect oriented 
programming (AOP) concepts will be used 
bring tenant based dynamic presentation layer, 
work-flow, business rules, service and data 
access layer. We also used custom annotations 
evaluate access control of business services 
used within di erent layers using Spring 
Aspect Oriented Programming. Here the 
domain object identified during domain 
analysis and SaaS framework specific controller 
classes will be called as Plain Old Java Objects 
(POJO)s.   
 
4.3 SaaS framework strategy to solve SaaS 
Challenges  
Table 3 explains the framework strategies 
adopted to tackle SaaS challenges 
 

Table 3 - SaaS framework strategies 
SaaS 

Challenge 
SaaS Framework approach 

Multi-tenant 
Presentation 
layer 

XML template definitions used 
to load UI widgets, styles 
sheets and page components 

customization defined in design time. 
Multi-Tenant 
Work-flow 
layer 

XML definition used to 
differentiate workflows 
defined in design time.  

Multi-Tenant  
based 
Business logic 
validation 

XML definitions used to load 
tenant specific business 
components defined in design 
time. 

DB 
configuration 
for 
Multi-tenant 
application 

Use XML definition apply 
Object Relational Mapping to  
support shared DB schema or 
tenant specific DB schema. 

Multi-Tenant 
based Service 
Integration 
and Service 
Exposure 

Generate web service client 
code and use XML definitions 
to load tenant specific business 
components defined in design 
time. 

Tenant 
specific 
Billing 
Subscription 
and 
Metering 

Using AOP based cross cutting 
code to monitor usage service 
metering options and generate 
daily usage bills using crone 
jobs. 

Multi-tenant 
based soft- 
ware build 
environment 

Use Maven - build 
management tool to compile 
sources, run all test cases and 
deploy. 

Performance 
restriction 
based on 
SLA 

AOP based cross cutting code 
to measure service usage and 
restrict based on SLA. 

Security 
to between 
Tenants 

Use a login module based on 
central security services for 
authentication. Use access 
control module for 
authorization. Apply AOP 
cross cutting code to control 
access rights in runtime. 

 
4.4 Process View  
The process view describes the how SaaS meta-
data services which get triggered within the 
application. Here a web request-thread based 
place holder (ThreadLocal) was used to keep 
tenant configuration data. A login module was 
developed to authenticate tenant users and 
check if the tenant billing subscription is valid. 
If the authentication is approved, a web session 
will be created and tenant configuration data 
will be stored within it. Later on subsequent 
web requests, the tenant configuration data will 
be stored within ThreadLocal variable. During 
rest of the thread execution, objects related 
tenant specific needs will get called within 
different layers. This process work-flow allows 
tenant based dynamic behaviour to be triggered 
at runtime.  



ENGINEER27ENGINEER 6  

mashup  
 Presentation layer - Presentation 

component such as UI components, work-
flow controller components, Validation 
and Model objects  

 Service Provider layer - External/Internal 
services layers retrieve information within 
the application  

 Business Service layer - Business Process 
layer containing domain specific business 
logic, rules and constraints  

 Data Access layer - Data persistent and 
retrieval layer to backend Databases, local 
file systems, cloud storage (Amazon S3 or 
Google Storage)  

 Domain Model will represent business 
domain objects which will be common for 
all layers above. To support SaaS 
Architectural Cross Cutting concerns:  

 Tenant-aware Services Layer - Tenant 
specific customization of the presentation, 
business process, data access, EAI layer 
and Service Provider layer.  

 Technical Services Layer - Which includes 
security, logging, performance and SLA 
based governance restrictions.  

 
The Figure 4 represents the third party web 
application frameworks used for the SaaS 
application framework. Here we used JSPs, 
Apache Struts, Tiles, Custom Tag libraries, 
Spring and Hibernate. All these layers are 
connected through Spring framework which 
drives SaaS multi-tenant based injection. Spring 
uses Dependency Injection and Aspect oriented 
programming (AOP) concepts will be used 
bring tenant based dynamic presentation layer, 
work-flow, business rules, service and data 
access layer. We also used custom annotations 
evaluate access control of business services 
used within di erent layers using Spring 
Aspect Oriented Programming. Here the 
domain object identified during domain 
analysis and SaaS framework specific controller 
classes will be called as Plain Old Java Objects 
(POJO)s.   
 
4.3 SaaS framework strategy to solve SaaS 
Challenges  
Table 3 explains the framework strategies 
adopted to tackle SaaS challenges 
 

Table 3 - SaaS framework strategies 
SaaS 

Challenge 
SaaS Framework approach 

Multi-tenant 
Presentation 
layer 

XML template definitions used 
to load UI widgets, styles 
sheets and page components 

customization defined in design time. 
Multi-Tenant 
Work-flow 
layer 

XML definition used to 
differentiate workflows 
defined in design time.  

Multi-Tenant  
based 
Business logic 
validation 

XML definitions used to load 
tenant specific business 
components defined in design 
time. 

DB 
configuration 
for 
Multi-tenant 
application 

Use XML definition apply 
Object Relational Mapping to  
support shared DB schema or 
tenant specific DB schema. 

Multi-Tenant 
based Service 
Integration 
and Service 
Exposure 

Generate web service client 
code and use XML definitions 
to load tenant specific business 
components defined in design 
time. 

Tenant 
specific 
Billing 
Subscription 
and 
Metering 

Using AOP based cross cutting 
code to monitor usage service 
metering options and generate 
daily usage bills using crone 
jobs. 

Multi-tenant 
based soft- 
ware build 
environment 

Use Maven - build 
management tool to compile 
sources, run all test cases and 
deploy. 

Performance 
restriction 
based on 
SLA 

AOP based cross cutting code 
to measure service usage and 
restrict based on SLA. 

Security 
to between 
Tenants 

Use a login module based on 
central security services for 
authentication. Use access 
control module for 
authorization. Apply AOP 
cross cutting code to control 
access rights in runtime. 

 
4.4 Process View  
The process view describes the how SaaS meta-
data services which get triggered within the 
application. Here a web request-thread based 
place holder (ThreadLocal) was used to keep 
tenant configuration data. A login module was 
developed to authenticate tenant users and 
check if the tenant billing subscription is valid. 
If the authentication is approved, a web session 
will be created and tenant configuration data 
will be stored within it. Later on subsequent 
web requests, the tenant configuration data will 
be stored within ThreadLocal variable. During 
rest of the thread execution, objects related 
tenant specific needs will get called within 
different layers. This process work-flow allows 
tenant based dynamic behaviour to be triggered 
at runtime.  

 

 7 ENGINEER 

4.5 Deployment View  
The deployment view will resemble the 
hardware and web server software layers that 
the SaaS application will be deployed on. It 
needs to support scalability aspects defined 
within SaaS Architectural goals. It should also 
allow integration between different services 
and access services within the SaaS application 
to outsiders on a secure and robust manner. 
Figure 5 shows the main deployment 
components of the application. Here the SaaS 
client application will be a browser, mashup, 
plugin or desktop application that will make 
use of the SaaS application. Currently we have 
chosen Amazon EC2 based Linux box with 
Apache Tomcat6 as the deployment 
environment for the proto-type SaaS 
application.  

SaaS Application

Deployment environment

Database

Internet

SaaS clientSaaS client

External 
Service 

Repository

SaaS Client 
Service

 
Figure 5 - Deployment Architecture of SaaS 

web application (general view) 
  

Billing and 
Metering 
module

Billing Services 
and Metering 

module

SLA 
Governance 

module 

SLA 
Governance 

module 

User 
Provisioning 

module

Teanant based 
user Hierarchy 

Module

Core Domain 
module

Tenant based 
Domain 
modules

Admin Portal 
Presentation layer

User Portal 
Presentation layer

Business layer (SaaSML based modules)

Tenant specific Service 
Provider module

Presentation layer

Billing Services 
and Metering 

module

Global Setting 
Management 

module

Teanant based 
user Hierarchy 

Module

User and Organization 
Adminstrative Management 

module

Data Access layer
External Service Integration 

layer

SaaS Application

 
Figure 6 - SaaSML based Component Diagram 
 
 

 

 

4.6 Implementation View  

Java components based on SaaSML 
specification which acts as modules within the 
Domain and Business layers of the SaaS 
framework. In the Figure 6 component diagram 
of the SaaS Architecture is displayed. These 
components will be placed within the Business 
layer of the application. In the following list we 
highlight individual component module, their 
design rationale and dependency with each 
other modules. 
 Core module - The core application 

business domain will be represented here. 
Mainly the Core Usecase Diagram and 
Core Domain Diagram would be used to 
define the Core module.  

 Tenant module - Tenant specific customer 
extension to the core module will be 
defined within this module. Each 
customer specific domain object will be 
kept within a separate package. This 
module will depend on the Core module 
components. Tenant Org Usecase Diagram 
and Tenant Org Domain Diagram  

 System User Rights Module - Define all 
user rights of the SaaS application as 
Enumerations.  

 Tenant User Hierarchy Module - Define 
tenant specific user roles and mapping 
between the user rights. These roles could 
be used within Core module or Tenant 
module POJO methods’ custom 
annotation to restrict business method 
execution based on tenant User-Role or 
System specific User Right.  

 The Billing and Metering Diagram -This 
module will contain the SaaS Services and 
its Metering Items. A Billing Plan will 
have any number of services that could be 
applied on tenant organizations.  

 SaaS Global Settings - This module will 
represent the possible countries, time 
zones, currencies, date formatting pictures 
as enumerations that will be used as utility 
services  

 The SaaS Governance module -represents 
the possible metering items that require 
monitoring and restriction based on tenant 
SLAs.  

SaaSML 
based UML 

models  
(PIM)

EMF Ecore 
Model (PSM)

SaaS application 
framework based Java 

Emitter Templates
(PSM tools)

SaaS application 
framework based Java 

Classes

Ecore Annotated 
Java Classes 

Business models 
(CIM)

 
Figure 7- SaaSML based MDA approach to 

generate sources 



ENGINEER 28ENGINEER 8  

4.6.1 MDA approach to generate SaaSML 
based components  
 
Using Eclipse EMF framework, the UML2.0 
based SaaSML diagrams will be used to derive 
the SaaS application domain model and 
business components. The Java code that is 
generated through this approach will be based 
on Eclipse ECore API. This code will mainly 
consist of Java Interfaces. The implementation 
of these interfaces can be modified with the use 
of a Java Emitter Template (JET). Depending on 
the SaaS application deployment environment, 
the usage of underline infrastructure services 
and third part libraries will vary. The 
generation of Java classes which are dependent 
on the infrastructure services and third party 
libraries, can be done using Java Emitter 
Templates integrated with the EMF framework. 
Here ECore models are converted to technology 
specific Java implementations. This will help 
Software Engineers to extend the application to 
multiple platforms even with a common PIM 
model based on SaaSML.  
 
Usage of SaaSML based MDA approach is 
shown in Figure 7. Using SaaSML MDA based 
approach; code generated through SaaSML 
diagrams can be re-used on other SaaS 
applications as libraries. Extension to initial 
Java classes can be enforced through Java 
Emitter Templates which are knowledgeable on 
re-usable components.  
 
4.6.2 How to couple external business 
components to the SaaS application?  
 
There could be cases where a proven business 
logic written for specific business domains, 
which needs to be coupled within the SaaS 
application without developing modules from 
scratch. Let’s assume a scenario where third 
party libraries which handle CRM based billing 
needs to be coupled within the SaaS 
application. In such a case, the SaaSML -Billing 
and Metering diagram needs to be modelled 
considering these external components or third 
party libraries. A PSM based JET and Ecore 
Models need to be used to generate Java source 
compatible for the billing API. With this 
approach SaaS application framework based 
billing and metering sources (that can be 
coupled with the external billing API) can be 
generated.  
  
 
 

4.6.3 How to reuse SaaSML components of 
one SaaS application in another?  
 
Based on SaaSML models, platform specific 
Java sources can be generated using MDA 
approach. These sources can be used within the 
SaaS application to represent SaaS 
functionality. Assume a new requirement 
comes to re-use the SaaSML Java sources within 
a di erent SaaS application. In such a case, the 
previously generated SaaSML models can be re-
used again, but the platform specific 
transformation can be avoided by integrating 
previously generated components. JET 
templates and ECore models can be used to 
generate sources which will make use of re-
usable component as an external business 
component. Re-usable SaaSML components can 
be placed within di erent Maven Projects that 
can be mapped as a dependency with other 
SaaS application Maven projects. With this 
approach, SaaSML components can be re-used 
within other SaaS applications. 
 
5. Evaluation  
 
Evaluation of the SaaS application was done by 
comparing it with Force.com & 
ApprendaCloud based SaaS applications. The 
aim of this whole exercise was to compare the 
implemented SaaS features against a similar 
product to understand its ranking 
(comparatively). As for the SaaS product 
evaluation, we used an AHP technique for 
prioritizing the product features and expert 
judgement based scoring of the products [24]. 
The ranked sum of weighted scores in 
descending order gives the ranking of the 
products as shown in Table 4. The SaaS 
prototype application carried a ranking of 0.378 
(low), ApprendaCloud application carried a 
ranking of 0.477 (medium). and Force.com 
application carried a ranking of 0.622 (high). 
This shows that even a quickly developed 
prototype application using the proposed 
methodology can be competitive with 
established applications from globally 
recognized SaaS providers. 

 
 



ENGINEER29ENGINEER 8  

4.6.1 MDA approach to generate SaaSML 
based components  
 
Using Eclipse EMF framework, the UML2.0 
based SaaSML diagrams will be used to derive 
the SaaS application domain model and 
business components. The Java code that is 
generated through this approach will be based 
on Eclipse ECore API. This code will mainly 
consist of Java Interfaces. The implementation 
of these interfaces can be modified with the use 
of a Java Emitter Template (JET). Depending on 
the SaaS application deployment environment, 
the usage of underline infrastructure services 
and third part libraries will vary. The 
generation of Java classes which are dependent 
on the infrastructure services and third party 
libraries, can be done using Java Emitter 
Templates integrated with the EMF framework. 
Here ECore models are converted to technology 
specific Java implementations. This will help 
Software Engineers to extend the application to 
multiple platforms even with a common PIM 
model based on SaaSML.  
 
Usage of SaaSML based MDA approach is 
shown in Figure 7. Using SaaSML MDA based 
approach; code generated through SaaSML 
diagrams can be re-used on other SaaS 
applications as libraries. Extension to initial 
Java classes can be enforced through Java 
Emitter Templates which are knowledgeable on 
re-usable components.  
 
4.6.2 How to couple external business 
components to the SaaS application?  
 
There could be cases where a proven business 
logic written for specific business domains, 
which needs to be coupled within the SaaS 
application without developing modules from 
scratch. Let’s assume a scenario where third 
party libraries which handle CRM based billing 
needs to be coupled within the SaaS 
application. In such a case, the SaaSML -Billing 
and Metering diagram needs to be modelled 
considering these external components or third 
party libraries. A PSM based JET and Ecore 
Models need to be used to generate Java source 
compatible for the billing API. With this 
approach SaaS application framework based 
billing and metering sources (that can be 
coupled with the external billing API) can be 
generated.  
  
 
 

4.6.3 How to reuse SaaSML components of 
one SaaS application in another?  
 
Based on SaaSML models, platform specific 
Java sources can be generated using MDA 
approach. These sources can be used within the 
SaaS application to represent SaaS 
functionality. Assume a new requirement 
comes to re-use the SaaSML Java sources within 
a di erent SaaS application. In such a case, the 
previously generated SaaSML models can be re-
used again, but the platform specific 
transformation can be avoided by integrating 
previously generated components. JET 
templates and ECore models can be used to 
generate sources which will make use of re-
usable component as an external business 
component. Re-usable SaaSML components can 
be placed within di erent Maven Projects that 
can be mapped as a dependency with other 
SaaS application Maven projects. With this 
approach, SaaSML components can be re-used 
within other SaaS applications. 
 
5. Evaluation  
 
Evaluation of the SaaS application was done by 
comparing it with Force.com & 
ApprendaCloud based SaaS applications. The 
aim of this whole exercise was to compare the 
implemented SaaS features against a similar 
product to understand its ranking 
(comparatively). As for the SaaS product 
evaluation, we used an AHP technique for 
prioritizing the product features and expert 
judgement based scoring of the products [24]. 
The ranked sum of weighted scores in 
descending order gives the ranking of the 
products as shown in Table 4. The SaaS 
prototype application carried a ranking of 0.378 
(low), ApprendaCloud application carried a 
ranking of 0.477 (medium). and Force.com 
application carried a ranking of 0.622 (high). 
This shows that even a quickly developed 
prototype application using the proposed 
methodology can be competitive with 
established applications from globally 
recognized SaaS providers. 

 
 

 

 9 ENGINEER 

Table 4 - Ranking of products 
Factor Attributes Score 

of 
Force
.com 
app 

Score 
of  

Appre
ndaCl
oud 
app 

Score 
of  

SaaS 
Proto-
type 

Functio
nality  

Tenant 
account 
man-
agement  

0.06  0.05 0.06  

 Metering 
and Billing 
features  

0.048  0.04 0.032  

 SaaS end 
user 
features  

0.096  
 

0.04 0.064  

 Provisionin
g mecha-
nisms  

0.028  0.01 0.012  

 Modifiabilit
y  0.126  0 0.054  

 Security  0.105  0.09 0.045  
 Performance  0.072  0.05 0.048  
Archite
cture  Reliability  0.036  0.02 0.024  

 Scalability  0.021  0.015 0.009  
 Easiness to 

develop  0.018  0.15 0.012  

 Governance 
restrictions  

0.012  0.012 0.018  

Total   0.622  0.477 0.378  
 
A performance study on the prototype 
application was carried out using JMeter based 
stress testing tool with sample data sets which 
represented two Tenant users with different 
customizations. Tool was used to record 
workflows of the two types of tenant users and 
they were simulated in an iterative manner 
within JMeter Test Plan to generate maximum 
of 100 concurrent transactions per second on 
the SaaS web application. Acceptable response 
time was taken as 5 seconds and throughput as 
20 at minimum.  By analyzing concurrent user 
threads (refer Figure 8), response time (refer 
Figure 9) and throughput (refer Figure 10) over 
a predefined time duration, we didn’t see any 
performance bottlenecks and felt the prototype 
application performance is acceptable. Further 
testing is required to identify suitable 
deployment environments considering high 
performance and scalability aspects. Using 
ATAM we have evaluated the SaaS prototype 
application. Performance is considered a key 
sensitivity point which will get impacted by the 
dynamic configuration options adopted within 
the framework.  

 
Figure 8 - Graph that represents concurrent 

user sessions (threads) Vs Test duration 
 

 
Figure 9 - Graph that represents Response 

time Vs Test duration 
 

 
Figure 10 - Graph that represents Throughput 

Vs Test duration 
 
6. Future Work 
 
Further improvements on the performance side 
of framework are required based on the 
evaluation. Extracting modular artifacts from 
the SaaS framework and porting them to 
support di erent PaaS environments would be 
a challenging research. SaaS framework 
modelling tools for migration between di erent 
data modelling options can also be considered 
as a future research topic. 
 
7. Conclusion 
 
In this Journal paper, authors have proposed a 
SaaS architectural framework that allows MDA 
based tools to be used in developing SaaS 
solutions. SaaSML based UML profile was 
introduced to capture SaaS functional 
requirements and derive UML2.0 based 
diagrams to generate modular software 
components. A prototype SaaS application was 
developed as a proof of concept. It was 
evaluated against Force.com & ApprendaCloud 
based SaaS applications using AHP technique. 
Results showed that even a quickly developed 
prototype application, using the proposed 
methodology can be competitive with 



ENGINEER 30



ENGINEER31


