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Abstract—This research presents a study on the application of
end-to-end deep learning models for Automatic Speech Recogni-
tion in the Sinhala language, which is characterized by its high
inflection and limited resources. We explore two e2e architectures,
namely the e2e Lattice-Free Maximum Mutual Information
model and the Recurrent Neural Network model, using a re-
stricted dataset. Statistical models with 40 hours of training data
are established as baselines for evaluation. Our pretrained end-
to-end Automatic Speech Recognition models achieved a Word
Error Rate of 23.38% by far the best word-error-rate achieved
for low resourced Sinhala Language. Our models demonstrate
greater contextual independence and faster processing, making
them more suitable for general-purpose speech-to-text translation
in Sinhala.

Index Terms—Speech Recognition, Deep Learning, Transfer
learning

I. INTRODUCTION

The field of Automatic Speech Recognition (ASR) encom-
passes two main architectures for training ASR systems: the
Statistical ASR architecture and the End-to-End (e2e) Deep
Neural architecture. While Statistical ASR remained state of
the art for many years, the landscape shifted towards e2e ASR
systems after 2015 due to their superior performance. The key
distinction between these architectures lies in the number of
models required for training the ASR system. Statistical ASR
relies on three distinct models: acoustic models, pronunciation
models, and language models. In contrast, e2e ASR com-
presses these three models into a single Deep Neural Network
(DNN) [1]. Given the rising popularity of e2e architecture in
Natural Language Processing (NLP) and speech recognition,
numerous studies have explored its application in developing
ASR systems for various languages. Previous research focus-
ing on English speech recognition has demonstrated improved
outcomes when utilizing the e2e architecture compared to
traditional statistical approaches [2].

sents
a novel approach that holds the potential to enhance available
resources . Specifically , the e2e architecture facilitates transfer
learning , a trending technique in low -resource speech
recognition , which can effectively improve accuracy [5]. In the
research community , several tools are available for creating
ASR systems, such as Kaldi, DeepSpeech , Espresso, and Wav2
letter. However, there has been no comparative analysis of these
tools specifically for the Sinhala language . Hence , it is
imperative to determine the most suitable approach for
developing ASR systems in Sinhala by leveraging the various
available tools.

This paper focuses on conducting a comprehensive study on e
2e Deep Neural Network (DNN ) architecture -based ASR
systems for Sinhala speech recognition . Specifically , we ex-
plore two e2e models , namely the e2e LF-MMI model and the
RNN model and with Pretraining, which are created using three
distinct toolkits : Kaldi , Espresso , and DeepSpeech . The
performance of each e2e model will be rigorously evaluated and
compared against established statistical models , including
GMM-HMM, DNN-HMM, and combinational models such as
SGMM-DNN. By systematically analyzing and contrasting the
outcomes of these models, we aim to gain valuable insights into
the efficacy of e2e DNN architectures for Sinhala speech
recognition.

The structure of this paper is organized as follows. Section 2
provides an overview of the related studies in the field of ASR,
highlighting the existing research on e2e architectures and their
applications in various languages. In Section 3, we delve into the
methodology employed for this study , including data
preparation and implementation of the e2e DNN models using
different toolkits . This section offers a comprehensive
description of the experimental setup and procedures. Section 4
presents the results obtained from the evaluation of the e2e
models and their comparison with statistical models, presenting
an in-depth analysis of the performance metrics . Furthermore ,
Section 5 outlines the conclusions drawn from the study and
proposes potential avenues for future research and improvement
in the field of Sinhala speech recognition using e2e DNN
architectures.
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     In the realm of ASR system development for the Sinhala
language , prior and ongoing research has predominantly
focused on utilizing statistical ASR architecture , Gaussian
Mixture Model with Hidden Markov Model (GMM -HMM )
based models, and Hybrid Deep-Neural-Network with Hidden
Markov Model (DNN-HMM) based models [3], [4]. However ,
the adoption of the e2e architecture for Sinhala ASR repre-
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II. LITERATURE REVIEW

The field of speech recognition has a rich history that
dates back to the early 1920s [6]. Over the years, significant
advancements have been made in various approaches and
models. Initially, template-based methods were used, but in the
1980s, statistical modelling approaches, particularly Hidden
Markov Models (HMM), gained prominence and replaced the
earlier methods [7]. The introduction of Deep Neural Networks
(DNN) in the era of deep learning revolutionized ASR, leading
to improved acoustic models and surpassing the performance
of traditional HMM-based models. However, HMM-based
models still dominate the field due to their practicality and
the challenges associated with training and decoding processes
[1].

Recently, there has been a shift towards end-to-end (e2e)
architectures in ASR. Unlike HMM-based models, e2e models
directly map input audio sequences to word or character
sequences, eliminating the need for intermediate states and
streamlining the overall ASR process. However, e2e models
require a large amount of speech data for higher recognition
accuracy, making them less suitable for low-resource scenarios
[1].

To address the low-resource challenge, transfer learning and
unsupervised learning techniques have gained popularity. Re-
searchers have explored the use of transfer learning techniques,
such as weight transfer and multitask learning, to tackle the
scarcity of training data. Additionally, advancements in meta-
learning and unsupervised pre-training techniques have shown
promising results in improving ASR accuracy for low-resource
languages [8].

Several research papers published in 2020 have focused
on transfer learning and low-resource speech recognition,
utilizing models such as LF-MMI and Deepspeech. These
papers have contributed valuable insights and advancements
to the field [5], [9]–[11].

In summary, the current focus of speech recognition re-
search is on addressing the low-resource problem through
transfer learning techniques. The utilization of e2e LF-MMI
models and advancements in deep learning offer promising
opportunities for improved ASR performance and efficiency
in both high-resource and low-resource scenarios.

III. METHODOLOGY

A. Approach

The proposed solution for evaluating the applicability of
e2e deep neural architecture is depicted in Fig. 1. In this
study, we investigate two e2e models extensively, which are
considered key components of the research. These models are
carefully analyzed and evaluated to assess their effectiveness
in the context of our study.

1) Recurent Neural Network (RNN) model: For training the
RNN models, we employed the default 6-layer neural network
architecture, with the recurrent layer placed in the 4th layer.
Each hidden layer consisted of 375 hidden units. Throughout
our study, we utilized the default RNN architecture provided

Fig. 1. High-level architecture of the research design

in Deepspeech, as described in [12]. However, since our
focus was on the Sinhala language, we needed to modify the
alphabet used in the models. In addition to the characters from
the Sinhala Unicode character table, we included zero-width
space, zero-width joiner, and zero-width non-joiner characters
in the alphabet. This inclusion was necessary to address and
mitigate any errors that may arise during training specifically
for the Sinhala language.

2) E2e Lattice-Free Maximum Mutual Information (e2e LF-
MMI) model: To train the WSJ dataset, we employed the
default Neural Network (NN) architecture specified in the
training recipes. For the Kaldi e2e LF-MMI model, we utilized
Factored Time Delay Neural Networks (TDNNf) as per the
standard Kaldi WSJ recipe. This neural network is comprised
of 13 TDNNf layers along with a rank reduction layer. The
TDNNf layer consisted of 1024 units and 128 bottleneck
units. We followed the default hyperparameters outlined in
the standard recipe, with 10 and 30 epochs [13].

In the Espresso e2e LF-MMI models, we adopted the
TDDN+LSTM network specifications. This architecture in-
cluded 7 TDNN layers and 3 LSTM layers. The TDNN
layers had a dimensionality of 512, while the LSTM layers
comprised 128 recurrent and non-recurrent dimensions. For
further details regarding the e2e LF-MMI models and the
default NN architecture, please refer to [13].

B. Data Preparation

Data preparation is a crucial step in the ASR pipeline, as
the reliability and accuracy of the ASR system heavily rely on
the consistency and integrity of this stage [3]. In our study, we
utilized three toolkits, but data preparation was only required
for Kaldi and Deepspeech. Interestingly, Espresso, as a system,
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does not necessitate any additional data preparation. Instead,
we could utilize the same prepared files from Kaldi for training
models through Espresso as well [14].

When preparing the data for Deepspeech, it was essential
to ensure that each audio file contained a single utterance.
Additionally, the training process of Kaldi e2e LF-MMI did
not support the use of a segment file, which contains the
length of each utterance in a single audio file. Therefore,
special consideration was given to these requirements during
the data preparation phase. In this study, we utilized recordings
collected from UCSC LTRL (University of Colombo School
of Computing Language Technology Research Laboratory),
which provided us with a dataset comprising 40 hours of
training data. These recordings were gathered using Praat and
Redstart tools, which are commonly used in speech research
and analysis. The dataset from UCSC LTRL served as the
primary source of training data for our experiments in building
e2e ASR systems for Sinhala speech recognition.

1) Dataset: The training process involved a total dataset
consisting of recordings from 113 speakers, with 79 female
speakers and 34 male speakers. Within the training dataset,
there were 67 female speakers and 27 male speakers, re-
sulting in a total of 17,848 sentences. This amounted to
approximately 25 hours of speech data. For fine-tuning the
models, a validation dataset of 2,002 speech utterances was
used, which included recordings from 8 female speakers and
3 male speakers. During the testing phase, a separate dataset
was utilized, consisting of recordings from 4 female speakers
and 4 male speakers. In total, this dataset included 80 speech
sentences. The training process was conducted at a sample
rate of 16kHz, and further details can be found in [3]. Table
I provides an overview of the overall details regarding the
datasets used in this study.

TABLE I
DETAILS OF TRAIN, VALIDATION, AND TEST DATA SETS

Dataset Male Female Utterances
Train 27 67 17848
Dev 3 8 2002
Test 4 4 80

2) Lexicon: The lexicon plays a crucial role in the pronun-
ciation model of a statistical ASR system, as it maps words
to their corresponding spoken phone sequences [3]. In this
study, the lexicon was created using two tools: ”Sinhala G2P
Conversion” [15] and ”Subasa Transliterator”. These tools
were employed to generate the necessary mappings between
words and their respective phonetic representations. For further
information and specific details, please refer to [3].

3) Corpus: Three corpora were utilized in this project: the
UCSC Novel Corpus consisting of 90,000 unique sentences,
the Chatbot Corpus with 388 unique sentences, and a corpus
created using the active learning method comprising 20,000
unique sentences. These corpora were combined to form a
new corpus for the generation of n-gram language models. The  

summary statistics of the corpus can be found in Table II. Two
toolkits were employed to create the n-gram language models:
SRILM [16] and KenLM [17]. Perplexity calculations were
performed on the testing dataset, and a 4-gram language model
was selected based on the study. Additional details regarding
the Language Models can be found in Table III.

TABLE II
CORPUS STATISTICS

Vocabulary Size 243339
Total number of Sentences 119621
Total number of words 119494

TABLE III
PERPLEXITIES OF LANGUAGE MODELS

Language Model Perplexity
Witten-Bell 3grams 9.393376
Witten-Bell 4grams 8.108833

C. Baseline Models

In this study, 2 baseline models were considered, excluding
basic statistical models monophone and triphone models.
These models, as described in [18], are:

• Hybrid System (Dan’s DNN)
• E2e LF-MMI Model

The process of creating these baseline models is detailed in
[18]. A total of 40 hours of data were used for training.
For feature extraction, Mel Frequency Cepstral Coefficients
(MFCC) were computed using 13 coefficients, including the
zero-order coefficient. The features were extracted every 10ms
with a 25ms Hamming window, following the standard mea-
surement mentioned in [19]. The results obtained from the
baseline models are presented in Table IV.

D. LF-MMI Model

For creating the e2e models, we opted for phone-based
training. Unlike Deepspeech, the Kaldi and Espresso toolkits
do not utilize an alphabet. Instead, we can rely on the lexicon
to map words to phone sequences during the decoding process.
The architecture used to create the LF-MMI models is depicted
in Fig. 2.

In the e2e models, we extract 40-dimensional MFCC fea-
tures from 25ms frames every 10ms, following the default
setting used in the WSJ recipe [13]. We apply zero mean and
unit variance normalization on a per-speaker basis, without
any additional feature normalization or transformation. Unlike
the baseline models, we do not perform re-alignments during
the training process.

Data augmentation is carried out using 2-fold speed pertur-
bation in all experiments. This perturbation modifies the length
of each utterance to one of the distinct lengths, ensuring that
no padding with silence is required [13].
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Fig. 2. e2e LF-MMI model Architecture

Unlike in traditional statistical ASR, e2e ASR decodes
utterances into character sequences. Therefore, we need a
phone language for the denominator graph during the decoding
process. We initiate the training of models in both the Kaldi
and Espresso toolkits using the aforementioned NN settings.
Espresso employs an updated version for creating numerator
graphs.

To train the e2e models, we can utilize a different lang
directory that includes information about the desired n-gram
language models, along with a compatible wordlist and lan-
guage model. The mkgraph.sh script is used to train the e2e
models using such language models.

E. RNN Model

In contrast to other approaches, Deepspeech does not utilize
phones to train models [12]. Instead, as mentioned earlier,
it employs an alphabet specific to the training language to
generate character sequences using a large DNN. Additionally,
Deepspeech provides the flexibility to use a separate n-gram
language model for decoding utterances. This is referred to as
an External Scorer in the Deepspeech documentation.

Fig. 3. RNN Model Architecture

In the Deepspeech architecture, 26 MFCC features are
extracted, which is the standard setting for a 16kHz sample
rate [12]. These features are passed through the first three
non-recurrent layers, which utilize the Rectified-Linear (Relu)
activation function. The fourth layer is a recurrent layer that
includes hidden units with forward recurrence. The fifth layer
is another non-recurrent layer that takes the forward units as
inputs. The output layer predicts the probabilities of characters
for each time slice. To improve the accuracy of the output, an
external scorer can be created and used. The Word Error Rate
(WER) is then calculated using the testing dataset. The basic
structure of the Deepspeech model is depicted in Figure 3, and
models are trained for different numbers of epochs, such as
30, 50, and 100.

After training, an ”output graph.pb” model file is generated.
However, loading this model into memory during inference
can lead to increased loading time and memory consumption.
To mitigate this, TensorFlow provides tools that allow data to
be read directly from disk, avoiding the need to load the entire
model into memory.

F. Pretrained Model

In order to overcome the limitations posed by the dataset,
transfer learning has proven to be a successful approach to
developing an ASR system [20]. In this study, we employed
the v0.9.3 English pre-trained model as the source model
and replaced the output layer, which consisted of the English
alphabet, with the Sinhala alphabet. This was done because
the specific output layer of the source model is not crucial for
our purposes [21].

Fig. 4. Pretrained Model Architecture

IV. RESULTS AND DISCUSSION

The training and decoding processes for all deep neural
architectures, as well as the evaluation of the models, were
performed on a server equipped with 4 GPUs - GeForce RTX
2080 Ti, each with a capacity of 10.8GB. During training, all 4
GPUs were utilized, leveraging CUDA to accelerate the deep
learning training process.

The performance of the e2e Sinhala ASR systems was
evaluated in terms of accuracy, specifically on recordings
captured in noisy environments. The accuracy can be measured
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TABLE IV
WER OF ALL TRAINED MODELS OVER THE TESTING DATA AND

EXTERNAL LANGUAGE MODELS USED FOR

Model Tool WERs
Baseline
- Hybrid System (Dan’s DNN
- E2e LF-MMI Model

Kaldi 27.79
28.55

E2e LF-MMI Model Espresso 30.21
RNN Model DeepSpeech 43.80
Pretrained Model DeepSpeech 23.38

by calculating either the Word Error Rate (WER) or the
Sentence Error Rate (SER). WER represents the number of
incorrectly identified words out of the total number of words
in the audio sample used for recognition, while SER represents
the number of improperly identified sentences out of the total
number of sentences. Throughout the study, WER was used
as the primary evaluation metric [4].

A. Baseline models

The baseline models included the hybrid DNN model and
e2e LF-MMI model which were built on top of the alignments
obtained from the LDA+MLLT+SAT (tri3) triphone model. In
study [18], the e2e LF-MMI model achieved a WER of 28.55%
and the hybrid DNN model achieved 27.79% WER with only
40 hours of training data. Table IV) presents a comparison of
the results obtained in this study with the same architecture.

B. E2e Model

The results for the e2e LF-MMI models, both in Kaldi
and Espresso, are presented in Table IV. In Kaldi, the model
achieved a WER of 28.55% with 10 epochs of training. It
is worth noting that when training with GPUs in Kaldi, the
available 4 GPUs are treated as a single GPU in exclusive
mode, allowing for higher frames during training. For the 10-
epoch training, 3 million frames were used per iteration. On
the other hand, in Espresso, the highest number of frames that
could be used per iteration was 0.12 million, resulting in a
WER of 30.21

Comparing the two models, it can be observed that Kaldi
achieved a higher accuracy with a 1.66% lower WER com-
pared to Espresso. However, it is important to consider that the
performance of the models can be influenced by various factors
such as training data, model architecture, and hyperparameters.

As a fully e2e model, the RNN does not use HMM and
instead operates at the character level using an alphabet. The
(Table 6) displays the Word Error Rate (WER) obtained for
the system.

The current WER achieved in the RNN model is 43.80%.
Upon evaluating the sentences and examining the outputs,
we can identify areas that require improvement and potential
augmentations to enhance the performance of future studies,
such as transfer learning.

By employing transfer learning techniques and utilizing
an English pre-trained model, the RNN-based ASR system
achieved  significant  reduction in Word Error Rate (WER).

The WER decreased from 43.80% to 23.38%, resulting in a
remarkable improvement of 20.42%. This achievement rep-
resents the best WER recorded for the low-resource Sinhala
Language to date.

To further enhance the ASR system ’s performance , ad -
ditional improvements can be made . One approach is to
incorporate more Sinhala speech data into the training process.
Additionally , considering the similarities within the Indo -
Aryan Language family , utilizing speech data from other
languages within this family could also contribute to reducing
the WER even further . By leveraging these strategies , it is
possible to continue advancing the accuracy and effectiveness of
the ASR system for the Sinhala Language.

By analyzing the errors and discrepancies in the model ’s
outputs for the selected sentences , we can gain insights into the
specific challenges faced by the model and take steps to address
them . These improvements may involve refining the training
data , applying data augmentation techniques , optimiz - ing
model architecture and hyperparameters , or incorporating
advanced techniques like transfer learning . By iteratively re-
fining the model based on these observations , we can strive to
achieve better accuracy in future studies.

C. Evaluation

Three sentences were randomly selected from different
individuals . The recordings were conducted in their respective
environments using their own equipment , with a sample rate of
44.1 Hz. The baseline model chosen for comparison was Hybrid
Dan’s model, as it achieved the lowest WER among the baseline
models. Additionally, the accurate e2e models created in Kaldi,
Espresso, and Deepspeech were used for evaluation.

shown in [3], [18 ] that the current Sinhala ASR system
performs well in the context of news and number readings due to
the training data primarily focusing on these areas . However ,
they are underperformed in normal day-to-day conversations.

In this study , it was observed that the statistical models
employed in the research had a tendency to misidentify
utterances during normal day-to-day conversations . However ,
the pre-trained models showed higher accuracies compared to
other models. This discrepancy in accuracy can be attributed to
the context -dependent decoding of statistical models , which
often leads to lower accuracy for sentences with fewer words.

In contrast , the e2e models demonstrated a more context -
independent nature , despite being trained on data that exhibits
context dependency . As a result , e2e techniques prove to be
more suitable for the development of a general Automatic
Speech Recognition (ASR) system . These models are able to
handle a wide range of speech inputs, including both longer and
shorter sentences , and exhibit a higher level of accuracy
compared to traditional statistical models.

D. Limitations

The findings of this study should be interpreted considering
certain limitations . it is important to note that this result may be
biased towards the specific testing dataset used in this study .
While the proposed model has by far the best WER 23.38%
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it still falls short of achieving the state-of-the-art WER. This
indicates that the RNN model would benefit from a larger
amount of speech data to achieve higher levels of accuracy.
Therefore, the proposed model cannot be considered the best
option given the available data.

Additionally, it is worth mentioning that the training process
was conducted on a server equipped with 4 RTX 2080TI
GPUs. The training duration for each model was 3 days, which
presented challenges in fine-tuning the models. Due to time
constraints, only the language parameters (alpha and beta)
were fine-tuned, and further training using the augmentations
of WAV files was not considered in this research. This limita-
tion suggests that additional improvements could be achieved
by incorporating more comprehensive fine-tuning techniques
and leveraging data augmentation methods, although these
would require significant additional time and resources.

V. CONCLUSION

In this research, we successfully achieved our objectives by
developing a context-independent and faster model for Sinhala
speech recognition, specifically for general-purpose speech-to-
text transcription, using an end-to-end (e2e) approach. This
research aligns with existing literature, which emphasizes the
suitability of DNN approaches for ASR systems.

Currently, our e2e pre-trained model implemented on the
DeepSpeech toolkit achieves a Word Error Rate (WER) of
23.38% for Sinhala speech recognition. However further im-
provements can be made through fine-tuning and utilizing
advanced techniques.

The field of speech recognition is evolving to address the
challenge of low-resource languages. Extensive datasets are
available for languages such as English and French, accompa-
nied by state-of-the-art results. To overcome the low-resource
problem, a common solution involves transfer learning from
high-resource languages to low-resource languages. Deep-
speech provides scripts for transfer learning using Common
Voice data for the English language, which offers 2,181 hours
of training data. In the e2e LF-MMI technique, transfer learn-
ing can be achieved through weight transfer and multi-task
training [9]. Hence, based on the results of this study, it would
be beneficial to explore data augmentation techniques and
optimize parameters for the aforementioned transfer learning
techniques.

In conclusion, our research highlights the effectiveness of
the e2e approach for Sinhala speech recognition and the su-
periority of DNN-based models. We have achieved promising
results, and future work should focus on refining the model
through fine-tuning and exploring transfer learning techniques
to address the low-resource challenge and further improve the
accuracy of Sinhala speech recognition systems.
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