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Abstract: The Cox regression analysis is used to determine 
the relationship between a dependent variable and covariates 
in survival analysis involving censored data. The proportional 
hazards assumption is one of the most important assumptions 
of Cox regression. Outliers may have a strong influence on 
the Cox regression model’s parameter estimates and lead to 
violation of the proportional hazard assumption. Therefore, 
having outliers in the data set is a problem for researchers. In 
this case, robust estimations are commonly used to infer the 
parameters in a more robust way. However, we explore a new 
approach consisting of considering an outlier as missing data 
and replacing it by the multiple imputation method. The aim of 
this study is to compare these two methods through simulation.  
Furthermore, an analysis of a lung cancer data set is considered 
for illustration. According to the results of the study carried out 
based on simulated data sets and a real data set, the multiple 
imputation method, which is a missing data analysis method, 
solves the problem of outliers better than the robust estimation 
method, as the outcome is closer to the results obtained through 
original data.

 

INTRODUCTION 

One of the most important assumptions of Cox regression 
is the proportional hazard assumption. Outliers in data 
could lead to violation of this assumption and it leads to 

Keywords:  Cox regression, multiple imputation, outliers, 
robust Cox regression.

the emergence of inaccurate estimates. Because outliers 

may have a strong influence on the model’s parameter 
estimates, the outliers may be a problem for researchers. 
In many studies, data have been remodelled by deleting 
the observation with outliers. But in this case the data 
set to be analysed becomes smaller, compromising the 
statistical power of the study and eventually the reliability 
of its results. For this reason, it is not right to drop an 
observation just because it is an outlier, e.g., individuals 
that lived too long or died too early when compared with 
others with the same clinical conditions.

 Robust statistics have good performance of data sets 
with outliers and other small departures from model 
assumptions. Robust estimators are a modified class of 
regression parameters estimators (Bernarski, 1989). In 
Cox regression analysis, the partial likelihood function 
is used to estimate the parameters and the modification 
process is executed via this function. Recently, Farcomeni 
and Viviani (2011) proposed a modified Cox model that 
is fitted by trimming the smallest contributions to the 
partial likelihood.

 Also another suggestion for the outlier problem is to 
use the multiple imputation method which is one of the 
missing data analysis methods (Alkan & Alkan, 2018). 
In this method, instead of deleting all the values of the 
observation with an outlier, only the outlier is deleted 
and this missing value is imputed by using multiple 
imputation method.
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 For this purpose, we carried out a simulation 
study. The simulations were made to determine how 
much outliers influence the parameter estimates. The 
simulation scenarios were created according to different 
censor ratios (20%, 40%, 60%), different outliers ratios 

60

So, in this study, the solution of the problem that results 
from a violation of assumptions is discussed using 
two different methods. Firstly, the problem caused by 
outliers is transformed into a missing value problem and 
it is solved by the multiple imputation method, and then 
Cox regression analysis was applied to the completed 
data set. Secondly, robust estimates which give accurate 
results in case of deviations from the assumptions are 
obtained for Cox regression analysis. Therefore, our aim 
is to compare the results of Cox regression analysis after 
multiple imputation methods and the results of robust 
Cox regression analysis.

(10%, 20% 30%), and sample size N = 50, 100. So the 
multiple imputation and robust Cox regression have been 
compared in different situations. Furthermore, we revisit 
the popular NCCTG lung cancer data to illustrate both 
methods.

MATERIALS AND METHODS

Cox regression

Cox regression analysis is used extensively in biological 
and medical studies in survival analysis involving 
censored data. In survival analysis, the Cox regression 
analysis is used to determine the relationship between 
dependent variable and covariates (Cox, 1972). The Cox 
regression model can be written as:
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λi(t)  =  λ0(t) exp(𝛃𝛃 ′𝐗𝐗𝐢𝐢)                                                                                                                      (1) 
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∑ exp (𝛃𝛃′𝐗𝐗𝑗𝑗)tj≥ti

]
δi

n
i=1                                                                                                              (2) 

 

 

r̂k(β) = 𝐗𝐗(𝐤𝐤) − x̅(β, tk),                                                                                                                         (3) 
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∑ Yi(tk)exp (𝛃𝛃′𝐗𝐗𝐢𝐢(tk))n
i=1

                                                                                                    (4) 

 

 

Tj(g) = ∑(gjr̂jk)
2

Djj
                                                                                                                                    (5) 

 

D = ∑GkV̂kGk
r − (∑GkV̂k)(∑ V̂k)

−1 (∑GkV̂k)
T,   

 

 

∑ [𝐗𝐗𝐢𝐢 −
∑ 𝑿𝑿𝐣𝐣exp (𝛃𝛃′𝐗𝐗𝐣𝐣)tj≥ti
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] δi = 0n
i=1                                                                                                         (6) 

 

 

∑  A(ti, Xi) [𝐗𝐗𝐢𝐢 −
∑  A(ti,Xj)𝐱𝐱𝐣𝐣exp (𝛃𝛃′𝐗𝐗𝐣𝐣)tj≥ti
∑ A(ti,Xj) exp (𝛃𝛃′𝐗𝐗𝐣𝐣)tj≥ti

]n
i=1 δi = 0                                                                              (7) 

 

 

Bias = ∑ (βi−β̂i)N
i=1

𝑁𝑁 ;                                                                                                                                 (8) 

 

 

 RMSE = √∑ (βi−β̂i)
2N

İ=1
N−1                                                                                                                           (9) 

  ...(1)

where 
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individual, 
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 is called the baseline hazard function that 
represents the hazard when all the independent variables 
are equal to zero. The baseline hazard function is a non-
parametric function that shows the change of hazard over 
time without considering the effects of specific covariates 
or independent variables (Hosmer & Lemeshow, 1999). 
This method estimates the parameters by maximizing 
the partial likelihood function (Kalbfleisch & Prentice, 
1980). The partial likelihood is provided by the following 
equation:
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where ti is the minimum of survival and censored 
time, δi = 0 if censored and δi = 1 if the event occurred. 
The proportional hazard assumption is the principal 
assumption of the Cox regression analysis. In this 
assumption, the hazard ratio (HR) of any two individuals 
is constant over the time axis in the model. Therefore, 
the Cox regression model is also known as a proportional 
hazard model. Furthermore, baseline hazard function 
is independent of the covariates. Reliable statistical 
inferences and estimates are obtained by providing this 
assumption (Kleinbaum & Klein, 1996).

 In statistics, an outlier is an observation point that 
is different from the rest of the data. Outlier values in 
the dataset may have a great influence on parameter 
estimation. For this reason, model adequacy should 
be checked after the survival data set is modelled 
by Cox regression analysis (Xue & Schifano, 2017; 
Alonso & Pardo, 2020). Model diagnosis is one of the 
most important parts of the modelling process. Many 
diagnostic methods are based on the analysis of model 
residuals. One of the most well-known is the Schoenfeld 
residual analysis. The Schoenfeld residuals (1982) are 
the difference between the true value of the covariate and 
the average of weighted risk scores.  
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 The approach to test the proportional hazard 
assumption in Schoenfeld (1982) is generalized by 
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 is the observed variance of 
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This method estimates the parameters by maximizing the partial likelihood function (Kalbfleisch & 

Prentice, 1980). The partial likelihood is provided by the following equation:        

                                                                                                             (2) 

 

where ti is the minimum of survival and censored time, i = 0 if censored and i = 1 if the event 

occurred. The proportional hazard assumption is the principal assumption of the Cox regression 

analysis. In this assumption, the hazard ratio (HR) of any two individuals is constant over the time axis 

in the model. Therefore, the Cox regression model is also known as a proportional hazard model. 

Furthermore, baseline hazard function is independent of the covariates. Reliable statistical inferences 

and estimates are obtained by providing this assumption (Kleinbaum & Klein, 1996). 

In statistics, an outlier is an observation point that is different from the rest of the data. Outlier 

values in the dataset may have a great influence on parameter estimation. For this reason, model 

adequacy should be checked after the survival data set is modelled by Cox regression analysis (Xue & 

Schifano, 2017; Alonso & Pardo, 2020). Model diagnosis is one of the most important parts of the 

modelling process. Many diagnostic methods are based on the analysis of model residuals. One of the 

most well-known is the Schoenfeld residual analysis. The Schoenfeld residuals (1982) are the 

difference between the true value of the covariate and the average of weighted risk scores.   

                                                                                                                         (3) 

 

                                                                                                    (4) 

 

where  is a weighted average of covariates over observations which are still at risk at time . 

 is k-th covariate vector of a subject with event time .  indicates whether the i-th subject is 

still at risk at time . The term exp( ) is the risk score for the ith observation.  

The approach to test the proportional hazard assumption in Schoenfeld (1982) is generalized 

by Grambsch and Therneau (1994). They defined the following function to test the proportional hazard 

assumption for each covariate j, 

                                                                                                                                    (5) 

 

where  is an element of Gk which is a diagonal matrix and shows how the survival times should be 

transformed,  is the j-th element of Schoenfeld residual,  is an element of  

 and  is the observed variance of  at the k –th 

time. This test statistic is used for testing the proportional hazard assumption of each covariate. The 

 at the k –th time. 
This test statistic is used for testing the proportional 
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hazard assumption of each covariate. The test statistic is 
distributed as χ2

(1),  if the proportional hazard assumption 
is provided (Xue & Schifano, 2017). Graphs of the 
Schoenfeld residuals against transformed time are 
used for checking violations of the proportional hazard 
assumption. If the residuals are around a horizontal 
line, the proportional hazard assumption is satisfied 
(Schoenfeld, 1982). Both statistical tests and graphical 
diagnostics which are based on the scaled Schoenfeld 
residuals are used to check proportional hazard 
assumption. 

Multiple imputation method

Missing data may be encountered even in a well-planned 
and controlled study. If there is a missing value in the 
data, statistical power is reduced, biased estimates are 
produced and invalid results are obtained. Therefore, 
missing data is an important problem for researchers. 
Also statistical methods and software suppose that all 
variables in a model are complete. To solve the missing 
data problem, either the observation which has a missing 
value is deleted, or the value is imputed. The multiple 
imputation (MI) method, which has a better performance 
than other imputation methods, is a missing data analysis 
method (Alkan et al, 2013).

 The multiple imputation method develops the 
Bayesian approaches to solve the problem of missing 
value in the data (Enders, 2010). In the multiple imputation 
method, for generating m complete data sets, each of the 
missing values is filled in m times. Standard statistical 
methods analyze the imputed data sets and combine 
the results from these analyses for the inference. Rubin 
(1987) outlined the formulas for combined parameter 
estimates, which are based on the arithmetic mean of 
the m complete data estimates. Our first proposal for 
handling the outlier problem is to consider each outlier 
as missing data as proposed Alkan and Alkan (2018).

Robust cox regression

The partial likelihood estimator β used for parameter 
estimation in the Cox regression is very sensitive to 
deviations from the model assumptions. Outlier values 
cause a violation of the most important assumption of the 
Cox regression. In such a case, unreliable, mis-established 
models can occur. For this reason Farcomeni and Viviani 
(2011) proposed the Robust Cox Regression for data 
sets with outliers. Bretagnolle and Huber-Carrol (1988) 
have shown that exclusion of the relevant covariate with 
outlier gives biased results. Reid and Crepeau (1985) and 
Bednarski (1989) have shown that even slight departures 

from the proportional hazard assumption lead to bias 
in the estimation of β.  Bednarski (1993) showed how 
the proportional hazard estimator’s prediction equation 
was modified to get robust estimates. Bednarski (1993) 
started by using equation (2) for this modification process 
and equation (6) was obtained
                                                                                          

1 
 

 MS 216:2022 (11460) 
 

 

λi(t)  =  λ0(t) exp(𝛃𝛃 ′𝐗𝐗𝐢𝐢)                                                                                                                      (1) 

 

     

∏ [ exp(𝛃𝛃′𝐗𝐗𝒊𝒊)
∑ exp (𝛃𝛃′𝐗𝐗𝑗𝑗)tj≥ti

]
δi

n
i=1                                                                                                              (2) 

 

 

r̂k(β) = 𝐗𝐗(𝐤𝐤) − x̅(β, tk),                                                                                                                         (3) 

 

x̅(β, tk) = ∑ Yi(tk)exp (𝛃𝛃′𝐗𝐗𝐢𝐢(tk))𝐗𝐗𝐢𝐢(tk)n
i=1
∑ Yi(tk)exp (𝛃𝛃′𝐗𝐗𝐢𝐢(tk))n
i=1

                                                                                                    (4) 

 

 

Tj(g) = ∑(gjr̂jk)
2

Djj
                                                                                                                                    (5) 

 

D = ∑GkV̂kGk
r − (∑GkV̂k)(∑ V̂k)

−1 (∑GkV̂k)
T,   

 

 

∑ [𝐗𝐗𝐢𝐢 −
∑ 𝑿𝑿𝐣𝐣exp (𝛃𝛃′𝐗𝐗𝐣𝐣)tj≥ti
∑ exp (𝛃𝛃′𝐗𝐗𝐣𝐣)tj≥ti

] δi = 0n
i=1                                                                                                         (6) 

 

 

∑  A(ti, Xi) [𝐗𝐗𝐢𝐢 −
∑  A(ti,Xj)𝐱𝐱𝐣𝐣exp (𝛃𝛃′𝐗𝐗𝐣𝐣)tj≥ti
∑ A(ti,Xj) exp (𝛃𝛃′𝐗𝐗𝐣𝐣)tj≥ti

]n
i=1 δi = 0                                                                              (7) 

 

 

Bias = ∑ (βi−β̂i)N
i=1

𝑁𝑁 ;                                                                                                                                 (8) 

 

 

 RMSE = √∑ (βi−β̂i)
2N

İ=1
N−1                                                                                                                           (9) 

  ...(6)

The estimator solving this equation is much affected by 
the large values of exp(β′ Xj). One way of reducing the 
effect of large values is to regulate equation (6) Equation 
(6) is modified using the funtion A(t, X), which is zero. 
Take a smooth non-negative function to obtain equation 
(7).
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 The function A (t,X) is processed at two points. The 
outer sum is used to reduce the weight of uncensored 
observations which have large values of exp(β′Xj). 
The A(t,X) in square brackets are computed for down-
weighting all observations with relatively large values of 
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. Such double correction leads to the consistency of 
the estimator. The robust estimator of β is obtained by 
solving equation (7). Our second proposal for handling 
the outlier problem is to use robust estimation which 
traditionally addresses the consequences of having 
outliers in the data.

RESULTS AND DISCUSSION

In this study, the results of Cox regression analysis after 
multiple imputation methods and robust Cox regression 
analysis were compared for both simulation datasets and 
real datasets. In the simulation study, a Cox regression 
model with three covariates is considered. Standard 
normal distribution is assumed for the covariates. A 
Weibull distribution with scale parameter equal to 0.002 
and shape parameter equal to 1 is used for baseline 
hazard function. A shape of 1 means a constant baseline 
hazard function. Censoring times are generated from a 
Weibull with scale parameter equal to 0.008 and shape 
parameter equal to 1 for a censoring proportion of 20%. 
And scale parameters of 0.004 and 0.002 are chosen to 
produce specific censoring proportions of 40% and 60%, 
respectively. The minimum of event time or censoring 
time was recorded as survival time. The true regression 
coefficients are fixed as β1=1, β2= −3, β3= 2. Sample sizes 
n = 50 and 100 are selected.
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In order to generate the data sets with outliers, some of 
the extreme values are given to the largest and smallest 
values of X1 and X2 in the simulated data sets. These 
values are evaluated as outliers. Changes are not made 
in the values of X3. At this stage of the simulation study, 
different outlier proportions of 10%, 20%, and 30% 
are considered. In order to illustrate the use of multiple 
imputation method in the presence of outliers, the outlier 
values in the data are deleted and missing data sets are 
created. Cox regression analysis for clean simulated 
survival data sets, robust cox regression analysis for data 
sets with outliers, and multiple imputation method for 
missing data sets are used and estimation are repeated 
500 times for each simulation. To determine how much 
outliers influence the parameter estimates and to compare 

the methods, Bias and RMSE are calculated as follows
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where N = 500 and βi is the parameter estimation of the 
Cox regression model which is calculated from the data 
set with no outliers. 
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robust Cox regression and Cox regression after Multiple 
İmputation. So BiasRobust and BiasMI+Cox are calculated. 
Similar calculations are made for RMSE and the results 
are given in Table 1 and Table 2.

N
Censor 

ratio
Outlier 
ratio

Parameter
Bias 

MI+Cox
Bias robust 

Cox
RMSE 

MI+Cox
RMSE 

robust Cox

50

20%

10%

β1 0.262 0.415 0.342 0.738

β2 0.174 0.399 0.265 0.685

β3 0.194 0.309 0.371 0.563

20%

β1 0.046 0.153 0.059 0.179

β2 0.108 0.293 0.159 0.341

β3 0.031 0.063 0.037 0.089

30%

β1 0.726 1.176 0.948 1.497

β2 1.743 2.432 2.359 3.042

β3 0.861 0.964 1.417 1.458

40%

10%

β1 0.174 0.416 0.249 0.545

β2 0.569 1.291 0.671 1.901

β3 0.187 0.487 0.234 0.731

20%

β1 0.229 0.765 0.293 0.912

β2 0.441 0.932 0.551 1.545

β3 0.397 0.534 0.495 0.869

30%

β1 0.320 0.883 0.459 0.948

β2 0.766 1.098 0.912 1.409

β3 0.685 0.446 0.801 0.509

60%

10%

β1 0.351 0.610 0.499 0.738

β2 0.499 0.509 1.067 0.702

β3 0.570 0.189 0.888 0.268

20%

β1 0.550 0.706 0.721 0.920

β2 0.605 1.269 0.725 1.717

β3 0.415 0.339 0.532 0.533

30%

β1 0.374 0.519 0.435 0.634

β2 0.815 1.086 1.123 1.452

β3 0.639 0.506 0.904 0.749

Table 1: Bias and RMSE for different outlier and censor ratios and N = 50 for each of the methods. 
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Table 2: Bias and RMSE for different outlier and censor ratios and N = 100 for each of the 
methods. 

N
Censor 

ratio
Outlier 
ratio

Parameter
Bias 

MI+Cox
Bias robust 

Cox
RMSE 

MI+Cox
RMSE 

robust Cox

100

20%

10%

β1 0.243 0.476 0.608 1.189

β2 0.422 0.512 1.056 1.281

β3 0.233 0.247 0.583 0.617

20%

β1 0.439 0.862 1.098 2.155

β2 0.932 1.359 2.33 3.397

β3 0.612 0.679 1.532 1.699

30%

β1 0.659 0.832 1.649 2.081

β2 1.351 2.295 3.379 5.739

β3 0.901 0.929 2.251 2.322

40%

10%

β1 0.281 0.456 0.702 1.140

β2 0.395 0.523 0.988 1.308

β3 0.262 0.262 0.654 0.656

20%

β1 0.502 0.717 1.256 1.792

β2 0.839 1.798 2.097 4.494

β3 0.612 0.724 1.530 1.811

30%

β1 0.636 0.687 1.589 1.717

β2 1.112 1.786 2.780 4.466

β3 0.696 0.677 1.742 1.692

60%

10%

β1 0.447 0.578 1.118 1.446

β2 0.648 1.244 1.620 3.109

β3 0.494 0.709 1.235 1.773

20%

β1 0.447 0.725 1.118 1.812

β2 0.654 1.531 1.635 3.828

β3 0.434 0.686 1.085 1.715

30%

β1 0.281 0.651 0.704 1.629

β2 0.638 1.244 1.595 3.109

β3 0.584 0.462 1.460 1.150

Bias and RMSE are calculated to determine how close 
to the true value the estimates are calculated for each 
method. When Table 1 and Table 2 are examined, both 
methods obtained estimates near the parameter value 
for all censors and outlier ratios. Also, it was observed 
that as the outlier ratio is increased from 10% to 30%, 
the RMSE and BIAS values calculated in both methods 
generally tend to increase. Although the increase in the 
outliers ratio affected the methods, both methods made 
good estimates. However, the BIAS and RMSE values 
of the estimates obtained with the MI+ Cox method 
were consistently smaller than those obtained from the 
robust method for the coefficients of X1 and X2 which 
are covariates with outliers in both N = 50 and N = 100. 

So, according to simulations, the multiple imputation 
method is a good alternative to robust methods in the 
presence of outliers. 

 In order to compare the proposed methods with a real 
data set, the NCCTG lung cancer data set from R library 
is used. There are 228 patients and 8 covariates in the data 
set; 61 observations were deleted due to missingness and 
as the result, N = 167 and number of events is 120 with a 
censored ratio of 28%. The prognostic factors in the data 
set are listed as follows: institution code (inst), age in years 
(age), sex, ECOG performance score (ph.ecog), Karnofsky 
performance score rated by physician (ph.karno), 
Karnofsky performance score as rated by patient (pat.
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 Proportional hazard assumption is not provided for 
meal.cal which is one of the covariates in the data set. 
The aim of the study is to determine the method that 
gives the nearest estimation to the parameter estimation 
in the case where the assumption is achieved. Therefore, 

64

karno), calories consumed at meals (meal.cal), and weight 
loss in last six months (wt.loss) (Loprinzi e t al, 1994).

all variables in the data set that we will use as references 

will have to provide the assumption. For this reason, the 
meal.cal covariate is not included in the model. 

 As first, a residual analysis for original data is carried 
out and no significant outliers were found but some 
of the observations have potential outliers in wt.loss 
variables. To obtain an outlier data set, extreme values 
were given to the values of these observations and a data 
set containing 10% outliers was created. 
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inst age sex 

  
 

Ph.ecog Ph.karno Pat.karno 

 
Wt.loss 

Figure 1. Graphs of Schoenfeld residuals for the original data set 

 

Table 3: Statistical results of Schoenfeld residual analysis for the original data set 

 rho chisq p value 

İnst 0.0298 0.125 0.723 

Age -0.0715 0.699 0.403 

Sex 0.0613 0.416 0.519 

Figure 1: Graphs of Schoenfeld residuals for the original data set
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Testing of proportional hazard assumption for lung 
cancer data sets

The assumption test of the Cox regression analysis is 
performed using Schoenfeld residuals for the original 
data sets. The graphs of Schoenfeld residuals for each 
covariate of the original data set are given in Figure 1 and 
the statistical results of Schoenfeld residual analysis for 
the original data set are given Table 3.

 Figure 1 shows that the residuals are randomly around 
a horizontal line for all of the covariates. In other words 
all variables provide proportional hazard assumption. 

rho chisq p value

İnst 0.0298 0.125 0.723

Age -0.0715 0.699 0.403

Sex 0.0613 0.416 0.519

Ph.ecog 0.0354 0.167 0.683

Ph.karno 0.0818 0.572 0.450

Pat.karno 0.0098 0.013 0.909

Wt.loss -0.0283 0.114 0.736

Table 3: Statistical results of Schoenfeld residual 
analysis for the original data set
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Figure 2. Graphs of Schoenfeld residuals for the data set with outlier 

 

Figure 2 shows that in case of outliers in the data set, the assumption of  proportional hazard for the  

wt.loss covariate is violated due to some of the residuals being scattered in a different way. Also, 

according to the statistical results in Table 4, the wt.loss covariate has been seen as not providing the 

assumption (p < 0,05). 

The existence of outliers is a problem for researchers because they affect the proportional 

hazard assumption. In order to solve this problem, we propose to consider the outlier values as missing 

Figure 2: Graphs of Schoenfeld residuals for the data set with outlier
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Figure 2 shows that in case of outliers in the data set, 
the assumption of  proportional hazard for the  wt.loss 
covariate is violated due to some of the residuals being 
scattered in a different way. Also, according to the 
statistical results in Table 4, the wt.loss covariate has 
been seen as not providing the assumption (p < 0,05).

 The existence of outliers is a problem for researchers 
because they affect the proportional hazard assumption. 
In order to solve this problem, we propose to consider the 
outlier values as missing data and a value is assigned for 
each missing value by the multiple imputation method so 
that 5 completed data sets are obtained. The assumption 
test was performed with Schoenfeld residual analysis for 
each of the data sets which is completed with the multiple 
imputation method (MI), and the result was obtained for 
all data sets. The statistical result of Schoenfeld analysis 

rho chisq p value

İnst 0.0151 0.0334 0.855

Age -0.134 2.5459 0.111

Sex 0.0524 0.3151 0.574

Ph.ecog 0.0588 0.463 0.496

Ph.karno 0.0868 0.732 0.392

Pat.karno 0.050 0.350 0.554

Wt.loss 0.2844 11.821 0.00058

Table 4: Statistical results of Schoenfeld residual analysis for 
data set with outliers

rho chisq p value

İnst 0.0236 0.0824 0.774

Age -0.0946 1.2585 0.262

Sex 0.0773 0.6798 0.410

Ph.ecog 0.0258 0.0917 0.762

Ph.karno 0.0860 0.6854 0.408

Pat.karno 0.0434 0.2663 0.606

Wt.loss 0.0695 0.7826 0.376

Table 5: Statistical results of Schoenfeld residual analysis 
for imputed data set by multiple imputation

Statistical inference of each method for lung cancer 
data

As there are no outliers in the data set during the first 
phase of the study then the parameters are estimated 
by applying Cox regression analysis. These results are 
compared as original results and used as reference for 
other results. 

 In the second phase of the application, the assumption 
test of the Cox regression analysis is performed using 
the data set containing the outlier values. As a result, the 
outliers violate the proportional hazard assumption, and 
in this case the results are unreliable. Robust estimation 
can used to overcome this problem. Therefore robust 
Cox regression analysis is applied to lung cancer data 
with outliers.

 Also, the multiple imputation method overcomes 
the problem caused by outliers. In the third phase of the 
application, firstly the outlier values in the data set are 
deleted and the missing data set is obtained.  A value is 
assigned for each missing value by the multiple imputation 
method, so that 5 completed data sets are obtained. Cox 
regression is separately applied to the 5 completed data 
sets and the combined results are calculated. All results 
are given in Table 6.

Table 3 contain the correlation between Schoenfeld 
residuals and transformed survival time, the test statistic 
which is given in equation (5) and the two sided p-value. 
From Table 3, we conclude that the same, proportional 
hazard assumption is provided for all variables (p > 0.05). 
Also the correlations are close to 0 so the assumption 
is provided. This shows that the original data set can be 
analyzed by Cox regression and the results obtained will 
be reliable. 

 The proportional hazard assumption has been tested 
after adding the outliers to the data set. Schoenfeld 
residual analysis graphs for each covariate are given in 
Figure 2. The statistical results of the residual analysis 
are also given in Table 4.

for the first imputed data set is given in Table 5. Similar 
results were obtained for the other imputed data sets. 
That is, it was seen that the assumption provided for all 
imputed data sets.

 According to Table 5, the proportional hazard 
assumption is satisfied for all variables (p > 0,05). 
That is, these results indicate that the problem of 
assumption violation caused by outliers can be solved by 
imputation.  
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In order to compare the performances of robust Cox 
regression and Cox tegression with MI, Cox regression 
analysis results of the original data were used as a 
reference. Robust Cox regression analysis, which is 
recommended to be used safely in case of violation of 
the proportional hazard assumption, was applied to the 
data set containing 10% outliers. As a result, the analysis 
had similar results in terms of sign and magnitude to 
parameter estimations of the original data. Then, Cox 
regression with multiple imputation is applied to the 
outlier data set; the parameter estimates are very similar 
to the original estimates, as in the robust method. When 
these two methods were compared in terms of parameter 
estimates, the estimates of the Cox regression with MI 
method were found to be closer to the original estimates. 
Also, Cox regression with MI had a smaller standard 
error than robust Cox regression. 

CONCLUSION

Outliers may lead to violation of the proportional 
hazard assumption, which is one of the most important 
assumptions of Cox regression. Therefore, outliers 
can have a great influence on parameter estimation. In 
such a case, the existence of outliers leads to incorrect 
results. For this reason, the outliers are a problem and 
there are different methods in the literature for solving 
this problem. Robust Cox regression is robust to outliers 
and can reduce the impact of outliers. Therefore, it is 
a recommended method as it gives safe results in the 
presence of outliers. The proposed method in this work 
is Cox regression with multiple imputation. In this 
method, the outliers are considered as missing data, 
and a value is assigned for each missing value by the 
multiple imputation method. Then the completed data 

set is analyzed by Cox regression. In this study, robust 
Cox regression and the Cox regression with multiple 
imputation methods are evaluated and their results are 
compared with original results.

 According to the results of the study carried out 
on simulated data sets and a real data set, the multiple 
imputation method, which is a missing data analysis 
method, solves the problem of outliers better than the 
robust estimation method, due to results closer to the 
original results being obtained.
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