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Abstract: Transmission of dengue is a complex dynamic 

process. Dengue virus is transmitted to humans by the female 

Aedes aegypti mosquitoes. Dengue was first identified in 

Sri Lanka during 1960s and the risk due to dengue has increased 

rapidly during the past few decades mainly in the urban areas. 

There are several studies on dengue transmission based on 

mathematical and statistical models. However they are not 

capable of describing the complex dynamics of transmission 

since its transmission mechanism is highly dependent 

on various external factors such as climate, demography, 

geography and human mobility. Wavelet analysis is a powerful 

tool in mathematics, which can be used to reveal useful 

information of a highly non-stationary epidemiological time 

series. Wavelet theory can be used to obtain vital signals in a 

noisy epidemiological time series, which is useful to implement 

early warning systems to control the spread of epidemics. This 

particular study was aimed at investigating the applicability 

of wavelet theory to analyse dengue transmission in urban 

Colombo. The wavelet transformation was performed with data 

from weekly dengue cases time series from year 2006 to 2012 

in the Colombo Municipal Council (CMC) area, and significant 

regions were observed in the spectrum that correspond to 

approximately 25 week cycles during the time period from year 

2009 to 2012. The cross wavelet power spectrum showed that 

rainfall was leading the dengue cases in Colombo during the 

time period 2010 to 2012.

Keywords: Cross wavelets, dengue epidemics, dynamical 

system, wavelet coherence, wavelet power spectrum. 

INTRODUCTION

Dengue is an arboviral disease, which is a major public 

health concern in the tropical regions. This disease has 

become a major public health problem in Sri Lanka 

during the past five decades. Thousands of people have 

been vulnerable to dengue in Sri Lanka each year causing 

large number of deaths. During the first six months of 

the year 2014, 20074 dengue cases have been reported in 

Sri Lanka according to the Epidemiology Unit, Ministry 

of Health. Dynamics of the dengue disease is complex 

since its transmission process heavily depends on many 

biological, environmental, social and geographical 

factors. It is known to be highly influenced by climate 

variability. Increasing temperature reduces the length 

of the incubation period of mosquitoes, enabling a large 

number of infected female mosquitoes to transmit the 

disease (Watts et al., 1987). Rainfall provides mosquitoes 

more breeding sites, and a favourable environment for 

breeding may increase the mosquito density (Huang et al., 

2013). Furthermore, unsystematic urban development 

and land use have changed the flow of natural rainwater 

in urban areas, resulting in the collection of rainwater in 

low wetlands, which are ideal for mosquito breeding. The 

rapid increase in the human population and migration to 

cities have led to overcrowding and high human mobility 

that facilitate dengue transmission. The interactions of all 

these variables make it extremely difficult to predict the 

transmission of dengue by using classical mathematical 

and statistical models. The classical SIR (S-susceptible, 

I-infected, R-recovered) models of dengue transmission 

are useful and reveal an effective framework for 

understanding the dynamics of the transmission. These 

SIR compartment models describe the dynamics of 

dengue transmission in terms of population dynamics. 

Further these models explain the interaction between 

susceptible, infected and recovered human populations 

together with susceptible and infected mosquito 

populations in a totally homogeneous environment 

(Pongsumpun, 2006). All these classical models mainly 
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have shown that wavelet analysis is useful in analysing 

noisy time series data. Cazelles et al., (2005) have analysed 

the El Nino effect on dengue cases in Thailand. They 

have found a strong association between monthly dengue 

cases and the dynamics of El Nino for a 2 − 3 year period. 
Santos et al. (2003) have presented some applications of 

wavelet theory to analyse the rainfall patterns in Japan 

and North Eastern Brazil. Various Sri Lankan researchers 

have applied time series and regression models to predict 

dengue outbreaks in Sri Lanka (Goto et al., 2013; Kavinga 

et al., 2013). However, the wavelet approach of analysing 

noisy epidemiological time series data has not been used 

so far in the Sri Lankan context.

 The objective of this study was to focus on the 

wavelet approach to analyse dengue transmission in 

urban Colombo. First it discusses the wavelet theory 

and an application to wavelet power spectrum by using a 

classical dynamic model of dengue transmission. Next, it 

presents the wavelet power spectra obtained for the three 

time series simulated from the dynamic model and the 

wavelet power spectrum for the real dengue data time 

series reported in Colombo Municipal Council (CMC) 

area from year 2006 to 2012. Finally it presents the 

cross wavelet power spectra obtained for the number of 

weekly dengue cases with weekly averaged maximum 

temperature and rainfall in CMC area from year 2006 to 

2012.

METHODS AND MATERIALS 

Wavelet theory

For a given wavelet ψ(t), a scaled and translated version 

is given by
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 The parameter )0( ≠a   corresponds to the scale while 

b represents the translation. The wavelet ψ
01

(t) = ψ(t) is 

called the basic wavelet or the mother wavelet. The discrete 

translations and dilations (b,a) form an orthonormal 

basis for 
2L  (or finite energy) space (Chui, 1992).

Continuous wavelet transform (CWT)

The continuous wavelet transform of a signal (time series) 

is a linear transform defined by the integral
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discuss the dynamics of the disease with fixed parameter 

spaces. Due to the high dependency on external factors, 

these models with fixed parameter values produce 

unrealistic results. Thus the complexity in biological 

systems should be addressed at the parameter estimation 

level so that suitable mathematical tools can be used to 

estimate the parameters under uncertainty.

 Many studies based on time series approaches 

considering one parameter at one stage can be found. 

However, the inherent complexity of transmission and 

extremely non-stationary epidemiological datasets 

make time series models less effective. As a solution 

to overcome these problems, wavelet analysis has been 

applied by researchers to characterise and estimate 

dependencies among these non-stationary signals 

(Zang et al., 2003; Cazelles et al., 2007). Wavelet analysis 

is a powerful mathematical tool, which performs time-

frequency decomposition of the signals, and estimate 

the spectral characteristics as a function of time. During 

the past three decades, signal processing has grown to 

be a major discipline in engineering, theoretical physics 

and computational mathematics. Since most finite 

energy signals, either natural or otherwise, are transient 

(or non-stationary) in nature, it is most natural and 

effective to represent these signals by localised finite 

energy bases. Because wavelets belong to this class 

of bases, the development of wavelet theory and its 

applications to signal processing in various engineering 

disciplines, mathematical epidemiology and computer 

science, have gained tremendous popularity in recent 

years.

 In mathematics, Fourier analysis has been the 

dominant tool for the representation of signals for past 

decades (Olkkonen, 1994). Although it is capable of 

quantifying periodic components in a time series, it fails 

when characterising signals whose frequency changes 

with respect to time (Cazelles et al., 2007). Wavelets are 

finite energy functions with time-frequency localisation 

properties that represent the transient signals with small 

finite number of coefficients. The functions narrow when 

high frequency features are presented and widen when 

the low frequencies are present (Cazelles et al., 2007; 

2008). Generally, wavelets are small waves, so that the 

area under the graph of the wavelet function ψ(t) is zero 

that is  ψ(t) dt = 0 .

  Due to these properties wavelet analysis has become 

an active and interesting area of research. Futher 

mathematical development of wavelet theory may 

provide researchers in the fields of engineering, biology 

and epidemiology more research opportunities and a good 

understanding of complex sciences. Numerous studies 
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scale components gives the mean variance of each time 

location defined as  
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 as in equation (7) and π is a constant in usual 

notations.

Wavelet coherency and phase difference

It is useful to quantify the statistical relationship between 

two signals if we have two non-stationary time series. 

The wavelet coherence function measures the correlation 

between two time series x(y) and y(t) (Cazelles et al., 

2007). The wavelet cross spectrum of the two time series 

x(y) and y(t) can be defined as 

where ‘*’ denotes the complex conjugate. The cross 

spectrum normalised by the spectrum of each signal 

gives the wavelet coherence, which is defined as 
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 The notation ‘ ’ stands for the smoothing operator 

in both time and scale parameters (more details on 

the smoothing can be found in Cazelles et al., 2007). 

The wavelet coherency is similar to simple statistical 

correlation but 1),(,0 ≤≤ abyxRy . This measure 

equals to 1 implies a perfect relationship between the two 

signals in both time scale, however this goes to 0 if the 

two time series are independent.

Choice of the mother wavelet function

The selection of the mother wavelet function is not done 

arbitrarily and will be dictated by the kind of real world 

application the researcher has in mind. It is required 

to provide quantitative information about the phase 

interactions between the two time series. In this regard 

continuous and complex valued analytic wavelets are 

the natural choices. A majority of the researchers prefer 

Morlet wavelet as the mother wavelet function due to 

its better time and frequency localisation capability 

(Torrence & Compo, 1998; Conraria & Soares, 2011).
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The wavelet function in equation (2) should possess both 

the conditions given by

 

                                                                                     

                                                     

The above equations (4) and (5) imply that the 

original signal can be recovered by means of 

the inverse wavelet transformation given by 
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 is a finite constant given by the integral       

                     

where    denotes the Fourier transform of ψ. 

Wavelet power spectrum

 

The wavelet transform can be considered as a 

generalisation of the classical Fourier transform so that 

the spectral properties of the time series can be visualised. 

The wavelet power spectrum of the wavelet transform 

W
ψ
x(b,a) in equation (2) is computed as

2
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 The global wavelet power spectrum )(axSy , which 

is comparable with the Fourier spectrum of a signal can be 

defined as the averaged energy of all wavelet coefficients 

of the same scale a. 
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with xs is the standard deviation of the time series x(t) 

and T  the duration of the time series. Averaging the 
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hand side of the system represents the rate of change in 

the normalised susceptible human, infected human and 

infected mosquito populations, respectively.

Parameter definitions in the above system:

−TN  the total number of human population

−l  the birth rate of the human population

−b   the biting rate of the mosquitoes

−hb   
the transmission probability of the virus from                      

 mosquitoes to humans

−vb   
the transmission probability of the virus from                      

 humans to mosquitoes

−hm   
the death rate of the human population

−r   the recovery rate of the human population

−D   the constant recruitment rate of the vector                                                                                              

            population

−vm   
the death rate of the mosquito population

 The seasonal variation of dengue transmission is 

modeled as a sinusoidal variation given by

      

   

 The parameter z in equation (16) measures the 

influence of seasonality towards the transmission of 

the dengue virus (Pongsumpun, 2006). Equation (15) 

was solved numerically using ode 45 solver in MatLab 

and obtained the three time series S(t), I(t) and I
v
(t) 

in Figure 2. This solver function implements a fourth 

order Runge-Kutta method with a variable time step for 

efficient computation (Isotani et al., 2012).

RESULTS AND DISCUSSION

These three time series were used to perform the wavelet 

analysis using the wavelet toolbox in MatLab. The Morlet 
wavelet was used as the mother wavelet function and the 
spectra was obtained using 5 % level of significance. 
The corresponding wavelet power spectra are presented 
in Figure 3.
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where ω
0
 represents the central angular frequency of the 

wavelet.

 In order to ψ (t) have unit energy, the normalisation 

constant K is selected such that                           

K = π -1/4 (Conraria & Soares, 2011).      

 The relationship between the frequencies and wavelet 

scales can be derived as 

                         

.  It can be 

easily shown that if pw 20 ≈ then af /1≈ . Thus the 

term, f/1 can be used instead of the scalar a  in all the 

above equations. An example of the Morlet is given in 

Figure 1.

Mathematical model of dengue transmission

 

The mathematical model of dengue transmission 

described by a normalised system of non-linear ordinary 

differential equations was considered (Pongsumpun, 

2006). This model describes the interaction between 

susceptible (S) and infected (I) human populations with 

infected vector (Iv) population. In this model, it is assumed 

that only infected mosquitoes can transmit the dengue 

virus to the human population.

Figure 1:    Morlet wavelet
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is given in Figure 5. Again the Morlet wavelet was the 

mother wavelet function and 5 % level of significance 

was used.

 Three time series namely, the number of weekly 

dengue cases in CMC area, weekly averaged maximum 

temperature, and rainfall from year 2006 to 2012 were 

used to obtain the cross wavelet power spectra presented 

in Figure 5. Climate data were obtained from the 

Department of Meteorology in Colombo.

The number of weekly dengue cases in the Colombo 

Municipal Council (CMC) area from year 2006 to 2012  

was used. These data were recorded by the epidemiological 

unit in CMC from the reported dengue cases in the CMC 

area. The non-stationary time series obtained from the 

number of dengue cases database is given in Figure 4.

 The non-stationary epidemiological time series was 

transformed into wavelet power spectrum using wavelet 

tool box in MatLab. The resulting wavelet power spectrum 

Figure 2:  Time series of the susceptible human population (a); time series of the infected human population (b) and 

time series of the infected vector population (c)
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Figure 3:  Wavelet power spectrum of the susceptible human population (a); infected human population 

(b) and the infected mosquito population (c) simulated from the dynamic model

Figure 4:  Weekly dengue cases time series for the reported dengue cases in CMC area from 

year 2006 to 2012
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Figure 6:  Cross wavelet power spectrum for weekly dengue cases with maximum temperature (a) and the cross wavelet power 

spectrum for weekly dengue cases with rainfall from year 2006 to 2012 (b)

    

Figure 5:  Wavelet power spectrum for the CMC dengue data series from year 2006 to 2012

 

time/week
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In this study the simulated three time series from the 

dynamic model of dengue transmission was first analysed. 

It is clearly seen from Figure 2 that all three time series 

have regular peaks at the beginning but the system 

reaches to its equilibrium as t → ∞ . The simulated time 

series for infected humans and infected mosquitoes seem 

to be identical but they have different initial conditions 

and different populations in each time. Therefore the 

corresponding wavelet power spectra in Figure 3 seem to 

be identical with approximately 1024 day cycles, which 

are significant at 5 % level.

 The real dengue data time series in Figure 4 is highly 

non-stationary and the corresponding wavelet power 

spectrum in Figure 5 reflects an approximately 25 week 

cycle from year 2009 to 2012, which can be explained 

as the semiannual cycle of dengue. The cross wavelet 

power spectrum of the number of dengue cases and 

the maximum temperature in Figure 6 (a) shows two 

significant regions after year 2010. According to Figure 

6 (b), arrows pointing down in the significant region at 

5 % level indicate that the rainfall follow the number of 

dengue cases during the period from year 2010 to 2012.

CONCLUSION

Dengue is one of the major diseases in the world having 

a complex transmission mechanism. The existing 

classical mathematical models of dengue transmission 

with fixed parameter spaces have not been fully capable 

of describing the complex transmission dynamics of 

dengue. Previous studies can be found based on statistical 

models of dengue such as time series. However time 

series models applied to analyse epidemiological data do 

not reveal all the information because they are extremely 

non-stationary.

 

 In this paper, the wavelet power spectrum is 

proposed to identify significant cycles of the epidemic 

disease transmission, and hence it can further analyse 
potential external factors, which influence those cycles. 
The power spectra corresponding to the simulated 
time series showed significant periodic cycles due to 
equation (16), which was used to theoretically address 
the periodicity in the dynamic model. Based on this study 

in real number of dengue cases, an approximately 25 

week cycle of dengue transmission from year 2009 to 

2012 was found, which was significant at 5 % level. The 
cross wavelet power spectrum and the coherence can be 
useful to analyse the influence of climate factors such 
as rainfall, temperature and humidity. Using the cross 

wavelet power spectrum, it was observed that the number 

of dengue cases from year 2010 to 2012 is determined by 

rainfall.

Cross wavelet power spectrum is an important application 

in wavelet analysis. This may be used to further 

analyse the influence of other external factors such as 

geography, demography and human mobility towards the 

transmission of dengue disease.
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