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Abstract: In this paper, the bivariate extension of the so called 
Gompertz-G family was introduced and studied in detail. 
Marshall and Olkin shock model was used to build the proposed 
bivariate family. The new family was constructed from three 
independent Gompertz-H families using a minimisation process. 
Some of its statistical properties such as joint probability density 
function, coeffi  cient of median correlation, moments, product 
moment, covariance, conditional probability density function, 
joint reliability function, stress-strength reliability and joint 
reversed (hazard) rate function were derived. After introducing 
the general class, three special models of the new family were 
discussed. Maximum likelihood method was used to estimate 
the family parameters. A simulation study was carried out 
to examine the bias and mean square error of the maximum 
likelihood estimators. Finally, the importance of the proposed 
bivariate family was illustrated by means of real dataset, and 
it was found that the proposed model provides better fi t than 
other well-known models in the statistical literature such as 
bivariate Gompertz, bivariate generalized Gompertz, bivariate 
Gumbel Gompertz, bivariate Burr X Gompertz and bivariate 
exponentiated Weibull-Gomperz

Keywords: Bivariate distributions, Gompertz-H family 
of distributions, Marshall-Olkin shock model, maximum 
likelihood method.

INTRODUCTION

Several classes of distributions have been developed 
and applied to describe various phenomena in diff erent 
areas such as engineering, biological studies, economics, 
actuarial, environmental, lifetime analysis and Olympic 
games, among others.

 However, in many applied areas such as lifetime 
analysis, describing the pattern of adult deaths, Olympic 
games and insurance, there is a clear need for extended 
forms of these classes to model such data. For this reason, 
many classes have been proposed and studied in statistical 
literature, for example, transformed-transformer (T-X) 
family by Alzaatreh et al. (2013); generating T-Y 
family by Aljarrah et al. (2014); exponentiated half-
logistic family by Cordeiro et al. (2014); Kumaraswamy 
Marshall-Olkin family by Alizadeh et al. (2015); a new 
Weibull-G family by Tahir et al. (2016); Gompertz-G 
family by Alizadeh et al. (2017) and its discrete version by 
Eliwa et al. (2020a); exponentiated Gompertz generated 
family by Cordeiro et al. (2016); odd Chen-G family by 
El-Morshedy et al. (2020a); exponentiated odd Chen-G 
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family by Eliwa et al. (2020b); odd fl exible Weibull-H 
family by El-Morshedy and Eliwa (2019); odd log-
logistic Lindley-G family by Alizadeh et al. (2020) and 
discrete Gompertz family by Eliwa et al. (2020a), among 
others.

 In many practical situations, it is important to consider 
diff erent bivariate families that could be used to model 
bivariate data. The bivariate data could be exchange 
rates in two time periods, strength components, results 
of two teams in Olympic games etc. Therefore, many 
bivariate distributions are proposed in literature, for 
example, bivariate generalised exponential distribution 
by Kundu and Gupta (2009); bivariate generalised linear 
failure rate distribution by Sarhan et al. (2011) Marshall-
Olkin bivariate Weibull distribution by Kundu and Gupta 
(2013); bivariate Kumaraswamy distribution by Barreto-
Souza and Lemonte (2013); bivariate exponential 
distribution by Balakrishnan and Shiji (2014); 
bivariate exponentiated generalised Weibull-Gompertz 
distribution by El-Bassiouny et al. (2016); bivariate 
exponentiated modifi ed Weibull extension distribution 
by El-Gohary et al. (2016); bivariate exponentiated 
extended Weibull family by Roozegar and Jafari (2016); 
bivariate inverse Weibull distribution by Hiba (2016); 
bivariate exponentiated discrete Weibull distribution 
by El-Morshedy et al. (2020c); bivariate exponentiated 
generalised linear exponential distribution by Ibrahim 
et al. (2019); bivariate Gumbel-G family by Eliwa 
and El-Morshedy (2019); univarite and multivariate 
generalized slash student distribution by El-Bassiouny 
and El-Morshedy (2015), univariate and multivariate 
double slash distribution by El-Morshedy et al. (2020c), 
bivariate discrete inverse Weibull distribution by Eliwa 
and El-Morshedy (2020a), bivariate odd Weibull-G 
family by Eliwa and El-Morshedy (2020b), bivariate 
Burr X generator by El-Morshedy et al. (2020c), among 
others. However, in many practical situations, classical 
bivariate distributions do not provide adequate fi ts to 
real data. Therefore, there has been an increased interest 
in developing more fl exible distributions. Thus, in this 
paper, we introduce a fl exible bivariate family based on 
Marshall-Olkin shock model (Marshall & Olkin, 1967), 
in the so-called bivariate Gompertz-H (BGo-H) family.

 Alizadeh et al. (2017) proposed and studied a fl exible 
univariate family of distributions, in the so-called 
Gompertz-G (Go-H) family. The random variable Y is 
said to have Go-H family if its CDF is given by 

                ...(01)

where θ > 0 and α > 0 are two additional shape parameters, 
and η is a vector of parameters (1×  k ; k = 1, 2, 3, ...). 
Also, the  is the baseline CDF 
depending on a parameter vector  . The survival 
function of the random variable Y is given by

                ...(02)

The probability density function (PDF) corresponding to 
equation (1) is given by

   ...(03)

where  is the baseline PDF. The main reasons for 
introducing this family are:

1. The joint CDFs and joint PDFs should preferably 
have a closed form representation; at least numerical 
evaluation should be possible.

2. This class of distributions is an important model that 
can be used in a variety of problems for modelling 
bivariate lifetime data.

3. This class contains several special bivariate models.

METHODOLOGY: BGO-H FAMILY

A random vector  follows the Marshall-Olkin 
shock model ↔ there exist three independent random 
variables  and  such that  
and  or  and 

. The proposed BGo-H family is 
constructed from three independent Go-H families 
using a minimisation process. Assume three mutually 
independent random variables 
such that i = 1, 2, 3. Defi ne  
and . So, the bivariate vector 

 has the BGo-H family with parameter vector 
. The joint survival function of 

 is given as follows

                ...(04)

where . Equation (4) can be written as 
follows 
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 ...(05)

Using the power series for the exponential function and 
the generalized binomial theorem, we nd the marginal 
PDFs for the BGo-H family can be expressed as an innite 
linear combination of exponentiated-H (exp-H) density 
functions as follows:

  ...(10)

where

  ...(11)

represents the PDF of the exp-H family with power 

parameter  for 

 and

                ...(12)

Assume  be a two dimensional random variable 
with joint survival function , and the 
marginal survival functions are  and , 
then the joint CDF is given by

 

  ...(13)

If the bivariate vector  has the BGo-H family, 
then the distributions of  and 

 can be represented as

  ...(14)
and

  ...(15)
respectively.

Moreover, we can get the joint PDF of  as 
follows:

                ...(06)

where

       
 

 
and

The expressions  can be obtained 
by diff erentiating the equation (4) with respect to 

 However, we can use the following fact to 
get  

   ...(07)

On the other hand, the marginal survival functions for the 
BGo-H family can be represented as follows

 
 ...(08)

So, we can get the marginal PDFs for the BGo-H family 
as follows:

 
 ...(09)
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Diff erent statistical properties

BGo-H family using Marshall-Olkin copula properties

In this section, we fi nd that the BGo-H family has both a 
singular part along the line  with weight  
and an absolute continuous part on  
with weight  , similar to Marshall and Olkin's 
bivariate exponential model. Moreover, the BGo-H 
family can be obtained by using the Marshall-Olkin 
copula with the marginals as the Go-H families as 
follows: for , we get

                ...(16)
where 

   
 and . For more details 

around Marshall-Olkin copula properties see, Nelsen, 
1999. Also, we fi nd that

  ...(17)

So, if  follow the BGo-H family, then they are 
positive quadrant dependent.

Note: For every pair of increasing functions  and 
, we get  (Barlow & 

Proschan, 1975).

Coeffi  cient of median correlation

Assume  and  denote the median of  and 
, respectively. If  and 

 , then

  
                ...(18)

 where U has a uniform U(0, 1) distribution, and 
 represents the baseline quantile function. Domma 

(2010) presented the median correlation coeffi  cient 
 as a form . So, the 

coeffi  cient of median correlation between  and  is 
given as follows:

 ...(19)

Moments, product moment and covariance

In this section, we derive the rth moment, the nth 
central moment and the sth incomplete moment of  
when , such that i = 1, 2. Also, 
we present the product moment, covariance and the 

 of the bivariate distribution  The 
rth moment of  say , can be expressed as follows 

, using equation (10), we 
get

  ...(20)

 where  be a random variables having the 
exp-H CDF with power parameter (l+1). The moments 
of the exp-H distributions are given by Nadarajah and 
Kotz (2006). Setting  in equation (20), we get the 
mean  and the variance  as

  ...(21)
and

  ...(22)

, respectively. Furthermore, the nth central moment of  
say , is given by

                ...(23)

 On the other hand, the incomplete moments are 
very important, which the main applications of the fi rst 
incomplete moment are related to the mean deviations, 
Bonferroni and Lorenz curves. These curves are very 
useful in demography, economics, medicine, insurance 
and reliability. The sth incomplete moment of , say 
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  can be expressed as follows:

  ...(24)

where  . So, the 
mean deviations about the mean and the median 
are given by  and 

, respectively. Moreover, the 
product moment, say , can be represented as

  

 

  
                ...(25)

where  for ,

        

  
and

      

So, by using equations (20) and (25) when r = 1, we get

 

 

where . Thus, 

we can compute the variance of  as follows  

. If the two random 

variables  and  are uncorrelated  

and 

Conditional PDFs

The conditional PDF of  given 
, is given by

                ...(26)

where

and 

Equation (26) can be obtained by substituting 

from equations (6) and (9) in the relation 

 

Stress-strength reliability function

There are appliances, which survive due to their 
strength. These appliances receive a certain level of 
stress (load). The load may be defi ned as temperature, 
environment, mechanical load, and electric current, 
etc. However, if a higher level of load is applied, then 
their strength is unable to sustain and they break down. 
Let  be a random variable 
representing the stress, and  
be a random variable representing the strength, then the 
reliability function   is given as follows:

  ...(27)
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Similarly, if  is a random variable representing the 
stress, and  is a random variable representing the 
strength, then the reliability function   is

  ...(28)

It is clear that the stress-strength model does not depend 
on the baseline function .

Joint hazard rate function and its marginal functions

Let  be a two dimensional random variable with 
joint PDF  and joint reliability function 

. Basu (1971) defi ned the bivariate hazard 
rate (BHR) function, say , as follows: 

. So, if the random vector 

 has the BGo-H family, then the BHR function 
is given by

                ...(29)

where

and

The marginal hazard rate (HR) functions  
of the BGo-H family can be represented by

                ...(30)

Furthermore, the joint reliability function of  can 
be represented in terms of the HR functions as follows:

or

where  and  
are the marginal HR functions of  and ,  respectively. 
Further, if  the 
variables  and  are independent.

Joint reversed hazard rate function and its marginal 
functions

Bismi (2005) defi ned the bivariate reversed 
hazard rate (BRHR) function as a scalar, given by 

 So, if the random 

vector  has the BGo-H family, then

                ...(31)

  

  

  

 

 

 

and

 

 

The marginal reversed hazard rate (RHR) functions 
 of the BGo-H family can be expressed 

as follows:
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                ...(32)

Special models

Bivariate Gompertz-log-logistic distribution (BGoLLD)

Let , for , 

be the CDF of the log-logistic distribution, then the joint 
survival of the BGoLLD is given by

  ...(33)

Figure 1 shows the joint PDF, BHR function and the 
BRHR function of the BGoLLD for the parameters 

.

Bivariate Gompertz-Frechet distribution (BGoFD)

Let , for , be the CDF of 
the Frechet distribution, then the joint survival of the 
BGoFD is given by

  ...(34)

Figure 2 shows the joint PDF, BHR function and the 
BRHR function of the BGoFD for the parameters 

.

Figure 1: The surface plots of the joint PDF (left panel), BHR function (middle panel) and the BRHR function (right panel) of the 

BGoLLD for  and .

Bivariate Gompertz-Weibull distribution (BGoWD)

Let , for , be the CDF of 
the Weibull distribution, then the joint survival of the 
BGoWD is given by

  ...(35)

Figure 3 shows the joint PDF, BHR function and the 
BRHR function of the BGoWD for the parameters 

 and .

 From Figures 1, 2 and 3, we note the BGo-H family 
presents diff erent shapes of the joint PDF, BHR function 
and the BRHR function for diff erent baseline 

Maximum likelihood estimation (MLE)

In this section, we estimate the unknown parameters 
of the BGo-H family using the maximum likelihood 
method. Suppose that  
is a sample of size  from the BGo-H family. 
We use the following notation , 

, , , 
, , , and .

 Based on the observations, the likelihood function 
of this sample is 

  ...(36)
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Substituting equation (6) into equation (36), the log-
likelihood function  can be written as

 

 

 

 

 

 

 

 

   ...(37)

The fi rst partial derivatives of equation (37) with respect 
to  and  are

,
     
                ...(38)

Figure 2: The surface plots of the joint PDF (left panel), BHR function (middle panel) and the BRHR function (right panel) of the 

BGoFD for 

Figure 3: The surface plots of the joint PDF (left panel), BHR function (middle panel) and the BRHR function (right panel) of the 

BGoWD for 
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,
       

                ...(40)

 

 
 

 

 

 

 

 
                ...(41)

and

 

 

  ...(42)

where  means the derivative of the function A(.) 
with respect to  By equating the equations (38 – 42) 
by zeros, we get the non-linear normal equations. So, the 
solution has to be obtained numerically.

Simulation results

In this section, the MLE method is used to estimate the 
parameters  and  of the BGoLLD. The 
population parameters are generated using software  
package. The sampling distributions are obtained for 
diff erent sample sizes n = [50; 250; 600; 1000] from 
N = 1000 replications. This study presents an assessment 
of the properties of the MLE for the parameters in terms 
of variance (Var) and mean square error (MSE). The 
following algorithm shows how to generate data from 
the BGoLLD:

1. Generate  and  from .

2. Compute  

  k = 1, 2, 3.

3. Obtain 
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  Y
1
    Y

2
    min(Y

1
, Y

2
)

Model  –L  K-S  p value  –L  K-S  p value  –L  K-S  p value

GoLL  161.9  0.095  0.889  162.6  0.099  0.864  157.808  0.082  0.966

Table 2: The -L, K-S and p values for Y
1
, Y

2
 and min(Y

1
, Y

2
)

Table 1 lists the MLEs, Var and MSE values for the 
BGoLLD.

 From Table 1, we note that the Var and the MSE are 
reduced as the sample size is increased. These results 
indicate that the BGoLLD works well under the situation 
where no censoring occurs, and the MLE is a good 
method to estimate the model parameters.

RESULTS AND DISCUSSION: REAL DATA 
ANALYSIS

This data represents football (soccer) data of the UEFA 
Champion's League (Meintanis, 2007). We consider 

n  Parameter  Estimate  Var  MSE

50 a = 0.7  0.7654  0.07694  0.08121

 b = 0.9  0.9877  0.10317  0.11086

 α = 1.5  1.8015  0.35470  0.44560

 θ
1
 = 1.6  1.7218 0.14329  0.15812

 θ
2
 = 1.7  1.7598  0.07035  0.07392

 θ
3
 = 1.8  1.8659  0.07752  0.08187

250  a = 0.7  0.7501  0.05894  0.03644

 b = 0.9  0.9701  0.08247  0.06593

  α = 1.5  1.8001  0.35305  0.36738

 θ
1
 = 1.6  1.7048  0.12329  0.12957

 θ
2
 = 1.7  1.7265  0.03117  0.00697

 θ
3
 = 1.8  1.8425  0.05001  0.04853

600  a = 0.7  0.7200 0.02354  0.02394

 b = 0.9  0.9308  0.03623  0.03718

 α = 1.5  1.6187  0.13964  0.15373

 θ
1
 = 1.6  1.6784  0.09223  0.09838

 θ
2
 = 1.7  1.7015  0.00176  0.00176

 θ
3
 = 1.8  1.8288  0.03388  0.03471

1000  a = 0.7  0.7002  0.0002  0.00023

 b = 0.9  0.9126  0.01480  0.01495

 α = 1.5  1.6014  0.11929 0.12957

 θ
1
 = 1.6  1.6358  0.04211  0.04339

 θ
2
 = 1.7  1.7004  0.00047  0.00048

 θ
3
 = 1.8  1.8015  0.00175  0.00177

Table 1: MLEs, Var and MSE values for the BGoLLD the BGoLLD to analyse this data comparing with 
other famous bivariate models, such as Marshall-Olkin 
bivariate exponential (MOBE); bivariate generalised 
exponential (BGE); bivariate Gumbel exponential 
(BGuE); bivariate Burr X exponential (BBUXE); 
bivariate Weibull exponential (BWE); bivariate 
generalised linear failure rate (BGLFR); bivariate Weibull 
(BW); bivariate exponentiated Weibull (BEW); bivariate 
generalised power Weibull (BGPW); bivariate Gompertz 
(BGo); bivariate generalised Gompertz (BGGo); 
bivariate Gumbel Gompertz (BGuGo); bivariate Burr X 
Gompertz (BBUXGo); bivariate exponentiated Weibull 
Gomperz (BEWGo); bivariate exponetiated modied 
Weibull extension (BEMWEx), bivariate expone- tiated 
log-logistic (BELL); and bivariate Kumaraswamy log-
logistic (BKwLL) models. To make this comparison, 
we will use the log-likelihood values (L), Bayesian 
information criterion (BIC), Akaike information criterion 
(AIC), correct Akaike information criterion (CAIC) and 
Hannan-Quinn information criterion (HQIC). Figure 4 
shows the data representation.

Figure 4: The scatter plot for football data
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Figure 5: Estimated CDFs for the marginal distributions

Figure 6: PP plots for the marginal distributions

Model            

MOBE 0.012  0.014  0.022 –    – – –

BGE  1.553  0.499  1.156  0.039  – – –

BGuE 2.678  0.962  2.065  5.011  4.081  – –

BBUXE 0.385  0.136  0.310  0.012  – – –

BWE  0.135  0.302  0.265  0.025  – – –

BGLFR  0.452  0.156  0.360  0.0002  0.0008  – –

BW  0.397  0.274  0.339  0.083  – – –

BEW  1.227  0.382  0.661  0.012  1.268  – –

BGPW  3.229  1.983  4.084  0.037  – – –

BGo  0.003  0.002  0.021  0.040  – – –

BGGo  0.742  0.262  0.598  0.011  0.029  – –

BGuGo  0.578  0.204  0.475  0.009  0.047  2.278  –

BBUXGo  0.132  0.187  0.201  0.006  0.015  – –

BEWGo  0.547  0.192  0.444  0.411  0.079  0.005 1.358

BEMWEx  0.167  0.061  0.139  85.918  4.505  0.025  –

BELL  0.038  0.039  0.092  72.08  11.59  – –

BKwLL   24.39 21.17  46.06  396.0  11.21  0.156  –

BGoLL  15.881 9.379  44.143  2903.789  1.076  144.350  –

Table 3: MLEs for models using football data
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Model  L  AIC  CAIC  BIC  HQIC

MOBE  –298.9  607.9  609.8  615.9  610.7

BGE  –299.9 607.7  608.9  614.2  609.9

BGuE  –297.8  605.6  607.5  613.6  608.4

BBUXE –294.8  597.6  598.9  604.0  599.9

BWE –291.1  592.3  594.2  600.3  595.1

BGLFR  –296.8  603.7  605.6  611.7  606.5

BW  –346.0  700.0  701.3  706.4  702.3

BEW  –298.9  607.9  609.8  615.9  610.7

BGPW  –344.8  697.5  698.8  703.9  699.8

BGo  –303.5 614.9  616.2  621.4  617.2

BGGo –294.9  599.8  601.7  607.9  602.7

BGuGo  –294.2  600.5  603.3  610.1  603.9

BBUXGo  –301.2  612.4  614.3  620.5  615.2

BEWGo –294.6  603.2  607.1  614.5  607.2

BEMWEx  –294.1 600.3 603.1 609.9 603.7

BELL –284.9  579.8  581.8  587.9  582.7

BKwLL –283.9  579.9  582.7  589.6  583.3

BGoLL  –272.8  557.6  560.4  567.3  561.0

Table 4: L, AIC, CAIC, HQIC and BIC values for the models using 

football data

Before trying to analyze the data using the BGoLLD, we 
fi t at fi rst the marginals  and  separately and the 

 on the UEFA Champion's League data. The 
MLEs of the parameters  of the corresponding 
Gompertz-log-logistic distribution (GoLLD) for  
and  are (2.675, 137.3, 1.466, 6.059) (2.874, 
127.4, 1.142, 3.631) and (3.469, 102.650, 2.674, 1.278), 
respectively. Table 2 reports –L, Kolmogorov-Smirnov 
(K-S) distance and p values for  and .
Based on the p values, it is clear that the GoLLD fi ts 
the data for the marginals. Figures 5 and 6 show the 
estimated CDF and PP plots for real data, which support 
our results in Table 2.

 Now, we fi t the BGoLLD on this data. Tables 3 and 4 
list the MLEs, L, AIC, CAIC, HQIC and BIC values for 
the competitive models based on football data.

 From Table 4, it is clear that the BGoLLD provides 
a better fi t than the other competitive models, because it 
has the smallest value among –L, AIC, CAIC, HQIC and 
BIC.

CONCLUSIONS

In this paper, we have presented a new fl exible 
bivariate generator of distributions, in the so-called 
bivariate Gompertz-H (BGo-H) family, whose marginal 

distributions are Gompertz-H families. The joint CDF 
and joint PDF of the BGo-H family have simple forms; 
therefore, this new model can be easily used in practice 
for modelling bivariate data restricted in the interval 

. Some statistical and mathematical properties of 
the new family have been studied. The simulation results 
have indicated that the MLE works quite satisfactorily 
and it can be used to compute the model parameters. 
Also, we have analysed a real dataset and showed through 
goodness-of-fi t tests that the proposed family can be used 
for modelling the data considered herein. 

 A multivariate extension of the Gompertz-H 
family is presented as conclusion. Assume 

 be independent random variables with 
, such that  

Defi ne . Hence, 
the joint survival function of  is given by

 
 
for , where 
Clearly, the BGo-H family arises from this multivariate 
Gompertz-H family by taking n = 2. In the future, we 
will discuss in detail the multivariate extension of the 
Gompertz-H family, because it has many applications in 
lifetime analysis, environmental, economics, engineering 
and medical sciences.
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