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Abstract: Classifier chain (CC) algorithms have been
introduced for multi label classification predictions in recent
years. The accuracy of these algorithms is considered better
than the other state-of-the art algorithms in this domain.
In addition to accuracy, an effort is made to improve the
complexity of the algorithms in order to predict an optimal
order in which the binary classifiers are executed. Existing label
ordering algorithms are executed twice, once for the generation
of label ordering and another time for improving classifier
chain accuracy with predicted order. In this paper, we discuss
the current chain classifier algorithms and their comparison in
terms of both accuracy and execution time. Moreover, we have
introduced a new Label Ordering for Classifier Chain (LOCC),
which exploits the semantic relationships among the labels of
a dataset. The predicted label’s order is computed without the
execution of the classification algorithm. The semantic relations
among the labels are analysed and an order is generated, which
is fed to a classifier chain algorithm. The proposed algorithm
is better in terms of accuracy and computational time than the
available classifier chain algorithms.

Keywords: Classifier chain algorithms, data mining, digital
libraries, multi-label classification, text classification.

INTRODUCTION

In a single label classification, only a single label is
predicted, while in multi label classification multiple
labels are predicted. Both classification schemes are
shown in Figure 1 and the focus of this paper is on
multi label classification. Multi label classification can
be modelled as shown in equation (1). Furthermore,

the binary relevance (BR) method (Luaces et al., 2012)
is the simplest way for multi label classification in
which the problem with L labels is decomposed in |L|
binary classifiers problem. For each classifier, a function
h(x) is learnt for the input instance features as modelled
in equations (2) to (4), for the example given in Figure 1.
The multi label output is generated by combining the
prediction of all the binary classifiers as a predicted list.
BR expands the dataset into |L| problems with linear
complexity, but the major problem is that it ignores the
label dependences.

Single label Multi label

Figure 1: Single and multi label classification
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In equation (1), Y, is the predicted J* label for input
features set x. h(x) is the binary classifier for which
maximum a posteriori estimation is considered. For
the above mentioned example in Figure 1 (having four
possible labels), equation (1) can be modelled as given
in equations (2) and (3). Each label is either assigned to
an instance or not (represented as 0 or 1), the output is
the amalgamation of all the label predictions. The BR
method for the above mentioned example can generically
be modelled as given in equation (4), in which a single
binary classifier is trained for each label.

A
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The assumption of label dependence, which is modelled
as in equation (5) cannot be ignored for all the times.
For example in the film genre classification, a romance
movie does not imply that it cannot be a horror movie.
The preliminary challenge in the multi label classification
is to identify the label correlations, which exist among
the labels in a dataset. Although identification of these
dependencies has improved the classification accuracy,
such as introducing the classifier chain (CC) model
(Read et al., 2009). The author introduced a chain of
classifiers in which the output of the earlier binary
classifier is fed along with the feature attribute (x) to the
successive binary classifiers as modelled in equation (6).
To predict the label y,, the previously predicted outputs
(Yi5-e» Vo) are used with the input features. The
label dependencies, thus improves the prediction of the
successive binary classifiers (Read et al., 2004; Senge
etal, 2014).
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And the predicted label will be:
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N

y=argmax p(y|x)

oot ...(07)
The input of a preceding classifier is used by the
successive classifier during multi label classification.
The concept is demonstrated with an example in Figure 2
having three instances with input feature (x!, x> and x°)
and modelled mathematically using equations (8) to (11).
Likewise, CC uses the basic concept of BR. Nonetheless,
it includes the predictions as a feature vector of the input.
The binary classifier can be used for the prediction of
individual label after transformation to binary problems
from the multi label problem to some extent.

O
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Figure 2: Classifier chain (CC)

In the above example, labels are predicted in a random
order. In the example presented in Figure 2, first, the
label Y, will be predicted as defined in equation (8). The
output of label ¥, will be used with input feature vector
x for label Y, prediction as formulated in equation (9).
Label Y, and Y, will also be predicted in the same way
as constructed in equations (10) to (11). The final output

y=[y,5.-., ¥, ] will be returned to the user.

A

» = h(x)

..(08)
¥y = () (09)
;3 = h3(;";’1’;2) .(10)
;4 =h4(;,;}1,;2, ;3) ~(11)
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Label ordering for multi-label classifier chain

In CCthere is no strategy in the order of labels in which they
are evaluated, i.e., which label to predict first and which one
on the second level. Usually, the greedy strategy for CC is
adopted, where label ordering is ignored. In this strategy,
the error propagates in the chain, i.e., mis-classification
at initial level propagates in the next level (Senge et al.,
2013;2014; Montaiies, ef al.,2014). The working out of an
optimised label sequence is computationally inept due to
higher search space of possible g/ permutations, where g is
the total number of labels available. Literature shows that
there are different ways in which possible combinations
of labels are evaluated. These techniques are used to
minimise the error propagation in the chain. The simplest
strategy is the greedy search, which selects the maximum
probability at each stage. In this strategy, the error in early
stages propagates in the chain (Mena et al., 2016). The
alternate way is the exhaustive search (Cheng et al., 2010)
in which all possible outputs are considered at later stages.
The problem with this strategy is expensive in terms of
computational resources as it checks all the possible paths
down the tree. The technique is demonstrated equally
in Figure 2 with arrows demonstrating the order. There
is € approximate algorithm (Dembczynski et al., 2012),
beam search (Kumar et al., 2012; 2013) and Monte Carlo
sampling (Read ef al., 2004), which eliminates a few
paths down the tree. In g approximation methods, those
children of a node are selected whose joint conditional
probability is more than the threshold value and rest are
discarded. In beam search algorithms more than one
path in the probabilistic tree is explored. This method
considers a parameter b, which is the width of the beam
for considering the paths in the tree at each level. Monte
Carlo is a technique based on repeating random sampling.
A comprehensive discussion and comparison based on
maximum accuracy and computational efficiency is
available in literature (Cheng et al., 2010; Dembczynski
et al.,2012; Kumar et al., 2012; 2013; Mena et al., 2016;
2017).

To improve the two major drawbacks of CC, i.e.,
label ordering and error propagation, a technique called
ordered classifier chains (OCC) based on classifier
accuracy is proposed (Keikha & Hashemi, 2016). In
this technique the multi label problem is transformed
into a binary classifier problem. In addition, sequential
minimal optimization (SMO) is used as a base classifier
in this technique. After that, the classifier is executed and
per label classifier accuracy is arranged in descending
order. The algorithm of OCC is given as Algorithm 1
(Keikha & Hashemi., 2016). The generated order is fed
to CC classifier, which improves the accuracy of the CC
algorithm as compared to random order given to CC.
The major problem with this technique is the execution
of the algorithm, which takes double processing time.
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This technique is tested on 10 benchmark datasets and is
concluded that it is better than CC in terms of accuracy,
and better than ensemble of classifier chain (ECC) in
terms of computational complexity (Keikha & Hashemi,
2016).

Algorithm 1: OCC’s finding chain phase for training
set D and label set L (Keikha & Hashemi,
2016)

D={(X, L) k=1..K}
L={l:j=1,..M

forj=1,...Mdo
D’={}
D’ — D'uv(Yl)

hj: D’ — e {0, 1}

P, —h, ()

> A is an array for accuracies
A(l, j) = Accuracy (h,)

end for

Rank (A) descendingly

The technique label priority chain using classifier chain
(LPC-CC) (Soonsiripanichkul et al., 2016) is proposed,
which works similar to OCC with naive Bayes as a base
classifier. The LPC-CC also used BR for label sequencing
priority as given in Algorithm 2 (Soonsiripanichkul
et al., 2016) and CC classifier with naive Bayes is used
for finding label domination. The results are tested on
three datasets, i.e., yeast, emotions and collection of car
sales records from an automotive company in Thailand.

Algorithm 2: Label ordering (LP)

(Soonsiripanichkul et al., 2016)

x # attribute vector

y #set of labels

q #range of y

N # number of instances

Input: Dataset M composed of feature x and set of labels
v. There are I instances

Output: New dataset that order of labels is recorded
1: Forj=1Ito q Do

. binaryTransformation(x,y)

AR BR(x,yj)

4: Sorty, from Acc (x,p)

5: Return newM = {(x,y", ), ....(x,,y", )}

)

The genetic algorithm is also used for generating label
order (Goncalves et al, 2013). In this approach the
training dataset is further divided into two parts; building
and validating. Label order optimisation is done on the
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building part of the training set and then fitness function is
evaluated on the validation set. Final accuracy is obtained
using the test set with obtaining label ordering. All labels
are represented in a sequence, which formulates initial
population for the genetic algorithm. Accuracy [Equation
(12)], exact match equation (13) and Hamming Loss
equation (14) measures are amalgamated to formulate
the fitness function equation (15). The initial population
is evaluated using the CC algorithm, in case a sequence
does not give better results than cross over and mutation
is applied. The final optimal order is evaluated with the
test dataset. This approach has a high execution cost as
each time every order is evaluated on a subset of the
dataset. The approach is evaluated on a set of benchmark
datasets with comparison of the results on the accuracy,
exact match and hamming loss.

_1¢nnz)|
ACC = nZ V07 (12)
EM= Y1y, =) -(13)
n'ig
1 |YiAZi|
HL= —y 1 (14
nZl p (14)
Fitness (i) = 24 +ACC+ A~ HL) (15)

3

In all of the above three approaches the order is generated
after the execution of the classification algorithm. None
of the approaches exploit the semantic relationship that
resides inside the dataset among the labels. To improve
the accuracy with optimum order and less execution
time, we have devised an algorithm that explores the
relationship between the labels of a dataset without
classifier execution. We have compared the results
on 9 benchmark datasets with the OCC and LPC-CC
techniques.

METHODOLOGY

The problem is to formulate an organisation for a dataset
D having L labels, which gives better accuracy results.
The existing techniques are costly in terms of computation
time, in which all the possible ordering are measured.
There is a need to semantically analyse the dataset
and predict a chain without taxonomy and algorithm
execution. Nonetheless, our algorithm exploits the chain
order by exploring the semantic relationship between the
labels in the dataset. Initially the frequency of labels and
the co-occurrence that exist among the labels have been
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measured. Frequency and co-occurrence among labels is
computed as L*L matrix using equation (16).

|Li]|, i=j

M(Li,Lj) = {ILi, Lil, i #j

...(16)
In the proposed LOCC algorithm (Algorithm 3), C will
hold the chain order, which is the predicted output. At
initialisation phase, the category with a high number of
cardinality using the matrix M as defined by equation
(16) is selected. The label with maximum cardinality will
be added to the selected chain order C and the selected
label is removed from the original label set. In the second
phase, a loop is iterated for the remaining labels. The
cardinality of the remaining labels will be computed each
time with the label selected at the previous level using
equation (16). In the same way, the maximum cardinality
between the previously selected label and the label in the
remaining label set L will be added to the label chain C
and will be removed from the original label set L. The
loop will iterate until one label is left in the original label
set; the last label left will be appended to the predicted
label set.

Algorithm 3: LOCC label ordering for classifier chain

Input: D (dataset), L(label set)
Output: C (ordered label set)
C—0
Max =0
For each label £ € L do
Compute |£ |
If (£ | > max) then
Max — |£ |
S—£
End if
C—=CU/l]
L—L-[I]
End for
While (|L| # 1) do
Max =0
For each label £ € L do
c <« sim(S, £ )using Eq.16
If (max < ¢ )do
Then max < ¢
S—£
End if
End for
C=qull]
L—L-[S]
End while
Return C
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Label ordering for multi-label classifier chain

The working of the proposed algorithm is demonstrated
on the Emotions dataset in Figure 3. The dataset contains
6 labels which are relaxing calm (RC), angry aggressive
(AA), amazed surprised (AS), sad lonely (SL), happy
pleased (HP) and quite still (QS). The figure contains co-
occurrence matrix of all labels available in the dataset
using equation (16). L set is initialised with all available
labels in the dataset and C set as empty. In the first
part of the algorithm RC is selected having maximum
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cardinality, which is removed from L set and added to
the C set. The algorithm then iterates until the elements
in the L set are more than one. In the first iteration, OS
label is added to the chain C as having the maximum
co-occurrence with the previous selected label RC. In the
second iteration, SL label is added to the chain as having
maximum co-occurrence with OS. The process continues
until all labels are removed from the L set and added to
the C set. Finally the algorithm returns the C set as an

Dataset: Emotions

0 1. 2 3 4 5
Labels: AS HP RC QS5 SL AA
Relaxing Calm RC
Angry Aggressive AA o |48 | o8 B 9 u i
Amazed Surprised AS AP | 56 | 166 | 91 7 1 12
Sad Lonely SL
Happy Pleased 1P RC 13 91 264 | 104 | 95 7
Quite Still Qs Qs 0 T 104 | 148 | 104 2
% L_)_{ L, i=j st{ 10 | 1 |95 [105]166 | 20
vl = |Li, Lj|, [+ AA | 92 12 7 2 20 189
Initialization: L={AS, HP, RC, QS, SL, AA}
c={}
For each label £ €L do JAS[=173 L={AS, HP, QS, 5L, AA}
If(|£]>max) then |AP|=166 C={RC}
Max & [£ | |RC|=264
S¢&fF jQsj=148
cecule ISt /=166
= L—[f] [AA[=189
White (]L] 1) do ITERATION 1: (RC, AS)=13 L={AS, HP, SL, AA}
Max =0 (RGHP)=91 C={RC, 05}
For each label £ €L do (RC, QS)=104
c & sim(S, £) (RC, S1)=95
If (max < c) do (RC,AA)=7
max & ¢
5_6 £ ITERATION 2: (QS, AS)=0 L={AS, HP, AA}
End if (QS, HP)=7 C={RC, QS, 5L}
End for (Qs, 5L)=104
cequfa] (QS, AA)=2
Lesl= ITERATION 3 :( SL, AS)=10 L={AS, HP}
3 N 3 :( SL, =, = 7
Endwhile (SL, HP)=1 C={RC, QS, SL,AA}
(SL, AA)=20

ITERATION 4: (AA, AS) =92 L={HP}
(AA, HP)=12 C={RC, QS, SL,AA, AS}
ITERATION 4: L={}

OUTPUT: C = {RC, QS, SL, AA, AS, HP}

C={RC, QS, 5L, AA, AS, HP}

Figure 3: Stepwise execution of the LOCC algorithm over emotions dataset
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output. The ordered chain of label C is given as input to
the well-known CC algorithm. The results are compared
with the original BR (Luaces ef al., 2012), CC (Read
etal.,2011), OCC (Keikha & Hashemi, 2016) and LPC-
CC (Soonsiripanichkul ef al., 2016) classifiers.

RESULTS AND DISCUSSION

In this section we have briefly discussed about the
dataset used in the comparison of the proposed algorithm
with existing algorithms. The evaluation criteria for the
comparison and the achieved results along with their
analysis is also discussed.

The experimental results are obtained on Intel core
i3, with 1.7 GHz processor and 4 GB RAM. NetBeans
IDE version 8.1 with Java Development Kit (JDK)
version 1.8 is used. The algorithm was implemented in
Java and the generated order was fed to the CC algorithm
in MEKA version 1.9.0. For all the experiments default
parameters of MEKA are used.

The performance of the techniques was evaluated in
terms of accuracy, hamming loss, F1 micro averaged by
the labels and running time. Nine supervised datasets were
selected. Among these, 7 were benchmarked datasets that
were taken from the Mulan Library (Tsoumakas et al.,
2011). Three datasets were from the scientific research

Tariq Ali & Sohail Asghar

Moreover, we have used four measures from multi
label classification literature for comparison. The
comparison parameters for multi label classification are
different from the single label classification. Besides,
the evaluation measures for multi label classification
are categorised into label based evaluation and example
based evaluation. We have used hamming loss [equation
(17) and accuracy equation (18)] from example based
evaluation and F1 macro averaged by label [equation
(19) from label based evaluation measures. We have
also compared the time taken by each technique for
the test instances. A test set |[D|={(X, L,) | 1<i <|D[}
was used in all three equations, where L. is the set of
true/actual labels, and E; represents the predicted set
of labels. [ AE, represents the symmetric difference
between the actual and predicted labels. Hamming loss
encounters the prediction (incorrect label was assigned
to an instance) and omission errors (correct label for an
instance is not predicted). The symmetric difference is
divided by |L| to get normalised values between 0 and
1. In computing the accuracy, the number of instances
having the same predicted and actual labels was divided
by the total number of instances. F1 macro is computed
in terms of precision, recall and total number of labels
|Z|. Precision and recall are defined in equations (20) to
(21) respectively.

1 & LAE.

Car

Hamming loss =

paper taken from J.UCS (Afzal et al., 2009) and ACM = ~(17)
(Santos et al., 2009). The J.UCS and ACM datasets were
used for multi label scientific document classification in 1 L2 | L AE, |
literature (Ali et al., 2013; Sajid et al., 2016). Accuracy = T ) 1—— (18)
D= |, v E
In the experimental section, we have used nine standard
datasets given in Table 1. These datasets were categorised 1 |2* P *R, |
on the basis of, number of labels, number of features, = F-measure macro = B E—— ...(19)
dataset size, domain, and cardinalit |L| = |P' +Ri|
s > Y-

Table 1: Datasets description

Dataset No. of labels No. of features Dataset size Domain Cardinality

Flags 7 19 194 Image 3.33

Yeast 14 103 2,417 Biology 424

GenBase 27 1,185 662 Biology 1.25

Emotions 6 72 593 Music 1.87

Scene 6 294 2,407 Image 1.07

Enron 53 1,001 1,702 Text 3.38

J.uCs 13 3,951 1,112 Papers 1.63

J.UCS 5Cat 5 3,576 974 Papers 1.23

ACM 11 16,255 31,403 Papers 0.75
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Label ordering for multi-label classifier chain

1 & LAE, |
P=__ 1= ..(20)
D% L]
1 & LAE, |
; .1
R L ey

These parameters are considered as standard parameters
in the existing literature. The efficiency of the technique
can be determined by the resulting higher values for
accuracy and F measure and lower values for hamming
loss and total time. By experimental results, we have
achieved a low value for total time, which proves our
claim of efficiency. The results obtained are the average
run of 10 times.

We have compared our proposed technique with two
standard techniques (BR and CC) and two proposed
existing techniques with label ordering (OCC and LPC-
CC). The results were obtained for BR, CC, existing
(OCC) and proposed (LOCC) using SMO as the base
classifier and BR, CC, another existing (LPC-CC) and
proposed (LOCC) with Naive Bayes as the base classifier.
One existing technique (OCC) is with base classifier
SMO and the other existing technique (LPC-CC) is with
base classifier Naive Bayes. The measure accuracy and
F macro averaged by labels are better for higher values.
The hamming loss and total time are better for smaller
values. Our claim is pretty near to improved accuracy
with less time. The results obtained were evaluated for
statistically significant differences using the Friedman
test (Friedman, 1937). Friedman test ranks the results

Table 2:
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of all the techniques on every dataset. The proposed
technique LOCC with base classifier SMO and Naive
Bayes was selected as the control method to show its
significance. {A} shows that technique A is better than B
and C.

In Table 2, the rank results of accuracies show that
LOCC considering SMO is better than the comparable
counterparts such as for the datasets Flags, Yeast,
Emotions, Enron, J.UCS 5Cat and ACM from all three
classifiers BR, CC, and OCC. In case of Genbase all the
techniques have the same results, while in a few cases, the
accuracy of LOCC is close to the other techniques such
as Scene and J.UCS datasets. The rank sum results of the
Friedman test shows that LOCC has a better value than
the other three techniques. Rank sum result for LOCC,
OCC, CC and BR were 15,21,23 and 31, respectively.
The results of Friedman test for the obtained value of p
(0.03305) are significant at 0.05. The X?r statistics value
of the results with SMO as a base classifier was 8.7333.
The results show that LOCC is better than OCC, CC and
BR. The technique OCC is better than CC and BR, and
CC is better than BR technique only.

In Table 2, the rank result of LOCC considering
Naive Bayes as a base classifier show that the accuracy
is better on the Yeast, Enron, J. UCS and ACM datasets.
On other datasets, its accuracy is close to the other three
techniques. The rank sum results from the Friedman test
show that the result for LOCC (16) is better than the
existing techniques, LPC-CC which has a rank sum value
of21.5, CC with 19.5 and BR with 33. In this experiment

Accuracy on 9 datasets by four techniques using SMO and Naive Bayes

Base classifier SMO Naive Bayes
BR CcC occ LoCC BR CC LPC-CC LOCC
Classifier (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank)
Flags 0.597 (1.5) 0.596 (3) 0.595 (4) 0.597 (1.5) 0.473 (4) 0.540 (1) 0.537(2) 0.517 (3)
Yeast 0.502 (3) 0.488 (4) 0.520 (2) 0.544 (1) 0.385 (4) 0.402 (2) 0.400 (3) 0.403 (1)
Genbase 0.989 (2.5) 0.989 (2.5) 0.989 (2.5) 0.989(2.5) 0.433(1) 0.273(3.5) 0273 (3.5)  0.277(2)
Emotions 0.497 (4) 0.511 (2) 0.507 (3) 0.525 (1) 0.466 (4) 0.511 (1) 0.494 (3) 0.501 (2)
Scene 0.586 (4) 0.696 (2) 0.728 (1) 0.662 ( 3) 0.457 (4) 0.696 (1) 0.675(2) 0.662 (3)
Dataset Enron 0.397 (4) 0.407 (2.5)  0.407 (2.5) 0.408 (1) 0.205 (4) 0.239 (3) 0.355(2) 0.395 (1)
J.uCs 0.400 (4) 0.446 (2) 0.448 (1) 0.438 (3) 0.359 (4) 0.388 (3) 0.402 (1) 0.395(2)
J.UCS 5Cat 0.550 (4) 0.570 (2.5) 0.570 (2.5) 0.580 (1) 0.523 (4) 0.555(2.5) 0.555(2.5)  0.583(1)
ACM 0.900 (4) 0.902 (2.5) 0.902 (2.5) 0.920 (1) 0.826 (4) 0.840(2.5)  0.840(2.5)  0.860 (1)
Rank sums 31 23 21 15 33 19.5 21.5 16
Order {LOCC}>{BR,CC, OCC}, {OCC}>{CC.,BR}, {CC}>{BR}
Order {LOCC}>{BR,CC, OCC}, {CC}>{LPC-CC, BR}, {LPC-CC}>{BR}
Journal of the National Science Foundation of Sri Lanka 47(2) June 2019
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the CC results were even better than LPC-CC. CC sum
rank results was better than both techniques LPC-CC
and BR, although the result of LPC-CC were better than
BR only. The results obtained through Friedman test in
this experiment with base classifier Naive Bayes were
significant with the p value 0.01266 at 0.05.

The lower hamming loss values show the efficacy
of the proposed technique. In Table 3, the overall values
of hamming loss for LOCC are less than the mentioned
classifiers for most of the datasets. Rank sum results of
all the techniques from the Friedman test with the base
classifier SMO show that LOCC has a higher rank than

Table 3:

Tariq Ali & Sohail Asghar

the other three techniques. The rank sum results for BR,
CC, OCC and LOCC are 31, 21, 22, and 16 respectively.
Over the nine datasets OCC has better ranks. Friedman
test for the different runs of the four classifiers shows
no significant difference. The p value for the base
classifier SMO was 0.05033, which is not significant at
0.05. Similarly, with base classifier the rank sum results
for BR, CC, LPC_CC and LOCC are 22.5, 22, 26 and
19.5, respectively. LOCC has a better rank than the
three comparative techniques. The results of the four
techniques were not significant based on the Friedman
test. Hamming loss values for the ten runs out of 18 were
better for LOCC than the other three techniques.

Hamming loss on all datasets by four classifiers using SMO and naive Bayes

Base classifier SMO Naive Bayes
BR cc occ LOCC BR cC LPC-CC LOCC

Classifier (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank)
Flags 0.271 (4) 0.264 (2) 0.266 (3) 0.262 (1) 0.335 (4) 0.305 (1) 0.312 (2) 0.320 (3)
Yeast 0.195 (2) 0.214 (4) 0.205 (3) 0.180 (1) 0.293 (1) 0.310(2.5) 0315(4)  0.310(2.5)
GenBase 0.001 (2.5)  0.001(2.5)  0.001 (2.5) 0.001 (2.5) 0.033 (2) 0.035 (4) 0.034 (3) 0.032 (1)
Emotions 0.299 (4) 0.224 (2) 0.228 (3) 0.220 (1) 0.232 (2) 0.224 (1) 0264(4) 0257 (3)
Scene 0.107 (3) 0.103 (2) 0.092 (1) 0.115 (4) 0.178 (3) 0.103 (1) 0.111(2)  0.238(4)

Dataset Enron 0.068 (5) 0.060 (2.5)  0.060 (2.5) 0.050 (1) 0.184 (4) 0.177(2.5)  0.177(2.5) 0.140 (1)
JLuCs 0.105(3.5)  0.102 (1) 0.103 (2) 0.105(3.5)  0.127(1) 0.149 (4) 0.146 (2)  0.148 3)
J.UCS 5Cat 0.178 (4) 0.171 (2.5)  0.171 (2.5) 0.160 (1) 0.181 (2) 0.186 (4) 0.185 (3) 0.171 (1)
ACM 0.075 (4) 0.065(2.5)  0.065(2.5) 0.053 (1) 0.098 (3.5)  0.097(2) 0.098 (3.5) 0.090 (1)
Rank sum 31 21 22 16 22.5 22 26 19.5
Order No significant differences according to Friedman test

Table 4: F1 (macro averaged by label) on all datasets by four classifiers using SMO and naive Bayes

Base classifier SMO Naive Bayes

Classifier BR CC ocCC LOCC BR CcC LPC-CC LOCC
Flags 0.645 (3) 0.637 (4) 0.647 (2) 0.657 (1) 0.625 (4) 0.666 (1) 0.661 (2) 0.658 (3)
Yeast 0.325 (4) 0.362 (2) 0.353 (3) 0.380 (1) 0.423 (4) 0.442 (2) 0.433 (3) 0.448 (1)
GenBase 0.768 2.5) 0.768 (2.5)  0.768 (2.5)  0.768 (2.5) 0.130 (1) 0.047 (3.5)  0.047(3.5) 0.048(2)
Emotions 0.611 (3) 0.603 (4) 0.639 (2) 0.642 (1) 0.593 (4) 0.603 (3) 0.609 (2) 0.618 (1)
Scene 0.688 (3) 0.718 (2) 0.750 (1) 0.683 (4) 0.595 (3) 0.718 (1) 0.693 (2) 0.580 (4)

Dataset Enron 0218(3)  0.219(2) 0.217 (4) 0.227 (1) 0.144 (4)  0.178(2.5) 0.178 (2.5)  0.357 (1)
J.UCS 0.318 (4) 0.332 (2) 0.334 (1) 0.319 (3) 0.336 (4) 0.35(3) 0.353 (2) 0.357 (1)
J.UCS 5Cat 0.463 (4) 0.466 (2.5) 0466 (2.5)  0.483 (1) 0.491 (4) 0.510(2.5)  0.510(2.5)  0.591 (1)
ACM 0.570 (4) 0.580(2.5) 0.580(2.5)  0.610(1) 0.517 (4) 0.537(2.5) 0.537(2.5) 0.547(1)
Rank sums 30.5 23.5 20.5 15.5 32 21 22 15
Order SMO {LOCC}<{BR,CC, OCC}, {OCC}<{BR, CC}, {CC}<{BR}

Order naive Bayes {LOCC}<{BR,CC, OCC}, {CC}<{LPC-CC, BR}, {LPC-CC}<{BR}
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Label ordering for multi-label classifier chain

As mentioned earlier, the efficiency of an algorithm is
achieved by higher values for F1 measure. The result of
the F measure averaged by label on all the datasets using
the four techniques given in Table 4 shows that LOCC
has better accuracy on Flag, Yeast, Emotions, Enron,
J. UCS and ACM datasets. Rank sum for BR technique
results, CC, OCC and LOCC are 30.5, 23.5, 20.5 and
15.5, respectively. LOCC is better in order than BR, CC
and OCC, whereas OCC is better than BR and CC. CC
is better than only BR. The results are significant at 0.05
based on the Friedman test with a p value 0.04885.

The result of F measure with Naive Bayes as a base
classifier for the techniques BR, CC, LPC-CC and LOCC
are given in Table 5. The results are significant with a p
of value 0.04885 based on the Friedman test. The rank
sum values for the BR, CC, LPC-CC and LOCC are 32,
21, 22 and 15 respectively. The rank sum results show
the outstanding order of LOCC over LPC-CC, CC and

Table 5:

183

BR. The result shows that CC has a better order than
LPC-CC and BR. BR is placed lower in this order among
the four techniques.

The lower value for total time parameter shows
the supremacy of the proposed technique over the
existing techniques OCC and LPC - CC. In Table 5,
the comparison is made only with OCC and LPC - CC
because in existing techniques only these two techniques
make extra processing. The LOCC values are low for all
datasets with base classifier SMO and existing technique
OCC. Similarly, in Naive Bayes most of the values of
LOCC are less for almost all of the datasets that show the
basic supremacy of our proposed technique. The tradeoff
between computational time and accuracy is much
higher for the existing techniques (LOCC, LPC-CC) and
the proposed algorithm. LOCC achieve better accuracy
in a very short time.

Total time (in seconds) on all datasets by 3 classifiers using SMO and naive Bayes

Base classifier SMO Naive Bayes
occ LOCC LPC-CC LOCC

Classifier (Rank) (Rank) (Rank) (Rank)
Flags 0.784 (2) 0.391 (1) 0.141 (1.5) 0.141 (1.5)
Yeast 18.557(2) 11.643 (1) 4.52(2) 2.367 (1)
GenBase 19.071 (2) 9.676 (1) 9.249 (2) 4.491 (1)
Emotions 1.191 (2) 1.238(1) 0.641 (2) 0.396 (1)

Dataset ~ Scene 16.535(2) 82 (1) 14.09 (2) 2.486 (1)
Enron 110.569 (2) 55.506 (1) 140.096 (2) 70.407 (1)
J.ucs 18.842 (2) 12.651 (1) 73.16 (2) 36.787 (1)
J.UCS 5Cat 6.494 (2) 4.65(1) 22.787 (2) 13.116 (1)
ACM 2168.655 (2) 988.332 (1) 2383.455 (2) 1305 (1)
Rank sum 18 9 17.5 9.5
Ordering {LOCC}>{OCC, LPC-CC}
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