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Abstract: This study addresses the problem of assuring 
provably safe and correct behaviour of safety-critical complex 
hybrid systems (CHS) throughout their life-cycles when 
physical system dynamics tend to change due to natural 
causes. Model-based development methods are needed that 
integrate formal specification, verification, implementation 
level testing and runtime validation. Scalability limitations 
of available algorithms/methods dictate a modular approach, 
but this poses conflicting issues of compositionality, false-
transitivity, soundness and completeness. In this paper a 
compositional solution approach based on the decomposition 
and hybridisation of statechart models (into hybrid automata 
- HA) is demonstrated. Specifically, a compositional formal 
verification methodology developed earlier for discrete event 
dynamic systems (DEDS) was elevated to hybrid dynamics, 
successfully overcoming the risk of false transitivity common 
to direct abstraction methods of continuous state-space. It was 
then used to develop a scalable strategy to generate sound and 
complete (relative to coverage criteria) tests, and configure 
corresponding compositional HiL tests for different abstraction 
and functional levels. The same decomposition was used to 
derive compositional runtime validation tests based on discrete 
invariants and differential invariants. The study formally 
proves that (1) the proposed HA based formal verification 
method is compositional, sound and complete relative to 
first-order logic of differential equations, (2) the modular 
tests are compositional and (3) the HA based test generation 
method is compositional, sound and complete relative to first-
order logic of differential equations. To reduce complexity 
compositionality is rendered parallel than sequential to perform 
the simpler tasks concurrently. The claims have been validated 
experimentally on a full scale experimental rig.    

Keywords: Complex hybrid systems, compositional testing, 
compositional verification, hardware-in-the-loop testing, 
runtime validation, V&V – testing integration.

INTRODUCTION

The underlying problem addressed is assurance of 
provably safe and correct behaviour according to 
requirement specifications, in real-scale non-terminating 
(repeatedly looping) safety-critical complex hybrid 
systems (CHS) throughout their life-cycles when 
physical system dynamics and the environment tend 
to change due to natural causes. These systems have 
interacting continuous-variable dynamics (CVDS; 
position, velocity, friction, etc., expressed by differential 
equations or difference equations based on the model of 
time used: discrete time or continuous time) and discrete-
event dynamics (DEDS; on/off, collision, etc., expressed 
by transition systems, formal languages or abstract 
algebras); hence called hybrid systems. 

 A model-based solution (the dominant paradigm 
(Alur, 2011)) requires expressing the requirement 
specifications in a formal model where the correctness 
and safety properties could be verified, enabling a 
faithful translation of the verified model into a control 
programme to be coded into software/hardware. 

 Formal verification consists of ascertaining the 
continued conformance of system behaviour to 
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specifications. Methods employed in verifying draw 
heavily from methods for DEDS and CVDS: for 
DEDS, classically, model checking (for temporal and 
first-order logic specifications) on transition systems 
and theorem proving on formal language models and 
process algebras have been extensively discussed (Aceto 
et al., 2007). CVDS specifications were classically 
limited to overshoot, rise-time, etc. (Belta et al., 2017). 
Verification of nontrivial behavioural specifications 
(based on temporal and differential dynamic logics) 
using model checking has now been made possible by 
providing them with transition structures through the 
abstraction of the state-space into affine partitions (based 
on observational equivalence relations -bisimilarity-). 
This becomes states of timed or hybrid automata with 
discrete transitions defined for affine boundaries (Belta, 
2017; Sloth & Wisnieski, 2011), albeit with a risk of 
over-approximation and false-transitivity.

 Hence, hybrid automata (HA) (Henzinger, 1996) are 
dominant among formal models of hybrid systems.  

 The core problem in model checking methods 
is image computation (Platzer & Clarke, 2007). For 
DEDS, symbolic computations help in abstracting the 
reachability space (the image) on a transition system, 
particularly for first-order logic specifications which 
require quantifier elimination. HA may have specifications 
with quantification over reals (first-order logic on reals), 
which would require real quantifier elimination (RQE) 
for model checking: RQE is impossible when modalities 
are present; some differential equations do not support 
RQE; even otherwise, complexity of RQE in real-closed 
fields is doubly exponential in the number of quantifier 
alternations. In numerical or approximation approaches, 
approximation errors can cause unsoundness in model 
checking. Platzer (2010) proposes methods based on 
differential induction for differential invariants to address 
this situation. Local invariants are found in a fixed-point 
algorithm for each continuous evolution D^H, with 
differential equation system D and evolution domain 
H. The local invariants are then composed into global 
invariants using closure properties.

 However, these verification approaches are designed 
for hybrid systems with centralised sequential control, 
a limitation arising from models of computation (MoC) 
used here: (e.g. hybrid automata). An approach suitable 
for distributed systems (with, for instance, networked 
control, as in automobiles or aircrafts) needs MoC with 
richer semantics: permitting parallel composition of 
sequential components, thus concurrent computation. 

Our MoC of choice for DEDS has been statecharts 
(Harel, 1987) for these reasons and it was extended to 
capture CVDS.

 Some currently used correct-by-design model-based 
development approaches for reactive systems, notably the 
B-method and Event-B-method (Abrial, 1996; Moreira, 
2015) too prescribe conducting formal verification and 
validation (V&V) throughout the design process: a 
progressive refinement process with a theorem proving 
system for proof obligations at each refinement stage. 
The premise is that detailed models cannot be built at the 
beginning of a development process. Event-B has been 
extended to handle hybrid dynamics by adding simple 
differential dynamic logic (dL) operations and defining 
a refinement calculus for differential events (Liu et al., 
2014). 

 However, without compositional strategies for 
complex systems, development processes can quickly 
become computationally intractable and unsound/
incomplete: the case with current decomposition and 
refinement strategies (theoretical or commercial) 
(Abrial, 1996; 2010), including the Event-B method. 
Disappointingly, guaranteeing completeness in 
compositional proofs is difficult (Namjoshi et al., 2010). 

 In Platzer (2010) a decomposition of hybrid systems 
into a sequential composition of hybrid programme (HP: 
their preferred MoC) components is presented; HP being 
extensions of conventional discrete programmes (Harel, 
1979), the programmes of subsystems can be composed 
using logical operators in a compositional manner. 
However, this approach does not support parallel 
composition of the sequential components. Further, 
hybrid textual programmes lack the familiar structure 
and expressive power of graphical HA. 

 Chaochen et al. (2005) realised compositionality of 
parallel components in hybrid systems by introducing 
continuous statements into process algebraic models, 
CSP (Hoare, 1985) to be precise, defining hybrid CSP. 
However, verification methods for hybrid CSP are yet to 
be developed.

 In this paper we demonstrate our compositional 
approach to formal verification and test design, which 
supports parallel composition of sequential HA: 
statecharts (Harel, 1987) modelling discrete-event 
dynamics of a hybrid system are decomposed into a set of 
automata (language generators) communicating through 
port-structures using a decomposition we introduced 
previously (Dewasurendra, 2006; Vidanapathirana et al., 
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2011) based on Drusinsky and Harel (1989). Differential 
equations/constraints are embedded into automata 
states representing real actions in the physical system. 
As will be seen in our development, such states are few 
in numbers in these modules and ports. The generated 
architecture is unique, permitting efficient compositional 
verification of hybrid dynamics.

 In addition to design verification, testing a CHS 
implementation is mandatory: for instance, ISO 26262-
6 requires back-to-back testing of a model and an 
implementation derived from the model. Testing needs 
to be sound and complete, while avoiding redundant 
coverage. Sound and exhaustive tests are generated in 
(Tretmans, 2008) for a given specification in the limited 
context of an ioco (input-output conformance) labelled 
transition system. In complex systems, modularity 
needs to be exploited, but there is not much reported 
on compositionality in test design: (Bijl et al., 2003; 
Daca et al., 2014) are exceptions, treating ioco labelled 
transition systems. These are still open problems for 
more general configurations.

 In Ferrante et al. (2016) formal models of the system 
(simulink blocks and stateflow) are translated to NuSMV 
programmes, which are then run against negations of 
CTL formulas representing individual test objectives to 
generate counter-examples that become tests covering the 
required test criteria. The approach is not compositional, 
nor does it support continuous dynamics, and may not 
scale up. Time partition testing by Bringmann and Kramer 
(2006), targets continuous behaviour testing, extendable 
to hybrid components using stream-processing functions 
of Müller and Scholz (1997). However, their tests do not 
derive from or relate to formal verification models.

 Finally, variations in physical system dynamics and 
environment not captured in the modelling phase require 
runtime validation to ensure continued safety. 

 Hence, test design and runtime validation need to be 
contemplated from early stages of modelling for formal 
verification and validation (V&V) (ARTEMIS, 2005; 
Namjoshi & Trefler, 2010; Nielsen, 2014; CRYSTAL, 
2016) as required by standards such as EN50128, DO-
178C, IEC 61508, IEC 60880 and ISO 26262. 

 Formal validation of model-based development 
at instrumentation level is still poorly supported 
(Bringmann & Kramer, 2008). De Matos (2015) and 
Nielsen (2014) help comparing a strict formal model-
based development and a combination of formal and 
traditional unit-test based methods.

(Malik & Roop, 2015) discuss code generation from 
method-B. We do not cover formal verification of 
automated code generators in this paper. 

 We address the issues raised above through 
compositional integration of these functions on statechart 
models. This paper provides details on, the design, 
setup and results of hardware-in-the-Loop (HiL) tests, 
and runtime validation carried out on a fully functional 
prototype CHS. 

Specific contributions of the paper are the following: 

(a) Elevating compositional formal verification from 
DEDS to hybrid dynamics by converting simpler 
automata modules from our statechart decomposition 
into HA: the graphical models facilitating 
collaborative development. Kim and Lee (2003) 
and  Malik and Roop (2019) discuss code generation 
from HA. We overcome over-approximation and risk 
of false transitivity common to direct abstraction 
methods of continuous state-space. 

(b) Use of the decomposition from (a) to configure 
compositional HiL tests and MiL tests (reported 
earlier) for testing at different abstraction and 
functional levels of the CHS.

 
(c) A scalable strategy to generate sound and complete 

(relative to coverage criteria) tests for CHS using (a), 
reducing the possibility of error introduction.

  
(d) Deriving compositional runtime validation tests from 

specifications in (a). 

Some implementation - level faults of the integrated 
system could be identified and corrected in this approach.   

 A fully functional passenger elevator was built 
with safety features as CHS test-bed. The elevator 
controller, designed and implemented first on PLC was 
easily migrated to FPGA hardware, demonstrating the 
flexibility of our approach. Control implementation is 
distributed: the discrete-event control, modularly in an 
FPGA and the continuous-variable control of motors as 
Simulink blocks on a PC. 

METHODOLOGY, RESULTS AND DISCUSSION

Compositional modelling of hybrid dynamics 

In hybrid dynamical systems (Alur et al., 1995; 
Henzinger, 1996; Chaochen et al., 2005), states change 
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instantaneously (possibly discontinuously) for discrete 
transitions and following differential equations, 
subject to defined restrictions resulting from physical 
circumstances or the interaction of continuous dynamics 
with discrete control. Continuous-variables pose the 
greatest challenge in verifying hybrid systems. The state 
spaces become infinite with infinite time actions.  

We demonstrate how hybrid automata (HA) (Henzinger, 
1996) can model hybrid dynamical systems, through a 
simple example.

 The HA in Figure 1(a) models hybrid dynamics of 
a moving object. When it is in acceleration mode the 
node ACCLN is active. The continuous acceleration of 

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems  

7 
 

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it 

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts 

to decelerate with  𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below  𝑣𝑣 = 𝑉𝑉2 the state DCCLN is 

deactivated and ACCLN becomes active again.  

 

 

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v  V1 / a  -b

v  V2 / a  A  
(a) 

4
7

7

13
13

)
13

7
(

br
ak

e





),,( rvdvepm 

 
        (b)                 (c) 
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event 

dynamics   (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller. 

 

Fig.1. Hybrid automata and hybridization of Statecharts.  

 

Figure 1: Hybrid automata and hybridisation of statecharts.
 (a) Hybrid automaton for controlled linear motion of an object; (b) cabin controller with discrete-event dynamics; (c) hybrid 

augmentation of statechart state ‘UP’ of the cabin controller.
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 the state DCCLN is deactivated and 
ACCLN becomes active again. 

 Behavioural specifications on the system can 
now be defined on this model: e.g., the Differential 
Dynamic Logic. (dL) Platzer, (2010) formula [object]
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future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine 

corresponding parameter constraints that guarantee the validity of such a formula and a 
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language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’, 

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification 

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local 
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, since the trigger 
events between the nodes cannot be accommodated in 
the decomposed components. Hence, HA are not directly 
compositional.
  
Statechart with hybrid augmentation for 
compositional verification of elevator control 

In our previous studies (Dewasurendra, 2006; 2013; 
2017; Dewasurendra et al., 2011; Vidanapathirana et al., 
2011; 2013), we gradually developed a compositional 
formal verification strategy for complex reactive systems 
starting from statechart - based specifications for DEDS. 
Our statechart decomposition results in sequential 
components (finite state automata) that accept parallel 
composition when the plant possesses concurrently 
evolving subsystems (AND states in a statechart). 
Previously we concerned more about the compositional 
verifying of the correctness of decomposition and using 
the decomposition for distributed supervisory control 
implementation. More importantly, this decomposition 
potentially reduces the complexity of the image 
computation problem in model checking. 

 The elevator-cabin controller module developed 
in this process is shown in Figure 1(b). The language 
generators (LG) developed in this process for the 
states, ‘Cabin Controller’ and ‘UP’, and the port-

structure between them are given in Figures 2 a, b and 
c, respectively. The port-structure has been developed 
to perform a controllability check on interaction 
specification between  two hierarchically adjacent states 
(Dewasurendra, 2006) and to impose local supervisory 
control. In this paper we augment states representing 
real actions of the formal language generators and 
corresponding port-structures with continuous-variable 
dynamics to build HA. Figure 1(c), explains what would 
be obtained if instead, the continuous-variable dynamics 
were included in the statechart itself. In developing the 
hybrid control we closely follow the strategy used in the 
cooperation protocols of European Train Control System 
(ETCS) (Platzer, 2010). 

 Elevator-cabin movements consist of discrete-event 
dynamics, continuous variable dynamics (differential or 
difference equations), and their hybrid interactions. The 
elevator cabin control system, (CCS), was designed for 
the hybrid control and runtime validation of the cabin. 
The CCS consists of two concurrent controllers as 
shown in Figure 1(c): the movement update controller, 
(MUC), and the cabin controller, (CC). The MUC gives 
movement updates (MU) to CC based on the current state 
of the cabin dynamics. Cabin is allowed to move within 
its current MU, which can be updated dynamically by 
the MUC. Hence CC needs to regulate the movement 
of the cabin such that it always remains within its MU 
given by the MUC. The expected cabin speed profile is 
predetermined, specifying comfort levels of passengers 
inside: smooth acceleration, constant speed and 
deceleration before the cabin stops at a requested floor. 

 To illustrate our approach, we expanded the discrete 
sub states of ‘UP’ state of Figure 1(b) as HA in Figure 1(c) 
and introduced a control interface to represent the MUC 
to obtain the HA - based statechart state CCS (Cabin-
Control-System) in Figure 1 (c). The discrete events of 
Figure 1(b,c) are described in Table 1.

 MU is a vector 
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MU is a vector 𝑚𝑚 = (𝑒𝑒𝑒𝑒, 𝑑𝑑𝑑𝑑, 𝑟𝑟𝑑𝑑), a dL constraint as follows: beyond the latest updated end 

point 𝑚𝑚. 𝑒𝑒𝑒𝑒 along the hoist way, the cabin is not permitted by the MUC to have a velocity 

greater than the desired velocity, 𝑚𝑚. 𝑑𝑑𝑑𝑑. The cabin should try not to exceed the recommended 

velocity 𝑚𝑚. 𝑟𝑟𝑑𝑑 during the move, while short periods of slightly higher values are allowed. Fig. 

2(d) shows an example of a possible cabin speed profile in conjunction with the current value 

of  𝑚𝑚 that changes over time due to the control actions of CC. The moving vectors are updated 

as mi.ep, mi.dv, mi.rv, for periods i = 1, 2,., n. The computation of these constraints are 

explained in Ch. III. 

MOVEMENT-UPDATE CONTROL   MUC 
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expected cabin speed profile is predetermined, specifying comfort levels of passengers inside: 

smooth acceleration, constant speed and deceleration before the cabin stops at a requested floor.  
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Movement-update control MUC

Given the required speed profile of the cabin along the 
hoist way, the MUC provides timely information to the 

CC to regulate the velocity of the cabin by comparing 
the actual and recommended speed values (see output 
transitions from the state, MOVING, in Figure 1(c)).

Getting back to the construction proposed in this paper, we 
start off from language generators in Figures. 2(a) and (b). 
The states representing real actions in the physical system 
are, UP, DOWN, ARRIVED, CAR_STOP and UP_ON. 
These are the states to be augmented by embedding HA: we 

embed the UP_ON hybrid automaton from the statechart in 
Figure 1(c) in the UP_ON state of the language generator 
in Figure 2(b). For states in Figure 2(b) corresponding to 
basic states of Figure 1(c), the differential equations from 
the latter are embedded in the former.

Figure 2: Communicating language generators and cabin speed regulation.
 (a) Cabin controller state language generator; (b) UP state language generator; (c) port-structure 

developed to represent communication between cabin controller and UP states and (d) CCS moving 
permission update pattern
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Fig.2.  Communicating Language generators and Cabin speed regulation.  
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The next step is to embed the HA, MUC. This has to go 
into a state of the port-structure in Figure 2(c). Since the 
conditions specified for continuous-variables in MUC 
are valid in state ‘0’ of the port-structure, we embed 
MUC in state ‘0’. 

 The collapsed versions (in which embedded hybrid-
automata/differential equations are removed from their 
states) of these hybrid embedded language generators 
and port structures were used to perform discrete-
event based compositional verification of the control 
(Dewasurendra, 2006; Vidanapathirana et al., 2011, 
2013). Distributed verification of continuous variable 
dynamics carried out using embedded HA is described 
next. In latter verification we closely follow the work of 
Platzer in ETCS (Platzer, 2010) using dL.

Differential dynamic logics for verification of 
continuous-variable dynamics 

A proof calculus for Differential Dynamic Logic (dL) 
(first order dynamic logic for reals) and its temporal 
extension, developed by Harel (1979) and Platzer (2010) 
uses discrete/ differential induction on differential 
invariants/variants for compositional verification of 
HDS. The proof of calculus is complete relative to 
handling differential equations. To achieve scalability, 
the invariants/variants are compositionally computed 
in proof loops: dL is closed under logical operators 
(Chaochen et al., 2005). However, the use of sequential 
HP to express system dynamics limits this to sequential 
composition. We elevate this to parallel composition.

 In dL the model formula [α]ɸ expresses that all 
states reachable by the hybrid system, α satisfy the dL 
formula Φ and 
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In dL the modal formula [α]ɸ expresses that all states reachable by the hybrid system α satisfy 

the dL formula Φ and 〈α〉ɸ , that at least one state reachable by α satisfies  . Typically, in 

first-order dL, where quantifiers over reals are allowed, ∃𝑝𝑝[𝛼𝛼]〈𝛽𝛽〉∅ says that there is a choice 

of parameter p (denoted ∃𝑝𝑝) such that, for all possible (future) behaviours of system α (denoted 

[α]) there is some reaction of system β (denoted〈𝛽𝛽〉) that ensures ∅.  

 that at least one state reachable 
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As a simple demonstration of compositionality achieved through use of logical operators, 

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅  and [𝛽𝛽]𝜑𝜑 

true, simultaneously.  

 

For elevating their sequential composition to admit parallel composition using parallel HA, 

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a 

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when 

model-checking for these properties, the granularity of decomposition products of the 

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in 

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our 

compositional formal verification methodology from DEDS to CVDS.    

 

 

 

 

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION  

 

 

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given 

by the current position p, speed v and acceleration a, which is updated in real-time by the 

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin 

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin 

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its 

current MU, satisfying 

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣      (c1) 

 

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed 

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point  𝑚𝑚. 𝑒𝑒𝑝𝑝  (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝 

and 𝑚𝑚. 𝑑𝑑𝑣𝑣  values are determined for the current MU by MUC based on state information 

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity 

while arriving at designated points close to the destination. Our model captures this by updating 

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed 

 says that there is a choice of parameter 
p that makes both 
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parallel composition using parallel HA, consider systems 
α and β above as resulting from the decomposition of an 
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model-checking for these properties, the granularity of 
decomposition products of the statechart can be kept as 
fine as desired, thus making real quantifier elimination 
manageable in practice: cf. classical state-space 
abstraction of CVDS into convex polytopes. This extends 
our compositional formal verification methodology from 
DEDS to CVDS.   

Differential dynamic logic for runtime validation 

Still using the hybrid augmented statechart in Figure 1(c) 
the current state, 
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 is given by the current 
position p, speed v and acceleration a, which is updated 
in real-time by the interaction of parallel statechart 
states, CC, and MUC controlling and monitoring cabin 
movement along the hoist way. In order to meet the 
speed specifications, m, posed on the cabin [Figure 2(d)], 
we need to determine sufficient conditions that force 
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speed profile. Unlike collision with other trains in 
the case of high speed train control in ETCS, here the 
principle issues concern handling the sudden requests 
for embarkation, debarkation, emergency stoppages, 
between-level arrests of movement due to failure, 
malfunctioning of doors and evacuation of a running 
lift cabin. Depending on the current state of the cabin, 
the requests are either accommodated or ignored. If 
accommodated, then a new MU which can satisfy all the 
pending accommodated requests is computed by MUC 
and corresponding information shared with CC. 

 Coming back to the operational mode depicted in 
Figure 1(c), when user requests are made for upward 
movement, the CC initiates the relevant upward 
movement under the current MU. In parallel, the MUC 
starts its execution. With the user request for upward 
movement (up_req = on) the following state transitions 
take place at the CC super-state:
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Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for 

upward movement, the CC initiates the relevant upward movement under the current MU. In 

parallel, the MUC starts its execution. With the user request for upward movement (up_req = 

on) the following state transitions take place at the CC super-state. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂 

Depending on the value of rvmvc ..   the controller enters either ACCLN or DCCLN. Upon 

arriving at the state CONDITION, brakes have to be applied if  𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point 

SB (Start Braking) is the point at which brake has to be applied, indicated by the action, 

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor.  In operation, solving a set 

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time 

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the 

encoder attached to the cabin motor. 
 

The cabin motor control is supervised by the hybrid controller to stay within the performance 

specification, ensuring stress free and accurate cabin control. 

 

Whenever the runtime system parameters deviate due to un-modelled factors or physical 

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence, 

formally, 

 

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗ 

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’ 

represents nondeterministic choice and ‘*’, repetition.  We now make the following claim: 

Proposition 1. Our HA based formal verification method is compositional, sound and complete 

relative to first-order logic of differential equations. 
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ensuring stress free and accurate cabin control.

 Whenever the runtime system parameters deviate due 
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nondeterministic choice and ‘*’, repetition.  We now 
make the following claim:

Proposition 1. Our HA - based formal verification 
method is compositional, sound and complete relative to 
first-order logic of differential equations.

Proof:
Our construction derives from the semantics-preserving 
decomposition strategy for statecharts and compositional 
verification of DEDS (Dewasurendra, 2006; 
Vidanapathirana et al, 2011; Vidanapathirana, 2019). 

HA are embedded in a subset of automata representing 
real actions of this decomposition [see Figure 2(b)].  

 Whereas the discrete-event dynamics are represented 
by collapsing the embedded HA, the continuous variable 
dynamics are represented by the interaction of HA 
distributed among DEDS states. 

 Since the HA can be translated unambiguously to HP, 
Platzer’s first-order logic of differential equations (FOD) 
analysis can be directly applied to continuous-variable 
dynamics embedded in HA to provide a verification 
complete, relative to FOD (Theorem 2.3 of Platzer, 
2010). 

Given that dL calculus is sound (Theorem 2.1 of Platzer, 
2010), we now have a sound and complete verification 
system that is compositional and still based on HA.
  QED

 This lays the foundation for us to develop the 
remaining results in this paper. 

 Getting back to determining sufficient conditions that 
force 
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 to always respect (c1), whereas the actual 
control of components (e.g., motors) is based on detailed 
models in the verification and parameter discovery 
process for runtime validation, it is difficult to use highly 
detailed plant models, and hence, following the approach 
in Platzer (2010), we approximate plant dynamics by a 
ranged choice for effective cabin acceleration between 
its lower and upper bounds, -b and A, respectively: cf. 
Figure 1(c).  

 We find constraints that ensure the safety of the 
system in operation (discrete and continuous invariants) 
using iterative refinement process of Platzer (2010). 

 This process is explained on language generator for 
the state UP [Figure 2(b)].

 The formula FD is found as a discrete invariant of 
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Now we find constraints that ensure safety of the system in operation (discrete and continuous 

invariants) using iterative refinement process of (Platzer A., 2010).  

We will explain this process on language generator for the state UP (Fig. 2(b)). 

 

The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to 

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it 

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived 

from Fig. 2(b). 
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The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to 

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it 

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived 

from Fig. 2(b). 

UP. Idle. Here 
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Proof: 

Our construction derives from the semantics-preserving decomposition strategy for statecharts 

and compositional verification of DEDS (Dewasurendra S.D., 2006; Vidanapathirana, A.C., 

et al, 2011; Vidanapathirana A.C., 2019).  

HA are embedded in a subset of Automata representing real actions of in this decomposition 

(see Fig.2(b)).   

Whereas the discrete-event dynamics are represented by collapsing the embedded HA, the 

continuous-variable dynamics are represented by the interaction of HA distributed among 

DEDS states.  

Since the HA can be translated unambiguously to HP, Platzer’s FOD (first-order logic of 

differential equations) analysis can be directly applied to continuous-variable dynamics 
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A., 2010).  
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           QED 

This lays the foundation for us to develop the remaining results in this paper.  

 

Getting back to determining sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect (c1), whereas 

the actual control of components (e.g., motors) is based on detailed models, in the verification 

and parameter discovery process for runtime validation, it is difficult to use highly detailed 

plant models, and hence, following the approach in (Platzer A., 2010), we approximate plant 

dynamics by a ranged choice for effective cabin acceleration between its lower and upper 

bounds, -b and A, respectively: cf. Fig. 1(c).   

 

Now we find constraints that ensure safety of the system in operation (discrete and continuous 

invariants) using iterative refinement process of (Platzer A., 2010).  

We will explain this process on language generator for the state UP (Fig. 2(b)). 

 

The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to 

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it 

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived 

from Fig. 2(b). 

 is the coding of the Kripke structure derived from 
Figure 2(b).

Using discrete induction to find FD:
FD is a discrete invariant of 
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Using discrete induction to find FD: 

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid: 

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and 

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step). 

FD  is sufficiently strong if 𝐹𝐹� → ∅ is valid. 

 

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion. 

 

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the 

hybrid automaton in the latter gets embedded in the former. Let us consider the state 

‘CONTINUOUS’ in Fig.1(c). 

 

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we 

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff 

the following formulas are valid: 

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and 

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step). 

As in the discrete case, FDif  is sufficiently strong if 𝐹𝐹��� → ∅ is valid. 

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of 

differential equations, 

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0. 
The differential saturation algorithm of (Platzer A.  et al., 2009) is used to progressively refine 

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶=  𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant 

strong enough (reaches a fixed point, 𝐹𝐹��� ∶=  𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.  

 

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to 

perform an automatic validation of the verification proof.  

 

IV   COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING 

 

Our architecture permits both function based decomposition (subsystems in plant control: cabin 

movements, cabin door movements, plant inputs, displays etc.) and abstraction based 

 if the following 
formulas are valid:
1. 
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Using discrete induction to find FD: 

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid: 

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and 

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step). 

FD  is sufficiently strong if 𝐹𝐹� → ∅ is valid. 

 

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion. 

 

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the 

hybrid automaton in the latter gets embedded in the former. Let us consider the state 

‘CONTINUOUS’ in Fig.1(c). 

 

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we 

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff 
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As in the discrete case, FDif  is sufficiently strong if 𝐹𝐹��� → ∅ is valid. 

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of 

differential equations, 

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0. 
The differential saturation algorithm of (Platzer A.  et al., 2009) is used to progressively refine 

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶=  𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant 

strong enough (reaches a fixed point, 𝐹𝐹��� ∶=  𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.  

 

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to 

perform an automatic validation of the verification proof.  

 

IV   COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING 

 

Our architecture permits both function based decomposition (subsystems in plant control: cabin 

movements, cabin door movements, plant inputs, displays etc.) and abstraction based 

(initialisation) and
2.  
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FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid: 

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and 

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step). 

FD  is sufficiently strong if 𝐹𝐹� → ∅ is valid. 

 

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion. 

 

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the 

hybrid automaton in the latter gets embedded in the former. Let us consider the state 

‘CONTINUOUS’ in Fig.1(c). 

 

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we 
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As in the discrete case, FDif  is sufficiently strong if 𝐹𝐹��� → ∅ is valid. 

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of 

differential equations, 

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0. 
The differential saturation algorithm of (Platzer A.  et al., 2009) is used to progressively refine 

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶=  𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant 

strong enough (reaches a fixed point, 𝐹𝐹��� ∶=  𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.  

 

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to 

perform an automatic validation of the verification proof.  

 

IV   COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING 

 

Our architecture permits both function based decomposition (subsystems in plant control: cabin 

movements, cabin door movements, plant inputs, displays etc.) and abstraction based 

(induction step).
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Using discrete induction to find FD: 

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid: 

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and 

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step). 

FD  is sufficiently strong if 𝐹𝐹� → ∅ is valid. 

 

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion. 

 

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the 

hybrid automaton in the latter gets embedded in the former. Let us consider the state 

‘CONTINUOUS’ in Fig.1(c). 

 

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we 
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2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step). 

As in the discrete case, FDif  is sufficiently strong if 𝐹𝐹��� → ∅ is valid. 

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of 

differential equations, 

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0. 
The differential saturation algorithm of (Platzer A.  et al., 2009) is used to progressively refine 

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶=  𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant 

strong enough (reaches a fixed point, 𝐹𝐹��� ∶=  𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.  

 

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to 

perform an automatic validation of the verification proof.  

 

IV   COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING 

 

Our architecture permits both function based decomposition (subsystems in plant control: cabin 

movements, cabin door movements, plant inputs, displays etc.) and abstraction based 
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Using discrete induction to find FD: 

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid: 

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and 

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step). 

FD  is sufficiently strong if 𝐹𝐹� → ∅ is valid. 

 

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion. 

 

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the 
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Using discrete induction to find FD: 
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1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and 
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FD  is sufficiently strong if 𝐹𝐹� → ∅ is valid. 
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hybrid automaton in the latter gets embedded in the former. Let us consider the state 
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motor speed in cabin upward motion.
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the state UP_ON in Figure 1(c), and hence the hybrid 
automaton in the latter gets embedded in the former. Let 
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FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion. 

 

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the 

hybrid automaton in the latter gets embedded in the former. Let us consider the state 

‘CONTINUOUS’ in Fig.1(c). 

 

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we 

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff 

the following formulas are valid: 

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and 

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step). 
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𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0. 
The differential saturation algorithm of (Platzer A.  et al., 2009) is used to progressively refine 

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶=  𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant 

strong enough (reaches a fixed point, 𝐹𝐹��� ∶=  𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.  

 

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to 
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 During runtime, the relevant parameter values are 
fitted into the invariants, FD and FDif, to perform an 
automatic validation of the verification proof. 

Compositionality of modular X-in-the-loop (XiL) 
testing

Our architecture permits both function - based 
decomposition (subsystems in plant control: cabin 
movements, cabin door movements, plant inputs, 
displays, etc.) and abstraction - based decomposition 
(Vidanapathirana et al., 2013), thus facilitating modular 
integration testing in addition to function - based (XiL) 
testing performed separately, if compositionality can be 
proven. We now demonstrate the compositionality and 
soundness of modular tests, and that they are complete 
relative to coverage objectives.

A. Modularity and compositionality of tests

Observation 1: Modular HiL tests were done for an 
FPGA, which carried the complete controller for elevator 
operations: interfacing necessary for the tests was done 
by selecting only the relevant input/output ports of the 
module concerned, as different from testing an isolated 
control module (ECU) implemented on dedicated 
hardware. 

Observation 2: Real-time simulation was done by 
selecting the inputs/outputs for the relevant module on 
a complete plant simulator; not for a separate module.

Now we make the claim on compositionality of our 
modular tests. 

Proposition 2: The control modules implemented on the 
system controller can be tested compositionally.

Proof: 
Event communication protocols between adjacent FSA 
in the semantics preserving translation of statecharts to 
a set of communicating FSA have been modelled as port 
automata in Dewasurendra (1986); 

 Each FSA composed of prioritised synchronous 
composition with its respective port structures constitute 
a component in the decomposition. They can in turn be 
composed to retrieve the original statechart. Hence, the 
components are compositional in their semantics. 

 We have formally verified the system controller 
of our target system using a compositional modular 
verification methodology developed for the MoC used 
(Dewasurendra, 2006, 2013; Vidanapathirana, 2019).

 Hence observations 1 and 2 above permit to conclude 
that the tests are in fact compositional under the same 
assumptions made in specifying and verifying the system 
control model using the MoC of choice. 
  QED
 
B. Soundness and completeness of tests

Proposition 3: Our HA - based test generation method is 
compositional, sound and complete relative to first-order 
logic of differential equations.

Proof:
By Proposition 1 in the previous section, our HA based 
formal verification method is compositional, sound 
and complete relative to first-order logic of differential 
equations.

Case 1: Tests for discrete dynamics

Following Ferrante et al. (2016), we run NuSMV (Cimatti 
et al., 2015) programmes of language generators resulting 
from our statechart decomposition (after collapsing 
embedded HA) against negations of CTL (Harel, 1979) 
formulas representing individual test objectives (criteria) 
to generate counter-examples that become tests covering 
required test criteria, thereby overcoming the limitations 
of directly translating statecharts as input for algorithms 
1 and 2 of Ferrante et al., (2016).

 Tests are sound because the verification based on 
these models is sound.
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Since the decomposition products can be brought down 
as close as desired to basic states, the counter-examples 
are guaranteed to be found in finite runs of NuSMV.

Hence, the tests are guaranteed to be complete by 
coverage criteria.

Case 2: Tests for continuous dynamics

In this case we generate tests by translating the HA we 
extract from language generators [e.g., Figure 2(b)] into 
the input language HYDI (an extension of the language 
of NuSMV) of the model checker HYCOMP (Cimatti 
et al., 2015). The rest of the process is parallel to that of 
Case 1 and the proof follows the same arguments therein.

  QED

 In order to conduct CHS research, a prototype 
passenger elevator with 150 Kg payload was built inside 
the laboratory (Dewasurendra et al., 2011). Essential 
operational and safety mechanisms were integrated to the 
elevator, with sensors and actuators that are invoked in 
different operational modes and a number of interacting 
sub systems operating in parallel to make it sufficiently 
complex, yet simple enough to serve as a test-bed.

 We will now give details of configuring hardware-in 
the-loop tests (Dufor et al., 2005) for integration with 
V&V on this test-bed. 

Configuring hardware-in-the-loop (HiL) tests for 
integration with V&V

Elevator controller modelled using statecharts in 
Matlab/Simulink/Stateflow was converted to equivalent 
HDL code Verilog and implemented in Xilinx Spartan 
3AN FPGA (ECU) (Vidanapathirana et al., 2011) with 
3.6 V DC i/o interface circuits. For HiL tests the ECU 
was wired to receive user inputs and dSPACE hardware 
signals: interface circuits were used between ECU 
and dSPACE hardware platforms to achieve electrical 
isolation and voltage level shifting.

 HiL testing (Dufor et al., 2005) requires physical 
connections between the ECU and the simulated plant 
to ensure that communication with the ECU is the same 
as in real system. The decomposition of Simulink/
Stateflow control specification of the system done for 
compositional formal verification (Vidanapathirana 
et al., 2011) helped in configuring compositional HiL 
tests: to compile build and simulate in real-time only a 
part of the system model at a time and isolating the inputs 

and outputs corresponding to the module being tested 
(the cabin module) from the complete system controller 
(implemented on the ECU).

 The passenger cabin is driven by a three-phase 
induction-motor.  Dynamic models of the cabin motor, 
the inverter based speed/torque control system and the 
floor sensor operation in the elevator were implemented 
in Matlab/Simullink with real-time workshop using 
a fixed time step and uploaded to the TMS 320F DSP 
processor - based dSPACE platform as the plant model.

 Matlab/Simulink/dSPACE and Controldesk software 
running on a PC were connected to the dSPACE 
hardware for online monitoring and regulation of real-
time simulations. 

A. Test generation using NuSMV

The tests for required test coverage criteria were 
generated using the process described earlier as follows:

Case 1: Test for discrete dynamics:

Consider state coverage criterion with respect to the ‘UP’ 
language generator [Figure 3(b)] for discrete dynamics: 
for each state ‘Si’ of ‘UP’, ∃ at least one run covering Si.
Let Si = <UP_OFF>, which corresponds to responding to 
a stop request made while the cabin is moving up. 

The Kripke structure (which is used as input format to 
model-checker NuSMV) corresponding to ‘UP’ has a run 
covering ‘Si’ if
(i) the state ‘Si’ is reachable from the initial state, ‘UP_

Idle’ and
(ii) ∃ a state ‘Sj’ which is reachable from ‘Si’, at which 

‘stable’ is satisfied.
This is expressed in the CTL formula,
EF(reachable(Si)˄EF stable).

 We proceed now to translate ‘UP’ to a NuSMV 
programme and then run it against (¬EF(reachable(Si) 
˄EF stable)). 

 Then a counter example is generated, which serves 
as a sound test sequence for the coverage criterion 
considered. 

 Since we only convert to NuSMV programmes, 
individual language generators (finite automata) resulting 
from our decomposition, which are several degrees of 
magnitude smaller in size and complexity than the parent 
statechart, the counter examples would always be found 
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in a finite run, hence our method of test generation is 
complete (by the coverage criteria).

 The resulting test sequence is then in format (<present 
state>, <input>, (<next state>, <output signal>)), given 
as:
(UP_Idle_at_Floor1, U1, UP, mt_UP) (UP, _, UP_ON, _)  
(UP_ON, ‘43’, S1, _) (S1, sensor_f2, UP_OFF, ‘57’))  
(UP_OFF, ARRIVED, ¬mt_UP) (ARRIVED, UP_Idle_
at_Floor2, _).

Case 2: Test for continuous dynamics

The development is similar to the discrete case, except 
that UP language generator augmented with continuous 
dynamics to make it a HA, as explained earlier.

 We then translate the resulting ‘UPhybrid’ to an HYDI 
programme and run it against the negation of c1, (), to 
generate a counter example that serves as a test sequence.

 While running the tests, plant control parameters 
inside dSPACE real-time simulation were examined 
using dSPACE Control desk software running in PC. 
The real-time simulation was controlled through online 
adjustment of motor parameters using the same. 

 A fixed time step was required for the real-time 
simulation on dSPACE hardware platform. Overrun 
situations for the processor could arise when the allowed 
time gap is not adequate for the execution of a complete 
programme cycle and updating the data registers. Larger 
time steps may not clearly describe the plant dynamics. 

We selected 1 ms time step for the plant simulations after 
trying 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0 and 4.0 ms. This 
choice had to be compatible with the permitted reaction 
latency, ϵ, in Figure 1(c).

Induction-motor dynamic model

To analyse variable speed drives, a dynamic motor model 
was developed using ‘space vector’ analysis (Ogbuka 
2009; Shah et al., 2012). For fast dynamic response, 
precise speed regulation and good dynamic performance, 
field oriented control was used for the cabin (induction) 
motor (Ogbuka, 2009; Vidanapathirana et al., 2013).

 Details of Matlab/Simulink model for IM vector 
control drive, speed controller design and current 
controller design, are given in Vidanapathirana (2019).

 When the cabin moves along the elevator shaft, 
respective floor sensors give control signals to the 
controller.

 The motor shaft rotational angle, θf, required to travel 
a linear distance between two adjacent floors for the 
prototype elevator, was computed as 10,085 deg.

 The speed reference input to the controller for a 
linear distance between two adjacent floors is shown 
in Figure 3(c) [cf. moving permission update pattern of 
Figure 2(d)]. 

 For speed regulation, maximum motor speed  was 
set to 100 rad/s to achieve a linear speed  for the cabin; 
acceleration and deceleration were set at 8.9 rad/sec2.
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HiL test results

During testing, an arbitrary load torque was applied to 
the motor during cabin upward movement. Reference 
inputs were the passenger car speed, acceleration and 
deceleration. Variation of key system parameters during 
the test are shown in Figures 4 (a) to (f). 

 The test results revealed that the actual speed followed 
the reference speed closely; so did the load torque and 
the generated torque as shown in Figures 4(e) and (f).

 In comparison to HiL tests, for MiL tests 
(Vidanapathirana et al., 2013) both ECU and plant 
models were implemented in Matlab/Simulink: 
simulation parameters could be selected with a greater 
degree of liberty and time step could be either variable or 
fixed, variable time steps giving a faster simulation.

Rectifying implementation level faults

Formal verification confirmed logical conformity to 
specifications, HiL tests validated the verification, 
but the observed behaviour in the controlled elevator 
plant at the implementation level differed sharply from 
specifications. 

 Avoiding a detailed examination of the installed 
software/hardware logic, focus shifted quickly to 
electrical/electronic installation.

 An EMI problem was discovered: FPGA inputs 
rated at 3.6 V DC are sensitive even for electrical 
interferences as small as 0.5 ~ 1 V DC. The 24 V DC 
power lines and 3.3 V DC FPGA control lines were 

in close proximity.  When the 24 V DC relays used to 
step-down the sensor voltage to 3.6 V DC and activate 
FPGA input ports were switched on and off, electrical 
interference caused spurious outputs from the FPGA, 
producing erratic behaviour.

 The 24 V DC relays were replaced by an optical 
trigger circuit with electrical isolation. FPGA control 
signal wiring was rearranged by minimising the effect 
from the power lines. FPGA control wiring was replaced 
by shielded fieldbus cables with adequate grounding to 
overcome electrical interference. This corrected the EMI 
problem.

 This would have been discovered in power-
HiL tests. This also justifies runtime validation for 
monitoring crucial system properties (closed-loop 
stability, robustness margins, or underlying theoretical 
assumptions), violation of which could compromise 
safety of operation in CHS.

CONCLUSION

A compositional model-based strategy for designing 
and maintaining correct-by-design controllers for CHS 
was developed and demonstrated. The complexity of 
the design, formal verification, test design, testing and 
runtime validation has been reduced to levels usable in 
industrial practice by providing a problem decomposition 
that permits the full exploitation of parallelism inherent 
in the physical system, thus enabling concurrent 
computation. Soundness of the strategy is maintained 
by using consistent formal models at each stage and 
completeness of solutions relative to the specifications is 
guaranteed up to the levels of abstraction used. 

Event No.             Event Description

7 governor Limit switch –governor activated
13 motor_overload motor_overload
41 up_req Upward movement request
42 down_req Downward movement request
43 up_immed Stop request at immediate upper floor 
44 down_immed Stop request at immediate down  floor 
47 more_up_req There are requests which need further car upward movements 
48 more_down_req There are requests which need further car downward movements 
49 no_req The car is stopped and there are no further requests made
50 en(UP_OFF) Entering the UP_OFF state of the statechart
57 t_pf While car is moving up it is stopped at a given floor due to a stop request

Table 1: Discrete events description
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VII. HiL TEST RESULTS 
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Figure 4: HiL test results.
 (a) U1 passenger request; (b) floor_1 and motor_up signals; (c) reference and actual cabin speeds; 

(d) stator phase A current; (e) rotor angle; (f) motor generated and applied load torque.

With minimal additional work, system parameters for 
degraded performance could be computed based on an 
online simulation of the currently configured system as 

in (Vinczea et al., 2006; Pugi, 2007), or using the runtime 
validation system as an online monitoring system 
(Davydov and Keyno 2016).
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