
RESEARCH ARTICLE

J.Natn.Sci.Foundation Sri Lanka 2019 47 (4): 393 - 408
DOI: http://dx.doi.org/10.4038/jnsfsr.v47i4.9678

Integrating runtime validation and hardware-in-the-loop (HiL)
testing with V & V in complex hybrid systems

S.D. Dewasurendra1*, A.C. Vidanapathirana2 and S.G. Abeyratne3
1 Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya.
2 Industrial Service Bureau (ISB), Kurunegala.
3 Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya.

21.2018

Abstract: This study addresses the problem of assuring
provably safe and correct behaviour of safety-critical complex
hybrid systems (CHS) throughout their life-cycles when
physical system dynamics tend to change due to natural
causes. Model-based development methods are needed that
integrate formal specification, verification, implementation
level testing and runtime validation. Scalability limitations
of available algorithms/methods dictate a modular approach,
but this poses conflicting issues of compositionality, false-
transitivity, soundness and completeness. In this paper a
compositional solution approach based on the decomposition
and hybridisation of statechart models (into hybrid automata
- HA) is demonstrated. Specifically, a compositional formal
verification methodology developed earlier for discrete event
dynamic systems (DEDS) was elevated to hybrid dynamics,
successfully overcoming the risk of false transitivity common
to direct abstraction methods of continuous state-space. It was
then used to develop a scalable strategy to generate sound and
complete (relative to coverage criteria) tests, and configure
corresponding compositional HiL tests for different abstraction
and functional levels. The same decomposition was used to
derive compositional runtime validation tests based on discrete
invariants and differential invariants. The study formally
proves that (1) the proposed HA based formal verification
method is compositional, sound and complete relative to
first-order logic of differential equations, (2) the modular
tests are compositional and (3) the HA based test generation
method is compositional, sound and complete relative to first-
order logic of differential equations. To reduce complexity
compositionality is rendered parallel than sequential to perform
the simpler tasks concurrently. The claims have been validated
experimentally on a full scale experimental rig.

Keywords: Complex hybrid systems, compositional testing,
compositional verification, hardware-in-the-loop testing,
runtime validation, V&V – testing integration.

INTRODUCTION

The underlying problem addressed is assurance of
provably safe and correct behaviour according to
requirement specifications, in real-scale non-terminating
(repeatedly looping) safety-critical complex hybrid
systems (CHS) throughout their life-cycles when
physical system dynamics and the environment tend
to change due to natural causes. These systems have
interacting continuous-variable dynamics (CVDS;
position, velocity, friction, etc., expressed by differential
equations or difference equations based on the model of
time used: discrete time or continuous time) and discrete-
event dynamics (DEDS; on/off, collision, etc., expressed
by transition systems, formal languages or abstract
algebras); hence called hybrid systems.

 A model-based solution (the dominant paradigm
(Alur, 2011)) requires expressing the requirement
specifications in a formal model where the correctness
and safety properties could be verified, enabling a
faithful translation of the verified model into a control
programme to be coded into software/hardware.

 Formal verification consists of ascertaining the
continued conformance of system behaviour to

Submitted: 03 February 2018; Revised: 04 July 2019; Accepted: 26 July 2019

* Corresponding author (devapriyad@pdn.ac.lk; https://orcid.org/0000-0002-4280-4037)

This article is published under the Creative Commons CC-BY-ND License (http://creativecommons.org/licenses/by-nd/4.0/).
This license permits use, distribution and reproduction, commercial and non-commercial, provided that the original work is
properly cited and is not changed in anyway.

394 S.D. Dewasurendra et al.

December 2019 Journal of the National Science Foundation of Sri Lanka 47(4)

specifications. Methods employed in verifying draw
heavily from methods for DEDS and CVDS: for
DEDS, classically, model checking (for temporal and
first-order logic specifications) on transition systems
and theorem proving on formal language models and
process algebras have been extensively discussed (Aceto
et al., 2007). CVDS specifications were classically
limited to overshoot, rise-time, etc. (Belta et al., 2017).
Verification of nontrivial behavioural specifications
(based on temporal and differential dynamic logics)
using model checking has now been made possible by
providing them with transition structures through the
abstraction of the state-space into affine partitions (based
on observational equivalence relations -bisimilarity-).
This becomes states of timed or hybrid automata with
discrete transitions defined for affine boundaries (Belta,
2017; Sloth & Wisnieski, 2011), albeit with a risk of
over-approximation and false-transitivity.

 Hence, hybrid automata (HA) (Henzinger, 1996) are
dominant among formal models of hybrid systems.

 The core problem in model checking methods
is image computation (Platzer & Clarke, 2007). For
DEDS, symbolic computations help in abstracting the
reachability space (the image) on a transition system,
particularly for first-order logic specifications which
require quantifier elimination. HA may have specifications
with quantification over reals (first-order logic on reals),
which would require real quantifier elimination (RQE)
for model checking: RQE is impossible when modalities
are present; some differential equations do not support
RQE; even otherwise, complexity of RQE in real-closed
fields is doubly exponential in the number of quantifier
alternations. In numerical or approximation approaches,
approximation errors can cause unsoundness in model
checking. Platzer (2010) proposes methods based on
differential induction for differential invariants to address
this situation. Local invariants are found in a fixed-point
algorithm for each continuous evolution D^H, with
differential equation system D and evolution domain
H. The local invariants are then composed into global
invariants using closure properties.

 However, these verification approaches are designed
for hybrid systems with centralised sequential control,
a limitation arising from models of computation (MoC)
used here: (e.g. hybrid automata). An approach suitable
for distributed systems (with, for instance, networked
control, as in automobiles or aircrafts) needs MoC with
richer semantics: permitting parallel composition of
sequential components, thus concurrent computation.

Our MoC of choice for DEDS has been statecharts
(Harel, 1987) for these reasons and it was extended to
capture CVDS.

 Some currently used correct-by-design model-based
development approaches for reactive systems, notably the
B-method and Event-B-method (Abrial, 1996; Moreira,
2015) too prescribe conducting formal verification and
validation (V&V) throughout the design process: a
progressive refinement process with a theorem proving
system for proof obligations at each refinement stage.
The premise is that detailed models cannot be built at the
beginning of a development process. Event-B has been
extended to handle hybrid dynamics by adding simple
differential dynamic logic (dL) operations and defining
a refinement calculus for differential events (Liu et al.,
2014).

 However, without compositional strategies for
complex systems, development processes can quickly
become computationally intractable and unsound/
incomplete: the case with current decomposition and
refinement strategies (theoretical or commercial)
(Abrial, 1996; 2010), including the Event-B method.
Disappointingly, guaranteeing completeness in
compositional proofs is difficult (Namjoshi et al., 2010).

 In Platzer (2010) a decomposition of hybrid systems
into a sequential composition of hybrid programme (HP:
their preferred MoC) components is presented; HP being
extensions of conventional discrete programmes (Harel,
1979), the programmes of subsystems can be composed
using logical operators in a compositional manner.
However, this approach does not support parallel
composition of the sequential components. Further,
hybrid textual programmes lack the familiar structure
and expressive power of graphical HA.

 Chaochen et al. (2005) realised compositionality of
parallel components in hybrid systems by introducing
continuous statements into process algebraic models,
CSP (Hoare, 1985) to be precise, defining hybrid CSP.
However, verification methods for hybrid CSP are yet to
be developed.

 In this paper we demonstrate our compositional
approach to formal verification and test design, which
supports parallel composition of sequential HA:
statecharts (Harel, 1987) modelling discrete-event
dynamics of a hybrid system are decomposed into a set of
automata (language generators) communicating through
port-structures using a decomposition we introduced
previously (Dewasurendra, 2006; Vidanapathirana et al.,

Runtime validation & HiL testing of complex hybrid systems 395

Journal of the National Science Foundation of Sri Lanka 47(4) December 2019

2011) based on Drusinsky and Harel (1989). Differential
equations/constraints are embedded into automata
states representing real actions in the physical system.
As will be seen in our development, such states are few
in numbers in these modules and ports. The generated
architecture is unique, permitting efficient compositional
verification of hybrid dynamics.

 In addition to design verification, testing a CHS
implementation is mandatory: for instance, ISO 26262-
6 requires back-to-back testing of a model and an
implementation derived from the model. Testing needs
to be sound and complete, while avoiding redundant
coverage. Sound and exhaustive tests are generated in
(Tretmans, 2008) for a given specification in the limited
context of an ioco (input-output conformance) labelled
transition system. In complex systems, modularity
needs to be exploited, but there is not much reported
on compositionality in test design: (Bijl et al., 2003;
Daca et al., 2014) are exceptions, treating ioco labelled
transition systems. These are still open problems for
more general configurations.

 In Ferrante et al. (2016) formal models of the system
(simulink blocks and stateflow) are translated to NuSMV
programmes, which are then run against negations of
CTL formulas representing individual test objectives to
generate counter-examples that become tests covering the
required test criteria. The approach is not compositional,
nor does it support continuous dynamics, and may not
scale up. Time partition testing by Bringmann and Kramer
(2006), targets continuous behaviour testing, extendable
to hybrid components using stream-processing functions
of Müller and Scholz (1997). However, their tests do not
derive from or relate to formal verification models.

 Finally, variations in physical system dynamics and
environment not captured in the modelling phase require
runtime validation to ensure continued safety.

 Hence, test design and runtime validation need to be
contemplated from early stages of modelling for formal
verification and validation (V&V) (ARTEMIS, 2005;
Namjoshi & Trefler, 2010; Nielsen, 2014; CRYSTAL,
2016) as required by standards such as EN50128, DO-
178C, IEC 61508, IEC 60880 and ISO 26262.

 Formal validation of model-based development
at instrumentation level is still poorly supported
(Bringmann & Kramer, 2008). De Matos (2015) and
Nielsen (2014) help comparing a strict formal model-
based development and a combination of formal and
traditional unit-test based methods.

(Malik & Roop, 2015) discuss code generation from
method-B. We do not cover formal verification of
automated code generators in this paper.

 We address the issues raised above through
compositional integration of these functions on statechart
models. This paper provides details on, the design,
setup and results of hardware-in-the-Loop (HiL) tests,
and runtime validation carried out on a fully functional
prototype CHS.

Specific contributions of the paper are the following:

(a) Elevating compositional formal verification from
DEDS to hybrid dynamics by converting simpler
automata modules from our statechart decomposition
into HA: the graphical models facilitating
collaborative development. Kim and Lee (2003)
and Malik and Roop (2019) discuss code generation
from HA. We overcome over-approximation and risk
of false transitivity common to direct abstraction
methods of continuous state-space.

(b) Use of the decomposition from (a) to configure
compositional HiL tests and MiL tests (reported
earlier) for testing at different abstraction and
functional levels of the CHS.

(c) A scalable strategy to generate sound and complete

(relative to coverage criteria) tests for CHS using (a),
reducing the possibility of error introduction.

(d) Deriving compositional runtime validation tests from

specifications in (a).

Some implementation - level faults of the integrated
system could be identified and corrected in this approach.

 A fully functional passenger elevator was built
with safety features as CHS test-bed. The elevator
controller, designed and implemented first on PLC was
easily migrated to FPGA hardware, demonstrating the
flexibility of our approach. Control implementation is
distributed: the discrete-event control, modularly in an
FPGA and the continuous-variable control of motors as
Simulink blocks on a PC.

METHODOLOGY, RESULTS AND DISCUSSION

Compositional modelling of hybrid dynamics

In hybrid dynamical systems (Alur et al., 1995;
Henzinger, 1996; Chaochen et al., 2005), states change

396 S.D. Dewasurendra et al.

December 2019 Journal of the National Science Foundation of Sri Lanka 47(4)

instantaneously (possibly discontinuously) for discrete
transitions and following differential equations,
subject to defined restrictions resulting from physical
circumstances or the interaction of continuous dynamics
with discrete control. Continuous-variables pose the
greatest challenge in verifying hybrid systems. The state
spaces become infinite with infinite time actions.

We demonstrate how hybrid automata (HA) (Henzinger,
1996) can model hybrid dynamical systems, through a
simple example.

 The HA in Figure 1(a) models hybrid dynamics of
a moving object. When it is in acceleration mode the
node ACCLN is active. The continuous acceleration of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

7

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts

to decelerate with 𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below 𝑣𝑣 = 𝑉𝑉2 the state DCCLN is

deactivated and ACCLN becomes active again.

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v V1 / a -b

v V2 / a A
(a)

4
7

7

13
13

)
13

7
(

br
ak

e

),,(rvdvepm

 (b) (c)
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event

dynamics (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller.

Fig.1. Hybrid automata and hybridization of Statecharts.

Figure 1: Hybrid automata and hybridisation of statecharts.
 (a) Hybrid automaton for controlled linear motion of an object; (b) cabin controller with discrete-event dynamics; (c) hybrid

augmentation of statechart state ‘UP’ of the cabin controller.

Runtime validation & HiL testing of complex hybrid systems 397

Journal of the National Science Foundation of Sri Lanka 47(4) December 2019

the object is described by the set of differential equations

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

7

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts

to decelerate with 𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below 𝑣𝑣 = 𝑉𝑉2 the state DCCLN is

deactivated and ACCLN becomes active again.

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v V1 / a -b

v V2 / a A
(a)

4 7

7

13
13

)
13

7
(

br
ak

e

),,(rvdvepm

 (b) (c)
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event

dynamics (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller.

Fig.1. Hybrid automata and hybridization of Statecharts.

 and

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

7

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts

to decelerate with 𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below 𝑣𝑣 = 𝑉𝑉2 the state DCCLN is

deactivated and ACCLN becomes active again.

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v V1 / a -b

v V2 / a A
(a)

4 7

7

13
13

)
13

7
(

br
ak

e

),,(rvdvepm

 (b) (c)
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event

dynamics (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller.

Fig.1. Hybrid automata and hybridization of Statecharts.

, where

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

7

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts

to decelerate with 𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below 𝑣𝑣 = 𝑉𝑉2 the state DCCLN is

deactivated and ACCLN becomes active again.

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v V1 / a -b

v V2 / a A
(a)

4 7

7

13
13

)
13

7
(

br
ak

e

),,(rvdvepm

 (b) (c)
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event

dynamics (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller.

Fig.1. Hybrid automata and hybridization of Statecharts.

 is the distance travelled.
When it attains a speed of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

7

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts

to decelerate with 𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below 𝑣𝑣 = 𝑉𝑉2 the state DCCLN is

deactivated and ACCLN becomes active again.

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v V1 / a -b

v V2 / a A
(a)

4 7

7

13
13

)
13

7
(

br
ak

e

),,(rvdvepm

 (b) (c)
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event

dynamics (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller.

Fig.1. Hybrid automata and hybridization of Statecharts.

 the ACCLN is
deactivated and node DCCLN becomes active. It starts
to decelerate with

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

7

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts

to decelerate with 𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below 𝑣𝑣 = 𝑉𝑉2 the state DCCLN is

deactivated and ACCLN becomes active again.

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v V1 / a -b

v V2 / a A
(a)

4 7

7

13
13

)
13

7
(

br
ak

e

),,(rvdvepm

 (b) (c)
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event

dynamics (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller.

Fig.1. Hybrid automata and hybridization of Statecharts.

. When the speed falls
below

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

7

set of differential equations 𝑧𝑧� = 𝑣𝑣 and 𝑣𝑣� = 𝑎𝑎, where 𝑧𝑧 is the distance travelled. When it

attains a speed of 𝑣𝑣 = 𝑉𝑉1 the ACCLN is deactivated and node DCCLN becomes active: it starts

to decelerate with 𝑎𝑎 = −𝑏𝑏, 𝑏𝑏 > 0. When the speed falls below 𝑣𝑣 = 𝑉𝑉2 the state DCCLN is

deactivated and ACCLN becomes active again.

ACCLN DCCLN

v' = a
z' = v z' = v

v' = a
v0

v V1 / a -b

v V2 / a A
(a)

4 7

7

13
13

)
13

7
(

br
ak

e

),,(rvdvepm

 (b) (c)
(a) Hybrid automaton for controlled linear motion of an object (b) Cabin Controller with discrete-event

dynamics (c) Hybrid augmentation of statechart state ‘UP’ of the cabin controller.

Fig.1. Hybrid automata and hybridization of Statecharts.

 the state DCCLN is deactivated and
ACCLN becomes active again.

 Behavioural specifications on the system can
now be defined on this model: e.g., the Differential
Dynamic Logic. (dL) Platzer, (2010) formula [object]

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

 expresses that the object always has a positive
velocity. In general,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

 specifies that property ‘

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

’
holds in all future executions of hybrid system ‘

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

’. A
control objective could be to determine corresponding
parameter constraints that guarantee the validity of such
a formula and a verification objective could ascertain the
satisfaction of those constraints in implementations.

 An HA,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

, however, cannot be decomposed into sub
graphs, αi such that the formula

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

 becomes
equivalent to

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

, because of the loose connecting edges
between the sub graphs

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

(Platzer, 2010). For instance,
the automaton in Figure 1(a) cannot simply be verified
by proving

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

8

Behavioural specifications on the system can now be defined on this model: e.g., the

Differential Dynamic Logic (dL) (Platzer A., 2010) formula [object](𝑣𝑣 0) expresses that the

object always has a positive velocity. In general, [𝛼𝛼]𝛷𝛷 specifies that property ‘𝛷𝛷’ holds in all

future executions of hybrid system ‘𝛼𝛼’. A control objective could be to determine

corresponding parameter constraints that guarantee the validity of such a formula and a

verification objective could be to ascertain the satisfaction of those constraints in

implementations.

An HA, 𝛼𝛼, however, cannot be decomposed into sub graphs, αi such that the formula

[𝛼𝛼�]𝛷𝛷�˄[𝛼𝛼�]𝛷𝛷� becomes equivalent to [𝛼𝛼]𝛷𝛷, because of the loose connecting edges between

the sub graphs 𝛼𝛼� (Platzer A., 2010). For instance, the automaton in Fig. 1(a) cannot simply be

verified by proving [ACCLN] 𝛷𝛷˄[DCCLN] 𝛷𝛷, since the trigger events between the nodes

cannot be accommodated in the decomposed components. Hence, HA are not directly

compositional.

STATECHART WITH HYBRID AUGMENTATION FOR COMPOSITIONAL

VERIFICATION OF ELEVATOR CONTROL

In (Dewasurendra S.D., 2006; 2013; 2017; Dewasurendra S.D. et al., 2011; Vidanapathirana

A.C. et al., 2011; 2013) we gradually developed a compositional formal verification strategy

for Complex Reactive Systems starting from statechart based specifications for DEDS. Our

statechart decomposition results in sequential components (finite state automata) that accept

parallel composition when the plant possesses concurrently evolving subsystems (AND states

in a statechart). Previously we were more concerned about compositionally verifying the

correctness of the decomposition and using the decomposition for distributed supervisory

control implementation. More importantly, however, this decomposition potentially reduces

the complexity of the image computation problem in model checking.

The Elevator-Cabin Controller module developed in this process is shown in Fig. 1(b). The

language generators (LG) developed in this process for the states, ‘Cabin Controller’ and ‘UP’,

and the port-structure between them are given in Figs.2(a, b and c), respectively. The port-

structure has been developed to perform a controllability check on interaction specification

between the two hierarchically adjacent states (Dewasurendra S.D., 2006) and to impose local

, since the trigger
events between the nodes cannot be accommodated in
the decomposed components. Hence, HA are not directly
compositional.

Statechart with hybrid augmentation for
compositional verification of elevator control

In our previous studies (Dewasurendra, 2006; 2013;
2017; Dewasurendra et al., 2011; Vidanapathirana et al.,
2011; 2013), we gradually developed a compositional
formal verification strategy for complex reactive systems
starting from statechart - based specifications for DEDS.
Our statechart decomposition results in sequential
components (finite state automata) that accept parallel
composition when the plant possesses concurrently
evolving subsystems (AND states in a statechart).
Previously we concerned more about the compositional
verifying of the correctness of decomposition and using
the decomposition for distributed supervisory control
implementation. More importantly, this decomposition
potentially reduces the complexity of the image
computation problem in model checking.

 The elevator-cabin controller module developed
in this process is shown in Figure 1(b). The language
generators (LG) developed in this process for the
states, ‘Cabin Controller’ and ‘UP’, and the port-

structure between them are given in Figures 2 a, b and
c, respectively. The port-structure has been developed
to perform a controllability check on interaction
specification between two hierarchically adjacent states
(Dewasurendra, 2006) and to impose local supervisory
control. In this paper we augment states representing
real actions of the formal language generators and
corresponding port-structures with continuous-variable
dynamics to build HA. Figure 1(c), explains what would
be obtained if instead, the continuous-variable dynamics
were included in the statechart itself. In developing the
hybrid control we closely follow the strategy used in the
cooperation protocols of European Train Control System
(ETCS) (Platzer, 2010).

 Elevator-cabin movements consist of discrete-event
dynamics, continuous variable dynamics (differential or
difference equations), and their hybrid interactions. The
elevator cabin control system, (CCS), was designed for
the hybrid control and runtime validation of the cabin.
The CCS consists of two concurrent controllers as
shown in Figure 1(c): the movement update controller,
(MUC), and the cabin controller, (CC). The MUC gives
movement updates (MU) to CC based on the current state
of the cabin dynamics. Cabin is allowed to move within
its current MU, which can be updated dynamically by
the MUC. Hence CC needs to regulate the movement
of the cabin such that it always remains within its MU
given by the MUC. The expected cabin speed profile is
predetermined, specifying comfort levels of passengers
inside: smooth acceleration, constant speed and
deceleration before the cabin stops at a requested floor.

 To illustrate our approach, we expanded the discrete
sub states of ‘UP’ state of Figure 1(b) as HA in Figure 1(c)
and introduced a control interface to represent the MUC
to obtain the HA - based statechart state CCS (Cabin-
Control-System) in Figure 1 (c). The discrete events of
Figure 1(b,c) are described in Table 1.

 MU is a vector

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

9

supervisory control. In this paper we augment states representing real actions of the formal

language generators and corresponding port-structures with continuous-variable dynamics to

build HA. For ease of explanation, we demonstrate in Fig. 1(c), what would be obtained if

instead, the continuous-variable dynamics were included in the statechart itself. In developing

the hybrid control we closely follow the strategy used in cooperation protocols of European

Train Control System (ETCS) (Platzer A., 2010).

Elevator-cabin movements consist of discrete-event dynamics, continuous variable dynamics

(differential or difference equations), and their hybrid interactions. The elevator-cabin-Control-

System, CCS, was designed for the hybrid control and runtime validation of the cabin. The

CCS consists of two concurrent controllers as shown in Fig. 1(c): the Movement-Update-

Controller, MUC, and the Cabin Controller, CC. The MUC gives Movement-Updates (MU) to

CC based on the current state of the cabin dynamics. Cabin is allowed to move within its current

MU, which can be updated dynamically by the MUC. Hence CC needs to regulate the

movement of the cabin such that it always remains within its MU given by the MUC. The

expected cabin speed profile is predetermined, specifying comfort levels of passengers inside:

smooth acceleration, constant speed and deceleration before the cabin stops at a requested floor.

To illustrate our approach, we expanded the discrete sub-states of ‘UP’ state of Fig. 1(b) as HA

in Fig. 1(c) and introduced a control interface to represent the MUC to obtain the HA based

statechart state CCS (Cabin-Control-System) in Fig. 1 (c). The discrete events of Fig.1(b&c)

are described in Table I.

MU is a vector 𝑚𝑚 = (𝑒𝑒𝑒𝑒, 𝑑𝑑𝑑𝑑, 𝑟𝑟𝑑𝑑), a dL constraint as follows: beyond the latest updated end

point 𝑚𝑚. 𝑒𝑒𝑒𝑒 along the hoist way, the cabin is not permitted by the MUC to have a velocity

greater than the desired velocity, 𝑚𝑚. 𝑑𝑑𝑑𝑑. The cabin should try not to exceed the recommended

velocity 𝑚𝑚. 𝑟𝑟𝑑𝑑 during the move, while short periods of slightly higher values are allowed. Fig.

2(d) shows an example of a possible cabin speed profile in conjunction with the current value

of 𝑚𝑚 that changes over time due to the control actions of CC. The moving vectors are updated

as mi.ep, mi.dv, mi.rv, for periods i = 1, 2,., n. The computation of these constraints are

explained in Ch. III.

MOVEMENT-UPDATE CONTROL MUC

, a dL constraint
as follows: beyond the latest updated end point

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

9

supervisory control. In this paper we augment states representing real actions of the formal

language generators and corresponding port-structures with continuous-variable dynamics to

build HA. For ease of explanation, we demonstrate in Fig. 1(c), what would be obtained if

instead, the continuous-variable dynamics were included in the statechart itself. In developing

the hybrid control we closely follow the strategy used in cooperation protocols of European

Train Control System (ETCS) (Platzer A., 2010).

Elevator-cabin movements consist of discrete-event dynamics, continuous variable dynamics

(differential or difference equations), and their hybrid interactions. The elevator-cabin-Control-

System, CCS, was designed for the hybrid control and runtime validation of the cabin. The

CCS consists of two concurrent controllers as shown in Fig. 1(c): the Movement-Update-

Controller, MUC, and the Cabin Controller, CC. The MUC gives Movement-Updates (MU) to

CC based on the current state of the cabin dynamics. Cabin is allowed to move within its current

MU, which can be updated dynamically by the MUC. Hence CC needs to regulate the

movement of the cabin such that it always remains within its MU given by the MUC. The

expected cabin speed profile is predetermined, specifying comfort levels of passengers inside:

smooth acceleration, constant speed and deceleration before the cabin stops at a requested floor.

To illustrate our approach, we expanded the discrete sub-states of ‘UP’ state of Fig. 1(b) as HA

in Fig. 1(c) and introduced a control interface to represent the MUC to obtain the HA based

statechart state CCS (Cabin-Control-System) in Fig. 1 (c). The discrete events of Fig.1(b&c)

are described in Table I.

MU is a vector 𝑚𝑚 = (𝑒𝑒𝑒𝑒, 𝑑𝑑𝑑𝑑, 𝑟𝑟𝑑𝑑), a dL constraint as follows: beyond the latest updated end

point 𝑚𝑚. 𝑒𝑒𝑒𝑒 along the hoist way, the cabin is not permitted by the MUC to have a velocity

greater than the desired velocity, 𝑚𝑚. 𝑑𝑑𝑑𝑑. The cabin should try not to exceed the recommended

velocity 𝑚𝑚. 𝑟𝑟𝑑𝑑 during the move, while short periods of slightly higher values are allowed. Fig.

2(d) shows an example of a possible cabin speed profile in conjunction with the current value

of 𝑚𝑚 that changes over time due to the control actions of CC. The moving vectors are updated

as mi.ep, mi.dv, mi.rv, for periods i = 1, 2,., n. The computation of these constraints are

explained in Ch. III.

MOVEMENT-UPDATE CONTROL MUC

along the hoist way, the cabin is not permitted by
the MUC to have a velocity greater than the desired
velocity,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

9

supervisory control. In this paper we augment states representing real actions of the formal

language generators and corresponding port-structures with continuous-variable dynamics to

build HA. For ease of explanation, we demonstrate in Fig. 1(c), what would be obtained if

instead, the continuous-variable dynamics were included in the statechart itself. In developing

the hybrid control we closely follow the strategy used in cooperation protocols of European

Train Control System (ETCS) (Platzer A., 2010).

Elevator-cabin movements consist of discrete-event dynamics, continuous variable dynamics

(differential or difference equations), and their hybrid interactions. The elevator-cabin-Control-

System, CCS, was designed for the hybrid control and runtime validation of the cabin. The

CCS consists of two concurrent controllers as shown in Fig. 1(c): the Movement-Update-

Controller, MUC, and the Cabin Controller, CC. The MUC gives Movement-Updates (MU) to

CC based on the current state of the cabin dynamics. Cabin is allowed to move within its current

MU, which can be updated dynamically by the MUC. Hence CC needs to regulate the

movement of the cabin such that it always remains within its MU given by the MUC. The

expected cabin speed profile is predetermined, specifying comfort levels of passengers inside:

smooth acceleration, constant speed and deceleration before the cabin stops at a requested floor.

To illustrate our approach, we expanded the discrete sub-states of ‘UP’ state of Fig. 1(b) as HA

in Fig. 1(c) and introduced a control interface to represent the MUC to obtain the HA based

statechart state CCS (Cabin-Control-System) in Fig. 1 (c). The discrete events of Fig.1(b&c)

are described in Table I.

MU is a vector 𝑚𝑚 = (𝑒𝑒𝑒𝑒, 𝑑𝑑𝑑𝑑, 𝑟𝑟𝑑𝑑), a dL constraint as follows: beyond the latest updated end

point 𝑚𝑚. 𝑒𝑒𝑒𝑒 along the hoist way, the cabin is not permitted by the MUC to have a velocity

greater than the desired velocity, 𝑚𝑚. 𝑑𝑑𝑑𝑑. The cabin should try not to exceed the recommended

velocity 𝑚𝑚. 𝑟𝑟𝑑𝑑 during the move, while short periods of slightly higher values are allowed. Fig.

2(d) shows an example of a possible cabin speed profile in conjunction with the current value

of 𝑚𝑚 that changes over time due to the control actions of CC. The moving vectors are updated

as mi.ep, mi.dv, mi.rv, for periods i = 1, 2,., n. The computation of these constraints are

explained in Ch. III.

MOVEMENT-UPDATE CONTROL MUC

. The cabin should try not to exceed the
recommended velocity

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

9

supervisory control. In this paper we augment states representing real actions of the formal

language generators and corresponding port-structures with continuous-variable dynamics to

build HA. For ease of explanation, we demonstrate in Fig. 1(c), what would be obtained if

instead, the continuous-variable dynamics were included in the statechart itself. In developing

the hybrid control we closely follow the strategy used in cooperation protocols of European

Train Control System (ETCS) (Platzer A., 2010).

Elevator-cabin movements consist of discrete-event dynamics, continuous variable dynamics

(differential or difference equations), and their hybrid interactions. The elevator-cabin-Control-

System, CCS, was designed for the hybrid control and runtime validation of the cabin. The

CCS consists of two concurrent controllers as shown in Fig. 1(c): the Movement-Update-

Controller, MUC, and the Cabin Controller, CC. The MUC gives Movement-Updates (MU) to

CC based on the current state of the cabin dynamics. Cabin is allowed to move within its current

MU, which can be updated dynamically by the MUC. Hence CC needs to regulate the

movement of the cabin such that it always remains within its MU given by the MUC. The

expected cabin speed profile is predetermined, specifying comfort levels of passengers inside:

smooth acceleration, constant speed and deceleration before the cabin stops at a requested floor.

To illustrate our approach, we expanded the discrete sub-states of ‘UP’ state of Fig. 1(b) as HA

in Fig. 1(c) and introduced a control interface to represent the MUC to obtain the HA based

statechart state CCS (Cabin-Control-System) in Fig. 1 (c). The discrete events of Fig.1(b&c)

are described in Table I.

MU is a vector 𝑚𝑚 = (𝑒𝑒𝑒𝑒, 𝑑𝑑𝑑𝑑, 𝑟𝑟𝑑𝑑), a dL constraint as follows: beyond the latest updated end

point 𝑚𝑚. 𝑒𝑒𝑒𝑒 along the hoist way, the cabin is not permitted by the MUC to have a velocity

greater than the desired velocity, 𝑚𝑚. 𝑑𝑑𝑑𝑑. The cabin should try not to exceed the recommended

velocity 𝑚𝑚. 𝑟𝑟𝑑𝑑 during the move, while short periods of slightly higher values are allowed. Fig.

2(d) shows an example of a possible cabin speed profile in conjunction with the current value

of 𝑚𝑚 that changes over time due to the control actions of CC. The moving vectors are updated

as mi.ep, mi.dv, mi.rv, for periods i = 1, 2,., n. The computation of these constraints are

explained in Ch. III.

MOVEMENT-UPDATE CONTROL MUC

 during the move, while
short periods of slightly higher values are allowed.
Figure 2(d) shows an example of a possible cabin speed
profile in conjunction with the current value of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

9

supervisory control. In this paper we augment states representing real actions of the formal

language generators and corresponding port-structures with continuous-variable dynamics to

build HA. For ease of explanation, we demonstrate in Fig. 1(c), what would be obtained if

instead, the continuous-variable dynamics were included in the statechart itself. In developing

the hybrid control we closely follow the strategy used in cooperation protocols of European

Train Control System (ETCS) (Platzer A., 2010).

Elevator-cabin movements consist of discrete-event dynamics, continuous variable dynamics

(differential or difference equations), and their hybrid interactions. The elevator-cabin-Control-

System, CCS, was designed for the hybrid control and runtime validation of the cabin. The

CCS consists of two concurrent controllers as shown in Fig. 1(c): the Movement-Update-

Controller, MUC, and the Cabin Controller, CC. The MUC gives Movement-Updates (MU) to

CC based on the current state of the cabin dynamics. Cabin is allowed to move within its current

MU, which can be updated dynamically by the MUC. Hence CC needs to regulate the

movement of the cabin such that it always remains within its MU given by the MUC. The

expected cabin speed profile is predetermined, specifying comfort levels of passengers inside:

smooth acceleration, constant speed and deceleration before the cabin stops at a requested floor.

To illustrate our approach, we expanded the discrete sub-states of ‘UP’ state of Fig. 1(b) as HA

in Fig. 1(c) and introduced a control interface to represent the MUC to obtain the HA based

statechart state CCS (Cabin-Control-System) in Fig. 1 (c). The discrete events of Fig.1(b&c)

are described in Table I.

MU is a vector 𝑚𝑚 = (𝑒𝑒𝑒𝑒, 𝑑𝑑𝑑𝑑, 𝑟𝑟𝑑𝑑), a dL constraint as follows: beyond the latest updated end

point 𝑚𝑚. 𝑒𝑒𝑒𝑒 along the hoist way, the cabin is not permitted by the MUC to have a velocity

greater than the desired velocity, 𝑚𝑚. 𝑑𝑑𝑑𝑑. The cabin should try not to exceed the recommended

velocity 𝑚𝑚. 𝑟𝑟𝑑𝑑 during the move, while short periods of slightly higher values are allowed. Fig.

2(d) shows an example of a possible cabin speed profile in conjunction with the current value

of 𝑚𝑚 that changes over time due to the control actions of CC. The moving vectors are updated

as mi.ep, mi.dv, mi.rv, for periods i = 1, 2,., n. The computation of these constraints are

explained in Ch. III.

MOVEMENT-UPDATE CONTROL MUC

 that
changes over time due to the control actions of CC. The
moving vectors are updated as mi.ep, mi.dv, mi.rv, for
periods i = 1, 2,., n. The computation of these constraints
are explained later.

398 S.D. Dewasurendra et al.

December 2019 Journal of the National Science Foundation of Sri Lanka 47(4)

Movement-update control MUC

Given the required speed profile of the cabin along the
hoist way, the MUC provides timely information to the

CC to regulate the velocity of the cabin by comparing
the actual and recommended speed values (see output
transitions from the state, MOVING, in Figure 1(c)).

Getting back to the construction proposed in this paper, we
start off from language generators in Figures. 2(a) and (b).
The states representing real actions in the physical system
are, UP, DOWN, ARRIVED, CAR_STOP and UP_ON.
These are the states to be augmented by embedding HA: we

embed the UP_ON hybrid automaton from the statechart in
Figure 1(c) in the UP_ON state of the language generator
in Figure 2(b). For states in Figure 2(b) corresponding to
basic states of Figure 1(c), the differential equations from
the latter are embedded in the former.

Figure 2: Communicating language generators and cabin speed regulation.
 (a) Cabin controller state language generator; (b) UP state language generator; (c) port-structure

developed to represent communication between cabin controller and UP states and (d) CCS moving
permission update pattern

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

10

Given the required speed profile of the cabin along the hoist way, the MUC provides timely

information to the CC to regulate the velocity of the cabin by comparing the actual and

recommended speed values (see output transitions from the state, MOVING, in Fig. 1(c)).

CABIN MOVEMENTS Language Generator

3

1 2

8

11

7

10

72

76 73

8177

73

41

9

0

UP

ID1

Idle

19

(49 ̂ 46)

14

17

80
6

12

5

CAR_STOP

DOWN

13 ARRIVED

15

20

4

87

73

87

87

123 86

124

151

127

151

18

73

152

152

128

151
82 16

126

86

21

73

83

(7 ^ 13

(47^ 46)

(48 ^ 46)

¬ ¬
59 ^ 60¬ ¬ ^)

(a) (b)

0 1

123

CM controlabolity check with
CM / UP port

(80 U 123)

 = { 123 , 124 }cmr_upCM

(81 U 124)

124

80

81

Recommended

velocity

Desired
velocity

Actual
velocity

c.p

c.v

V1

L

m2.rv

Start Breaking(SB)

m3.dv

m1.rv

m1.dv

m1.ep
m2.ep

m3.ep

(c) (d)

(a) Cabin Controller state language generator (b) UP state language generator (c) Port-structure developed to

represent communication between Cabin Controller and UP states (d) CCS moving permission update pattern.

Fig.2. Communicating Language generators and Cabin speed regulation.

Runtime validation & HiL testing of complex hybrid systems 399

Journal of the National Science Foundation of Sri Lanka 47(4) December 2019

The next step is to embed the HA, MUC. This has to go
into a state of the port-structure in Figure 2(c). Since the
conditions specified for continuous-variables in MUC
are valid in state ‘0’ of the port-structure, we embed
MUC in state ‘0’.

 The collapsed versions (in which embedded hybrid-
automata/differential equations are removed from their
states) of these hybrid embedded language generators
and port structures were used to perform discrete-
event based compositional verification of the control
(Dewasurendra, 2006; Vidanapathirana et al., 2011,
2013). Distributed verification of continuous variable
dynamics carried out using embedded HA is described
next. In latter verification we closely follow the work of
Platzer in ETCS (Platzer, 2010) using dL.

Differential dynamic logics for verification of
continuous-variable dynamics

A proof calculus for Differential Dynamic Logic (dL)
(first order dynamic logic for reals) and its temporal
extension, developed by Harel (1979) and Platzer (2010)
uses discrete/ differential induction on differential
invariants/variants for compositional verification of
HDS. The proof of calculus is complete relative to
handling differential equations. To achieve scalability,
the invariants/variants are compositionally computed
in proof loops: dL is closed under logical operators
(Chaochen et al., 2005). However, the use of sequential
HP to express system dynamics limits this to sequential
composition. We elevate this to parallel composition.

 In dL the model formula [α]ɸ expresses that all
states reachable by the hybrid system, α satisfy the dL
formula Φ and

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

11

Getting back to the construction proposed in this paper, we start off from language generators

in Figs. 2(a) and 2(b). The states representing real actions in the physical system are, UP,

DOWN, ARRIVED, CAR_STOP and UP_ON. These are the states to be augmented by

embedding HA: we embed the UP_ON hybrid automaton from the statechart in Fig. 1(c) in the

UP_ON state of the language generator in Fig.2(b). For states in Fig.2(b) corresponding to

basic states of Fig. 1(c), the differential equations from the latter are embedded in the former.

The next step is to embed the HA, MUC. This has to go into a state of the Port-structure in Fig.

2(c). Since the conditions specified for continuous-variables in MUC are valid in state ‘0’ of

the port-structure, we embed MUC in state ‘0’.

The collapsed versions (with embedded hybrid-automata/differential equations removed from

their states) of these hybrid-embedded language generators and port-structures were used to

perform discrete-event based compositional verification of the control (Vidanapathirana A.C.

et al., 2011, 2013; Dewasurendra S.D., 2006). Distributed verification of continuous-variable

dynamics carried out using embedded HA is described next. In this latter verification we closely

follow the work of Platzer in ETCS (Platzer A., 2010) using dL.

III. DIFFERENTIAL DYNAMIC LOGICS FOR VERIFICATION OF

CONTINUOUS-VARIABLE DYNAMICS

A proof calculus for Differential Dynamic Logic (dL) (first-order dynamic logic for reals) and

its temporal extension, developed in (Harel D., 1979; Platzer A., 2010), uses discrete/

differential induction on differential invariants/variants for compositional verification of HDS.

The proof calculus is complete relative to handling differential equations. To achieve

scalability the invariants/variants are compositionally computed in proof loops: dL is closed

under logical operators (Chaochen Z. et al., 2005). However, their use of sequential HP to

express system dynamics limits this to sequential composition. We elevate this to parallel

composition.

In dL the modal formula [α]ɸ expresses that all states reachable by the hybrid system α satisfy

the dL formula Φ and 〈α〉ɸ , that at least one state reachable by α satisfies . Typically, in

first-order dL, where quantifiers over reals are allowed, ∃𝑝𝑝[𝛼𝛼]〈𝛽𝛽〉∅ says that there is a choice

of parameter p (denoted ∃𝑝𝑝) such that, for all possible (future) behaviours of system α (denoted

[α]) there is some reaction of system β (denoted〈𝛽𝛽〉) that ensures ∅.

 that at least one state reachable
by α satisfies φ . Typically, in first order dL, where
quantifiers over reals are allowed,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

11

Getting back to the construction proposed in this paper, we start off from language generators

in Figs. 2(a) and 2(b). The states representing real actions in the physical system are, UP,

DOWN, ARRIVED, CAR_STOP and UP_ON. These are the states to be augmented by

embedding HA: we embed the UP_ON hybrid automaton from the statechart in Fig. 1(c) in the

UP_ON state of the language generator in Fig.2(b). For states in Fig.2(b) corresponding to

basic states of Fig. 1(c), the differential equations from the latter are embedded in the former.

The next step is to embed the HA, MUC. This has to go into a state of the Port-structure in Fig.

2(c). Since the conditions specified for continuous-variables in MUC are valid in state ‘0’ of

the port-structure, we embed MUC in state ‘0’.

The collapsed versions (with embedded hybrid-automata/differential equations removed from

their states) of these hybrid-embedded language generators and port-structures were used to

perform discrete-event based compositional verification of the control (Vidanapathirana A.C.

et al., 2011, 2013; Dewasurendra S.D., 2006). Distributed verification of continuous-variable

dynamics carried out using embedded HA is described next. In this latter verification we closely

follow the work of Platzer in ETCS (Platzer A., 2010) using dL.

III. DIFFERENTIAL DYNAMIC LOGICS FOR VERIFICATION OF

CONTINUOUS-VARIABLE DYNAMICS

A proof calculus for Differential Dynamic Logic (dL) (first-order dynamic logic for reals) and

its temporal extension, developed in (Harel D., 1979; Platzer A., 2010), uses discrete/

differential induction on differential invariants/variants for compositional verification of HDS.

The proof calculus is complete relative to handling differential equations. To achieve

scalability the invariants/variants are compositionally computed in proof loops: dL is closed

under logical operators (Chaochen Z. et al., 2005). However, their use of sequential HP to

express system dynamics limits this to sequential composition. We elevate this to parallel

composition.

In dL the modal formula [α]ɸ expresses that all states reachable by the hybrid system α satisfy

the dL formula Φ and 〈α〉ɸ , that at least one state reachable by α satisfies . Typically, in

first-order dL, where quantifiers over reals are allowed, ∃𝑝𝑝[𝛼𝛼]〈𝛽𝛽〉∅ says that there is a choice

of parameter p (denoted ∃𝑝𝑝) such that, for all possible (future) behaviours of system α (denoted

[α]) there is some reaction of system β (denoted〈𝛽𝛽〉) that ensures ∅.

 says that
there is a choice of parameter p (denoted

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

11

Getting back to the construction proposed in this paper, we start off from language generators

in Figs. 2(a) and 2(b). The states representing real actions in the physical system are, UP,

DOWN, ARRIVED, CAR_STOP and UP_ON. These are the states to be augmented by

embedding HA: we embed the UP_ON hybrid automaton from the statechart in Fig. 1(c) in the

UP_ON state of the language generator in Fig.2(b). For states in Fig.2(b) corresponding to

basic states of Fig. 1(c), the differential equations from the latter are embedded in the former.

The next step is to embed the HA, MUC. This has to go into a state of the Port-structure in Fig.

2(c). Since the conditions specified for continuous-variables in MUC are valid in state ‘0’ of

the port-structure, we embed MUC in state ‘0’.

The collapsed versions (with embedded hybrid-automata/differential equations removed from

their states) of these hybrid-embedded language generators and port-structures were used to

perform discrete-event based compositional verification of the control (Vidanapathirana A.C.

et al., 2011, 2013; Dewasurendra S.D., 2006). Distributed verification of continuous-variable

dynamics carried out using embedded HA is described next. In this latter verification we closely

follow the work of Platzer in ETCS (Platzer A., 2010) using dL.

III. DIFFERENTIAL DYNAMIC LOGICS FOR VERIFICATION OF

CONTINUOUS-VARIABLE DYNAMICS

A proof calculus for Differential Dynamic Logic (dL) (first-order dynamic logic for reals) and

its temporal extension, developed in (Harel D., 1979; Platzer A., 2010), uses discrete/

differential induction on differential invariants/variants for compositional verification of HDS.

The proof calculus is complete relative to handling differential equations. To achieve

scalability the invariants/variants are compositionally computed in proof loops: dL is closed

under logical operators (Chaochen Z. et al., 2005). However, their use of sequential HP to

express system dynamics limits this to sequential composition. We elevate this to parallel

composition.

In dL the modal formula [α]ɸ expresses that all states reachable by the hybrid system α satisfy

the dL formula Φ and 〈α〉ɸ , that at least one state reachable by α satisfies . Typically, in

first-order dL, where quantifiers over reals are allowed, ∃𝑝𝑝[𝛼𝛼]〈𝛽𝛽〉∅ says that there is a choice

of parameter p (denoted ∃𝑝𝑝) such that, for all possible (future) behaviours of system α (denoted

[α]) there is some reaction of system β (denoted〈𝛽𝛽〉) that ensures ∅.

) such that,
for all possible (future) behaviours of system α (denoted
[α]) there is some reaction of system β (denoted

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

11

Getting back to the construction proposed in this paper, we start off from language generators

in Figs. 2(a) and 2(b). The states representing real actions in the physical system are, UP,

DOWN, ARRIVED, CAR_STOP and UP_ON. These are the states to be augmented by

embedding HA: we embed the UP_ON hybrid automaton from the statechart in Fig. 1(c) in the

UP_ON state of the language generator in Fig.2(b). For states in Fig.2(b) corresponding to

basic states of Fig. 1(c), the differential equations from the latter are embedded in the former.

The next step is to embed the HA, MUC. This has to go into a state of the Port-structure in Fig.

2(c). Since the conditions specified for continuous-variables in MUC are valid in state ‘0’ of

the port-structure, we embed MUC in state ‘0’.

The collapsed versions (with embedded hybrid-automata/differential equations removed from

their states) of these hybrid-embedded language generators and port-structures were used to

perform discrete-event based compositional verification of the control (Vidanapathirana A.C.

et al., 2011, 2013; Dewasurendra S.D., 2006). Distributed verification of continuous-variable

dynamics carried out using embedded HA is described next. In this latter verification we closely

follow the work of Platzer in ETCS (Platzer A., 2010) using dL.

III. DIFFERENTIAL DYNAMIC LOGICS FOR VERIFICATION OF

CONTINUOUS-VARIABLE DYNAMICS

A proof calculus for Differential Dynamic Logic (dL) (first-order dynamic logic for reals) and

its temporal extension, developed in (Harel D., 1979; Platzer A., 2010), uses discrete/

differential induction on differential invariants/variants for compositional verification of HDS.

The proof calculus is complete relative to handling differential equations. To achieve

scalability the invariants/variants are compositionally computed in proof loops: dL is closed

under logical operators (Chaochen Z. et al., 2005). However, their use of sequential HP to

express system dynamics limits this to sequential composition. We elevate this to parallel

composition.

In dL the modal formula [α]ɸ expresses that all states reachable by the hybrid system α satisfy

the dL formula Φ and 〈α〉ɸ , that at least one state reachable by α satisfies . Typically, in

first-order dL, where quantifiers over reals are allowed, ∃𝑝𝑝[𝛼𝛼]〈𝛽𝛽〉∅ says that there is a choice

of parameter p (denoted ∃𝑝𝑝) such that, for all possible (future) behaviours of system α (denoted

[α]) there is some reaction of system β (denoted〈𝛽𝛽〉) that ensures ∅.) that
ensures

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

11

Getting back to the construction proposed in this paper, we start off from language generators

in Figs. 2(a) and 2(b). The states representing real actions in the physical system are, UP,

DOWN, ARRIVED, CAR_STOP and UP_ON. These are the states to be augmented by

embedding HA: we embed the UP_ON hybrid automaton from the statechart in Fig. 1(c) in the

UP_ON state of the language generator in Fig.2(b). For states in Fig.2(b) corresponding to

basic states of Fig. 1(c), the differential equations from the latter are embedded in the former.

The next step is to embed the HA, MUC. This has to go into a state of the Port-structure in Fig.

2(c). Since the conditions specified for continuous-variables in MUC are valid in state ‘0’ of

the port-structure, we embed MUC in state ‘0’.

The collapsed versions (with embedded hybrid-automata/differential equations removed from

their states) of these hybrid-embedded language generators and port-structures were used to

perform discrete-event based compositional verification of the control (Vidanapathirana A.C.

et al., 2011, 2013; Dewasurendra S.D., 2006). Distributed verification of continuous-variable

dynamics carried out using embedded HA is described next. In this latter verification we closely

follow the work of Platzer in ETCS (Platzer A., 2010) using dL.

III. DIFFERENTIAL DYNAMIC LOGICS FOR VERIFICATION OF

CONTINUOUS-VARIABLE DYNAMICS

A proof calculus for Differential Dynamic Logic (dL) (first-order dynamic logic for reals) and

its temporal extension, developed in (Harel D., 1979; Platzer A., 2010), uses discrete/

differential induction on differential invariants/variants for compositional verification of HDS.

The proof calculus is complete relative to handling differential equations. To achieve

scalability the invariants/variants are compositionally computed in proof loops: dL is closed

under logical operators (Chaochen Z. et al., 2005). However, their use of sequential HP to

express system dynamics limits this to sequential composition. We elevate this to parallel

composition.

In dL the modal formula [α]ɸ expresses that all states reachable by the hybrid system α satisfy

the dL formula Φ and 〈α〉ɸ , that at least one state reachable by α satisfies . Typically, in

first-order dL, where quantifiers over reals are allowed, ∃𝑝𝑝[𝛼𝛼]〈𝛽𝛽〉∅ says that there is a choice

of parameter p (denoted ∃𝑝𝑝) such that, for all possible (future) behaviours of system α (denoted

[α]) there is some reaction of system β (denoted〈𝛽𝛽〉) that ensures ∅. .

 As a simple demonstration of compositionality
achieved through the use of logical operators,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 says that there is a choice of parameter
p that makes both

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 and

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 true, simultaneously.

 For elevating their sequential composition to admit
parallel composition using parallel HA, consider systems
α and β above as resulting from the decomposition of an
AND state of a statechart model: this permits concurrent
evaluation of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 and

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

. In addition, when

model-checking for these properties, the granularity of
decomposition products of the statechart can be kept as
fine as desired, thus making real quantifier elimination
manageable in practice: cf. classical state-space
abstraction of CVDS into convex polytopes. This extends
our compositional formal verification methodology from
DEDS to CVDS.

Differential dynamic logic for runtime validation

Still using the hybrid augmented statechart in Figure 1(c)
the current state,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 is given by the current
position p, speed v and acceleration a, which is updated
in real-time by the interaction of parallel statechart
states, CC, and MUC controlling and monitoring cabin
movement along the hoist way. In order to meet the
speed specifications, m, posed on the cabin [Figure 2(d)],
we need to determine sufficient conditions that force

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

to always respect its current MU, satisfying,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 ...(c1)

 The requirement (c1) expresses that the cabin velocity

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 does not exceed the desired speed limit

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 after
passing the latest updated end point (i.e.,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

).
The

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 and

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

 values are determined for the
current MU by MUC based on state information received
from CC. For example, in tall buildings, a high speed
cabin needs to reduce the velocity while arriving at
designated points close to the destination. Our model
captures this by updating the speed component

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed

of MU,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

12

As a simple demonstration of compositionality achieved through use of logical operators,

∃𝑝𝑝([𝛼𝛼]∅ ∧ [𝛽𝛽]𝜑𝜑) says that there is a choice of parameter p that makes both [𝛼𝛼]∅ and [𝛽𝛽]𝜑𝜑

true, simultaneously.

For elevating their sequential composition to admit parallel composition using parallel HA,

consider systems α and 𝛽𝛽 above as resulting from the decomposition of an AND state of a

statechart model: this permits concurrent evaluation of ∃𝑝𝑝[𝛼𝛼]∅ and ∃𝑝𝑝[𝛽𝛽]∅. In addition when

model-checking for these properties, the granularity of decomposition products of the

statechart can be kept as fine as desired, thus making real quantifier elimination manageable in

practice: cf. classical state-space abstraction of CVDS into convex polytopes. This extends our

compositional formal verification methodology from DEDS to CVDS.

 DIFFERENTIAL DYNAMIC LOGIC FOR RUNTIME VALIDATION

Still using the hybrid augmented Statechart in Fig. 1(c) the current state, 𝑐𝑐 = (𝑝𝑝, 𝑣𝑣, 𝑎𝑎) is given

by the current position p, speed v and acceleration a, which is updated in real-time by the

interaction of parallel statechart states, CC, and MUC controlling and monitoring cabin

movement along the hoist way. In order to meet the speed specifications, m, posed on the cabin

(Fig.2(d)), we need to determine sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect its

current MU, satisfying

𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑐𝑐. 𝑣𝑣 ≤ 𝑚𝑚. 𝑑𝑑𝑣𝑣 (c1)

The requirement (c1) expresses that the cabin velocity 𝑐𝑐. 𝑣𝑣 does not exceed the desired speed

limit 𝑚𝑚. 𝑑𝑑𝑣𝑣 after passing the latest updated end point 𝑚𝑚. 𝑒𝑒𝑝𝑝 (i.e., 𝑐𝑐. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝). The 𝑚𝑚. 𝑒𝑒𝑝𝑝

and 𝑚𝑚. 𝑑𝑑𝑣𝑣 values are determined for the current MU by MUC based on state information

received from CC. For example, in tall buildings a high speed cabin needs to reduce the velocity

while arriving at designated points close to the destination. Our model captures this by updating

the speed component 𝑚𝑚. 𝑑𝑑𝑣𝑣 of MU, 𝑚𝑚, appropriately to achieve the predetermined speed appropriately to achieve the predetermined
speed profile. Unlike collision with other trains in
the case of high speed train control in ETCS, here the
principle issues concern handling the sudden requests
for embarkation, debarkation, emergency stoppages,
between-level arrests of movement due to failure,
malfunctioning of doors and evacuation of a running
lift cabin. Depending on the current state of the cabin,
the requests are either accommodated or ignored. If
accommodated, then a new MU which can satisfy all the
pending accommodated requests is computed by MUC
and corresponding information shared with CC.

 Coming back to the operational mode depicted in
Figure 1(c), when user requests are made for upward
movement, the CC initiates the relevant upward
movement under the current MU. In parallel, the MUC
starts its execution. With the user request for upward
movement (up_req = on) the following state transitions
take place at the CC super-state:

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

400 S.D. Dewasurendra et al.

December 2019 Journal of the National Science Foundation of Sri Lanka 47(4)

Depending on the value of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

 the controller
enters either ACCLN or DCCLN. Upon arriving at
the state CONDITION, brakes have to be applied if

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

. The point SB (start braking) is the
point at which brake has to be applied, indicated by the
action, ‘brake’ to ensure correct alignment of the cabin at
a given floor. In operation, solving a set of differential
equations (Perko, 2006) is done using real-time clocks
with appropriate time steps ∆t. Necessary actual position
information to derive the

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

 and

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

 is supplied by
the encoder attached to the cabin motor.

 The cabin motor control is supervised by the hybrid
controller to stay within the performance specification,
ensuring stress free and accurate cabin control.

 Whenever the runtime system parameters deviate due
to un-modelled factors or physical system degradation,
MUC provides timely feed-back to CC to do necessary
regulation; hence,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

MUC and CC being independently distributed hybrid
components running in parallel. ‘

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

’ represents
nondeterministic choice and ‘*’, repetition. We now
make the following claim:

Proposition 1. Our HA - based formal verification
method is compositional, sound and complete relative to
first-order logic of differential equations.

Proof:
Our construction derives from the semantics-preserving
decomposition strategy for statecharts and compositional
verification of DEDS (Dewasurendra, 2006;
Vidanapathirana et al, 2011; Vidanapathirana, 2019).

HA are embedded in a subset of automata representing
real actions of this decomposition [see Figure 2(b)].

 Whereas the discrete-event dynamics are represented
by collapsing the embedded HA, the continuous variable
dynamics are represented by the interaction of HA
distributed among DEDS states.

 Since the HA can be translated unambiguously to HP,
Platzer’s first-order logic of differential equations (FOD)
analysis can be directly applied to continuous-variable
dynamics embedded in HA to provide a verification
complete, relative to FOD (Theorem 2.3 of Platzer,
2010).

Given that dL calculus is sound (Theorem 2.1 of Platzer,
2010), we now have a sound and complete verification
system that is compositional and still based on HA.
 QED

 This lays the foundation for us to develop the
remaining results in this paper.

 Getting back to determining sufficient conditions that
force

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

13

profile. Unlike collision with other trains in the case of high speed train control in ETCS, here

the principle issues concern handling the sudden requests for embarkation, debarkation,

emergency stoppages, between-level arrests of movement due to failure, malfunctioning of

doors and evacuation of a running lift cabin. Depending on the current state of the cabin, the

requests are either accommodated or ignored. If accommodated, then a new MU which can

satisfy all the pending accommodated requests is computed by MUC and corresponding

information shared with CC.

Coming back to the operational mode depicted in Fig. 1(c), when user requests are made for

upward movement, the CC initiates the relevant upward movement under the current MU. In

parallel, the MUC starts its execution. With the user request for upward movement (up_req =

on) the following state transitions take place at the CC super-state.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑈𝑈𝑈𝑈 → 𝑈𝑈𝑈𝑈_𝑂𝑂𝑂𝑂

Depending on the value of rvmvc .. the controller enters either ACCLN or DCCLN. Upon

arriving at the state CONDITION, brakes have to be applied if 𝑚𝑚. 𝑒𝑒𝑒𝑒 − 𝑐𝑐. 𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆. The point

SB (Start Braking) is the point at which brake has to be applied, indicated by the action,

"𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒" to ensure correct alignment of the cabin at a given floor. In operation, solving a set

of differential equations (Perko L., 2006) is done using real-time clocks with appropriate time

steps ∆t. Necessary actual position information to derive the 𝑐𝑐. 𝑣𝑣 and 𝑐𝑐. 𝑏𝑏 is supplied by the

encoder attached to the cabin motor.

The cabin motor control is supervised by the hybrid controller to stay within the performance

specification, ensuring stress free and accurate cabin control.

Whenever the runtime system parameters deviate due to un-modelled factors or physical

system degradation, MUC, provides timely feed-back to CC to do necessary regulation; hence,

formally,

𝐶𝐶𝐶𝐶𝑆𝑆 ≡ (𝑀𝑀𝑈𝑈𝐶𝐶 ∪ 𝐶𝐶𝐶𝐶)∗

MUC and CC being independently distributed hybrid components running in parallel. ‘∪’

represents nondeterministic choice and ‘*’, repetition. We now make the following claim:

Proposition 1. Our HA based formal verification method is compositional, sound and complete

relative to first-order logic of differential equations.

 to always respect (c1), whereas the actual
control of components (e.g., motors) is based on detailed
models in the verification and parameter discovery
process for runtime validation, it is difficult to use highly
detailed plant models, and hence, following the approach
in Platzer (2010), we approximate plant dynamics by a
ranged choice for effective cabin acceleration between
its lower and upper bounds, -b and A, respectively: cf.
Figure 1(c).

 We find constraints that ensure the safety of the
system in operation (discrete and continuous invariants)
using iterative refinement process of Platzer (2010).

 This process is explained on language generator for
the state UP [Figure 2(b)].

 The formula FD is found as a discrete invariant of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

14

Proof:

Our construction derives from the semantics-preserving decomposition strategy for statecharts

and compositional verification of DEDS (Dewasurendra S.D., 2006; Vidanapathirana, A.C.,

et al, 2011; Vidanapathirana A.C., 2019).

HA are embedded in a subset of Automata representing real actions of in this decomposition

(see Fig.2(b)).

Whereas the discrete-event dynamics are represented by collapsing the embedded HA, the

continuous-variable dynamics are represented by the interaction of HA distributed among

DEDS states.

Since the HA can be translated unambiguously to HP, Platzer’s FOD (first-order logic of

differential equations) analysis can be directly applied to continuous-variable dynamics

embedded in HA to provide a verification complete relative to FOD (Theorem 2.3 of (Platzer

A., 2010).

Given that dL calculus is sound (Theorem 2.1 of (Platzer A., 2010), we now have a sound and

complete verification system that is compositional and still based on HA.

 QED

This lays the foundation for us to develop the remaining results in this paper.

Getting back to determining sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect (c1), whereas

the actual control of components (e.g., motors) is based on detailed models, in the verification

and parameter discovery process for runtime validation, it is difficult to use highly detailed

plant models, and hence, following the approach in (Platzer A., 2010), we approximate plant

dynamics by a ranged choice for effective cabin acceleration between its lower and upper

bounds, -b and A, respectively: cf. Fig. 1(c).

Now we find constraints that ensure safety of the system in operation (discrete and continuous

invariants) using iterative refinement process of (Platzer A., 2010).

We will explain this process on language generator for the state UP (Fig. 2(b)).

The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived

from Fig. 2(b).

, where, safety specifications are required,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

14

Proof:

Our construction derives from the semantics-preserving decomposition strategy for statecharts

and compositional verification of DEDS (Dewasurendra S.D., 2006; Vidanapathirana, A.C.,

et al, 2011; Vidanapathirana A.C., 2019).

HA are embedded in a subset of Automata representing real actions of in this decomposition

(see Fig.2(b)).

Whereas the discrete-event dynamics are represented by collapsing the embedded HA, the

continuous-variable dynamics are represented by the interaction of HA distributed among

DEDS states.

Since the HA can be translated unambiguously to HP, Platzer’s FOD (first-order logic of

differential equations) analysis can be directly applied to continuous-variable dynamics

embedded in HA to provide a verification complete relative to FOD (Theorem 2.3 of (Platzer

A., 2010).

Given that dL calculus is sound (Theorem 2.1 of (Platzer A., 2010), we now have a sound and

complete verification system that is compositional and still based on HA.

 QED

This lays the foundation for us to develop the remaining results in this paper.

Getting back to determining sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect (c1), whereas

the actual control of components (e.g., motors) is based on detailed models, in the verification

and parameter discovery process for runtime validation, it is difficult to use highly detailed

plant models, and hence, following the approach in (Platzer A., 2010), we approximate plant

dynamics by a ranged choice for effective cabin acceleration between its lower and upper

bounds, -b and A, respectively: cf. Fig. 1(c).

Now we find constraints that ensure safety of the system in operation (discrete and continuous

invariants) using iterative refinement process of (Platzer A., 2010).

We will explain this process on language generator for the state UP (Fig. 2(b)).

The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived

from Fig. 2(b).

 to be true in all executions,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

14

Proof:

Our construction derives from the semantics-preserving decomposition strategy for statecharts

and compositional verification of DEDS (Dewasurendra S.D., 2006; Vidanapathirana, A.C.,

et al, 2011; Vidanapathirana A.C., 2019).

HA are embedded in a subset of Automata representing real actions of in this decomposition

(see Fig.2(b)).

Whereas the discrete-event dynamics are represented by collapsing the embedded HA, the

continuous-variable dynamics are represented by the interaction of HA distributed among

DEDS states.

Since the HA can be translated unambiguously to HP, Platzer’s FOD (first-order logic of

differential equations) analysis can be directly applied to continuous-variable dynamics

embedded in HA to provide a verification complete relative to FOD (Theorem 2.3 of (Platzer

A., 2010).

Given that dL calculus is sound (Theorem 2.1 of (Platzer A., 2010), we now have a sound and

complete verification system that is compositional and still based on HA.

 QED

This lays the foundation for us to develop the remaining results in this paper.

Getting back to determining sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect (c1), whereas

the actual control of components (e.g., motors) is based on detailed models, in the verification

and parameter discovery process for runtime validation, it is difficult to use highly detailed

plant models, and hence, following the approach in (Platzer A., 2010), we approximate plant

dynamics by a ranged choice for effective cabin acceleration between its lower and upper

bounds, -b and A, respectively: cf. Fig. 1(c).

Now we find constraints that ensure safety of the system in operation (discrete and continuous

invariants) using iterative refinement process of (Platzer A., 2010).

We will explain this process on language generator for the state UP (Fig. 2(b)).

The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived

from Fig. 2(b).

, of the state
UP if it is true in the initial state

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

14

Proof:

Our construction derives from the semantics-preserving decomposition strategy for statecharts

and compositional verification of DEDS (Dewasurendra S.D., 2006; Vidanapathirana, A.C.,

et al, 2011; Vidanapathirana A.C., 2019).

HA are embedded in a subset of Automata representing real actions of in this decomposition

(see Fig.2(b)).

Whereas the discrete-event dynamics are represented by collapsing the embedded HA, the

continuous-variable dynamics are represented by the interaction of HA distributed among

DEDS states.

Since the HA can be translated unambiguously to HP, Platzer’s FOD (first-order logic of

differential equations) analysis can be directly applied to continuous-variable dynamics

embedded in HA to provide a verification complete relative to FOD (Theorem 2.3 of (Platzer

A., 2010).

Given that dL calculus is sound (Theorem 2.1 of (Platzer A., 2010), we now have a sound and

complete verification system that is compositional and still based on HA.

 QED

This lays the foundation for us to develop the remaining results in this paper.

Getting back to determining sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect (c1), whereas

the actual control of components (e.g., motors) is based on detailed models, in the verification

and parameter discovery process for runtime validation, it is difficult to use highly detailed

plant models, and hence, following the approach in (Platzer A., 2010), we approximate plant

dynamics by a ranged choice for effective cabin acceleration between its lower and upper

bounds, -b and A, respectively: cf. Fig. 1(c).

Now we find constraints that ensure safety of the system in operation (discrete and continuous

invariants) using iterative refinement process of (Platzer A., 2010).

We will explain this process on language generator for the state UP (Fig. 2(b)).

The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived

from Fig. 2(b).

UP. Idle. Here

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

14

Proof:

Our construction derives from the semantics-preserving decomposition strategy for statecharts

and compositional verification of DEDS (Dewasurendra S.D., 2006; Vidanapathirana, A.C.,

et al, 2011; Vidanapathirana A.C., 2019).

HA are embedded in a subset of Automata representing real actions of in this decomposition

(see Fig.2(b)).

Whereas the discrete-event dynamics are represented by collapsing the embedded HA, the

continuous-variable dynamics are represented by the interaction of HA distributed among

DEDS states.

Since the HA can be translated unambiguously to HP, Platzer’s FOD (first-order logic of

differential equations) analysis can be directly applied to continuous-variable dynamics

embedded in HA to provide a verification complete relative to FOD (Theorem 2.3 of (Platzer

A., 2010).

Given that dL calculus is sound (Theorem 2.1 of (Platzer A., 2010), we now have a sound and

complete verification system that is compositional and still based on HA.

 QED

This lays the foundation for us to develop the remaining results in this paper.

Getting back to determining sufficient conditions that force 𝑐𝑐. 𝑣𝑣 to always respect (c1), whereas

the actual control of components (e.g., motors) is based on detailed models, in the verification

and parameter discovery process for runtime validation, it is difficult to use highly detailed

plant models, and hence, following the approach in (Platzer A., 2010), we approximate plant

dynamics by a ranged choice for effective cabin acceleration between its lower and upper

bounds, -b and A, respectively: cf. Fig. 1(c).

Now we find constraints that ensure safety of the system in operation (discrete and continuous

invariants) using iterative refinement process of (Platzer A., 2010).

We will explain this process on language generator for the state UP (Fig. 2(b)).

The formula FD is found as a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅, where, for instance, we want to

give the safety specification, ∅ = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to be true in all executions, 𝛼𝛼, of the state UP if it

is true in the initial state 𝜑𝜑 = 𝑈𝑈𝑈𝑈. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Here 𝛼𝛼 is the coding of the Kripke structure derived

from Fig. 2(b).

 is the coding of the Kripke structure derived from
Figure 2(b).

Using discrete induction to find FD:
FD is a discrete invariant of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 if the following
formulas are valid:
1.

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

(initialisation) and
2.

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

(induction step).
FD is sufficiently strong if

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 is valid.

FD can be obtained as

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

, where

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 is the actual
motor speed in cabin upward motion.

 The state ‘3’ (UP_ON) in Figure 2(b) corresponds to
the state UP_ON in Figure 1(c), and hence the hybrid
automaton in the latter gets embedded in the former. Let
us consider the state ‘CONTINUOUS’ in Figure 1(c).

 The formula FDif is found as a continuous invariant
of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

, when, for instance, we want to
give the safety specification as

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 encoding of

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

, if the following formulas
are valid:

Runtime validation & HiL testing of complex hybrid systems 401

Journal of the National Science Foundation of Sri Lanka 47(4) December 2019

1.

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 (initialisation) and
2.

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 (induction step).

As in the discrete case, FDif is sufficiently strong if

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 is valid.

Here,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 defines the domain
of continuous variation and D is the set of differential
equations,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

 The differential saturation algorithm of Platzer et al.
(2009) is used to progressively refine the domain, H,
by differential invariants,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

becomes itself an invariant strong enough (reaches a
fixed point,

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

) to imply

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

15

Using discrete induction to find FD:

FD is a discrete invariant of 𝜑𝜑 → [𝛼𝛼∗]∅ iff the following formulas are valid:

1. 𝜑𝜑 → 𝐹𝐹�(initialisation) and

2. 𝐹𝐹� → [𝛼𝛼]𝐹𝐹� (induction step).

FD is sufficiently strong if 𝐹𝐹� → ∅ is valid.

FD can be obtained as 𝜔𝜔� ≥ 0, where 𝜔𝜔� is the actual motor speed in cabin upward motion.

The state ‘3’ (UP_ON) in Fig.2(b) corresponds to the state UP_ON in Fig.1(c), and hence the

hybrid automaton in the latter gets embedded in the former. Let us consider the state

‘CONTINUOUS’ in Fig.1(c).

The formula FDif is found as a continuous invariant of 𝜑𝜑 → [𝐷𝐷˄𝐻𝐻]∅, when, for instance, we

want to give the safety specification as ∅ = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜(𝑒𝑒. 𝑝𝑝 ≥ 𝑚𝑚. 𝑒𝑒𝑝𝑝 ⇾ 𝑒𝑒. 𝑣𝑣 ≤ 𝑚𝑚. 𝑒𝑒𝑣𝑣), iff

the following formulas are valid:

1. 𝜑𝜑˄𝐻𝐻 → 𝐹𝐹��� (initialisation) and

2. 𝐹𝐹��� → [𝐷𝐷˄𝐻𝐻]𝐹𝐹���(induction step).

As in the discrete case, FDif is sufficiently strong if 𝐹𝐹��� → ∅ is valid.

Here, 𝐻𝐻 = 𝑒𝑒𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) defines the domain of continuous variation and 𝐷𝐷 is the set of

differential equations,

𝑒𝑒. 𝑝𝑝′ = 𝑒𝑒. 𝑣𝑣; 𝑒𝑒. 𝑣𝑣′ = 𝑎𝑎; 𝑒𝑒. 𝑣𝑣 0.
The differential saturation algorithm of (Platzer A. et al., 2009) is used to progressively refine

the domain, H, by differential invariants, 𝐹𝐹���, until 𝐻𝐻 ∶= 𝐻𝐻 ˄ 𝐹𝐹��� becomes itself an invariant

strong enough (reaches a fixed point, 𝐹𝐹��� ∶= 𝐻𝐻 ˄ 𝐹𝐹���) to imply ∅.

During runtime, the relevant parameter values are fitted into the invariants, FD and FDif, to

perform an automatic validation of the verification proof.

IV COMPOSITIONALITY OF MODULAR X-IN-THE-LOOP (XIL) TESTING

Our architecture permits both function based decomposition (subsystems in plant control: cabin

movements, cabin door movements, plant inputs, displays etc.) and abstraction based

.

 During runtime, the relevant parameter values are
fitted into the invariants, FD and FDif, to perform an
automatic validation of the verification proof.

Compositionality of modular X-in-the-loop (XiL)
testing

Our architecture permits both function - based
decomposition (subsystems in plant control: cabin
movements, cabin door movements, plant inputs,
displays, etc.) and abstraction - based decomposition
(Vidanapathirana et al., 2013), thus facilitating modular
integration testing in addition to function - based (XiL)
testing performed separately, if compositionality can be
proven. We now demonstrate the compositionality and
soundness of modular tests, and that they are complete
relative to coverage objectives.

A. Modularity and compositionality of tests

Observation 1: Modular HiL tests were done for an
FPGA, which carried the complete controller for elevator
operations: interfacing necessary for the tests was done
by selecting only the relevant input/output ports of the
module concerned, as different from testing an isolated
control module (ECU) implemented on dedicated
hardware.

Observation 2: Real-time simulation was done by
selecting the inputs/outputs for the relevant module on
a complete plant simulator; not for a separate module.

Now we make the claim on compositionality of our
modular tests.

Proposition 2: The control modules implemented on the
system controller can be tested compositionally.

Proof:
Event communication protocols between adjacent FSA
in the semantics preserving translation of statecharts to
a set of communicating FSA have been modelled as port
automata in Dewasurendra (1986);

 Each FSA composed of prioritised synchronous
composition with its respective port structures constitute
a component in the decomposition. They can in turn be
composed to retrieve the original statechart. Hence, the
components are compositional in their semantics.

 We have formally verified the system controller
of our target system using a compositional modular
verification methodology developed for the MoC used
(Dewasurendra, 2006, 2013; Vidanapathirana, 2019).

 Hence observations 1 and 2 above permit to conclude
that the tests are in fact compositional under the same
assumptions made in specifying and verifying the system
control model using the MoC of choice.
 QED

B. Soundness and completeness of tests

Proposition 3: Our HA - based test generation method is
compositional, sound and complete relative to first-order
logic of differential equations.

Proof:
By Proposition 1 in the previous section, our HA based
formal verification method is compositional, sound
and complete relative to first-order logic of differential
equations.

Case 1: Tests for discrete dynamics

Following Ferrante et al. (2016), we run NuSMV (Cimatti
et al., 2015) programmes of language generators resulting
from our statechart decomposition (after collapsing
embedded HA) against negations of CTL (Harel, 1979)
formulas representing individual test objectives (criteria)
to generate counter-examples that become tests covering
required test criteria, thereby overcoming the limitations
of directly translating statecharts as input for algorithms
1 and 2 of Ferrante et al., (2016).

 Tests are sound because the verification based on
these models is sound.

402 S.D. Dewasurendra et al.

December 2019 Journal of the National Science Foundation of Sri Lanka 47(4)

Since the decomposition products can be brought down
as close as desired to basic states, the counter-examples
are guaranteed to be found in finite runs of NuSMV.

Hence, the tests are guaranteed to be complete by
coverage criteria.

Case 2: Tests for continuous dynamics

In this case we generate tests by translating the HA we
extract from language generators [e.g., Figure 2(b)] into
the input language HYDI (an extension of the language
of NuSMV) of the model checker HYCOMP (Cimatti
et al., 2015). The rest of the process is parallel to that of
Case 1 and the proof follows the same arguments therein.

 QED

 In order to conduct CHS research, a prototype
passenger elevator with 150 Kg payload was built inside
the laboratory (Dewasurendra et al., 2011). Essential
operational and safety mechanisms were integrated to the
elevator, with sensors and actuators that are invoked in
different operational modes and a number of interacting
sub systems operating in parallel to make it sufficiently
complex, yet simple enough to serve as a test-bed.

 We will now give details of configuring hardware-in
the-loop tests (Dufor et al., 2005) for integration with
V&V on this test-bed.

Configuring hardware-in-the-loop (HiL) tests for
integration with V&V

Elevator controller modelled using statecharts in
Matlab/Simulink/Stateflow was converted to equivalent
HDL code Verilog and implemented in Xilinx Spartan
3AN FPGA (ECU) (Vidanapathirana et al., 2011) with
3.6 V DC i/o interface circuits. For HiL tests the ECU
was wired to receive user inputs and dSPACE hardware
signals: interface circuits were used between ECU
and dSPACE hardware platforms to achieve electrical
isolation and voltage level shifting.

 HiL testing (Dufor et al., 2005) requires physical
connections between the ECU and the simulated plant
to ensure that communication with the ECU is the same
as in real system. The decomposition of Simulink/
Stateflow control specification of the system done for
compositional formal verification (Vidanapathirana
et al., 2011) helped in configuring compositional HiL
tests: to compile build and simulate in real-time only a
part of the system model at a time and isolating the inputs

and outputs corresponding to the module being tested
(the cabin module) from the complete system controller
(implemented on the ECU).

 The passenger cabin is driven by a three-phase
induction-motor. Dynamic models of the cabin motor,
the inverter based speed/torque control system and the
floor sensor operation in the elevator were implemented
in Matlab/Simullink with real-time workshop using
a fixed time step and uploaded to the TMS 320F DSP
processor - based dSPACE platform as the plant model.

 Matlab/Simulink/dSPACE and Controldesk software
running on a PC were connected to the dSPACE
hardware for online monitoring and regulation of real-
time simulations.

A. Test generation using NuSMV

The tests for required test coverage criteria were
generated using the process described earlier as follows:

Case 1: Test for discrete dynamics:

Consider state coverage criterion with respect to the ‘UP’
language generator [Figure 3(b)] for discrete dynamics:
for each state ‘Si’ of ‘UP’, ∃ at least one run covering Si.
Let Si = <UP_OFF>, which corresponds to responding to
a stop request made while the cabin is moving up.

The Kripke structure (which is used as input format to
model-checker NuSMV) corresponding to ‘UP’ has a run
covering ‘Si’ if
(i) the state ‘Si’ is reachable from the initial state, ‘UP_

Idle’ and
(ii) ∃ a state ‘Sj’ which is reachable from ‘Si’, at which

‘stable’ is satisfied.
This is expressed in the CTL formula,
EF(reachable(Si)˄EF stable).

 We proceed now to translate ‘UP’ to a NuSMV
programme and then run it against (¬EF(reachable(Si)
˄EF stable)).

 Then a counter example is generated, which serves
as a sound test sequence for the coverage criterion
considered.

 Since we only convert to NuSMV programmes,
individual language generators (finite automata) resulting
from our decomposition, which are several degrees of
magnitude smaller in size and complexity than the parent
statechart, the counter examples would always be found

Runtime validation & HiL testing of complex hybrid systems 403

Journal of the National Science Foundation of Sri Lanka 47(4) December 2019

in a finite run, hence our method of test generation is
complete (by the coverage criteria).

 The resulting test sequence is then in format (<present
state>, <input>, (<next state>, <output signal>)), given
as:
(UP_Idle_at_Floor1, U1, UP, mt_UP) (UP, _, UP_ON, _)
(UP_ON, ‘43’, S1, _) (S1, sensor_f2, UP_OFF, ‘57’))
(UP_OFF, ARRIVED, ¬mt_UP) (ARRIVED, UP_Idle_
at_Floor2, _).

Case 2: Test for continuous dynamics

The development is similar to the discrete case, except
that UP language generator augmented with continuous
dynamics to make it a HA, as explained earlier.

 We then translate the resulting ‘UPhybrid’ to an HYDI
programme and run it against the negation of c1, (), to
generate a counter example that serves as a test sequence.

 While running the tests, plant control parameters
inside dSPACE real-time simulation were examined
using dSPACE Control desk software running in PC.
The real-time simulation was controlled through online
adjustment of motor parameters using the same.

 A fixed time step was required for the real-time
simulation on dSPACE hardware platform. Overrun
situations for the processor could arise when the allowed
time gap is not adequate for the execution of a complete
programme cycle and updating the data registers. Larger
time steps may not clearly describe the plant dynamics.

We selected 1 ms time step for the plant simulations after
trying 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0 and 4.0 ms. This
choice had to be compatible with the permitted reaction
latency, ϵ, in Figure 1(c).

Induction-motor dynamic model

To analyse variable speed drives, a dynamic motor model
was developed using ‘space vector’ analysis (Ogbuka
2009; Shah et al., 2012). For fast dynamic response,
precise speed regulation and good dynamic performance,
field oriented control was used for the cabin (induction)
motor (Ogbuka, 2009; Vidanapathirana et al., 2013).

 Details of Matlab/Simulink model for IM vector
control drive, speed controller design and current
controller design, are given in Vidanapathirana (2019).

 When the cabin moves along the elevator shaft,
respective floor sensors give control signals to the
controller.

 The motor shaft rotational angle, θf, required to travel
a linear distance between two adjacent floors for the
prototype elevator, was computed as 10,085 deg.

 The speed reference input to the controller for a
linear distance between two adjacent floors is shown
in Figure 3(c) [cf. moving permission update pattern of
Figure 2(d)].

 For speed regulation, maximum motor speed was
set to 100 rad/s to achieve a linear speed for the cabin;
acceleration and deceleration were set at 8.9 rad/sec2.

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

20

While running the tests, plant control parameters inside dSPACE real-time simulation were

examined using dSPACE Control desk software running in PC. The real-time simulation was

controlled through online adjustment of motor parameters using the same.

A fixed time step was required for the real-time simulation on dSPACE hardware platform.

Overrun situations for the processor could arise when allowed time gap is not adequate for the

execution of a complete program cycle and updating the data registers. Larger time steps may

not clearly describe the plant dynamics. We selected 1ms time step for the plant simulations

after trying 0.2, 0.4,0.6, 0.8, 1.0, 2.0, 3.0 and 4.0 ms. This choice had to be compatible with the

permitted reaction latency, 𝜖𝜖, in Fig. 1(c).

Shaft angle

Motor speed
(rad / sec)

= 640 = 9445 = 10 0850

100

 (a) (b) (c)

(a) Prototype passenger elevator (b) HiL test arrangement (c) Speed reference.

Fig.3. Prototype elevator HiL test setup.

VI. INDUCTION-MOTOR DYNAMIC MODEL

To analyse variable speed drives, a dynamic motor model was developed using “space vector”

analysis (Ogbuka C.U, 2009; Shah S. et al., 2012). For fast dynamic response, precise speed

regulation and good dynamic performance, Field Oriented Control was used for the cabin

(induction) motor (Vidanapathirana A.C. et al., 2013; Ogbuka C.U., 2009).

Details of Matlab/Simulink Model for IM Vector Control Drive, Speed Controller Design and

Current Controller Design, are given in (Vidanapathirana, A.C., 2019).

FPGA FPGA interface

User
inputs

dSPACE
Hardware PC with dSPACE

Figure 3: Prototype elevator HiL test setup.
 (a) Prototype passenger elevator; (b) HiL test arrangement; (c) speed reference

404 S.D. Dewasurendra et al.

December 2019 Journal of the National Science Foundation of Sri Lanka 47(4)

HiL test results

During testing, an arbitrary load torque was applied to
the motor during cabin upward movement. Reference
inputs were the passenger car speed, acceleration and
deceleration. Variation of key system parameters during
the test are shown in Figures 4 (a) to (f).

 The test results revealed that the actual speed followed
the reference speed closely; so did the load torque and
the generated torque as shown in Figures 4(e) and (f).

 In comparison to HiL tests, for MiL tests
(Vidanapathirana et al., 2013) both ECU and plant
models were implemented in Matlab/Simulink:
simulation parameters could be selected with a greater
degree of liberty and time step could be either variable or
fixed, variable time steps giving a faster simulation.

Rectifying implementation level faults

Formal verification confirmed logical conformity to
specifications, HiL tests validated the verification,
but the observed behaviour in the controlled elevator
plant at the implementation level differed sharply from
specifications.

 Avoiding a detailed examination of the installed
software/hardware logic, focus shifted quickly to
electrical/electronic installation.

 An EMI problem was discovered: FPGA inputs
rated at 3.6 V DC are sensitive even for electrical
interferences as small as 0.5 ~ 1 V DC. The 24 V DC
power lines and 3.3 V DC FPGA control lines were

in close proximity. When the 24 V DC relays used to
step-down the sensor voltage to 3.6 V DC and activate
FPGA input ports were switched on and off, electrical
interference caused spurious outputs from the FPGA,
producing erratic behaviour.

 The 24 V DC relays were replaced by an optical
trigger circuit with electrical isolation. FPGA control
signal wiring was rearranged by minimising the effect
from the power lines. FPGA control wiring was replaced
by shielded fieldbus cables with adequate grounding to
overcome electrical interference. This corrected the EMI
problem.

 This would have been discovered in power-
HiL tests. This also justifies runtime validation for
monitoring crucial system properties (closed-loop
stability, robustness margins, or underlying theoretical
assumptions), violation of which could compromise
safety of operation in CHS.

CONCLUSION

A compositional model-based strategy for designing
and maintaining correct-by-design controllers for CHS
was developed and demonstrated. The complexity of
the design, formal verification, test design, testing and
runtime validation has been reduced to levels usable in
industrial practice by providing a problem decomposition
that permits the full exploitation of parallelism inherent
in the physical system, thus enabling concurrent
computation. Soundness of the strategy is maintained
by using consistent formal models at each stage and
completeness of solutions relative to the specifications is
guaranteed up to the levels of abstraction used.

Event No. Event Description

7 governor Limit switch –governor activated
13 motor_overload motor_overload
41 up_req Upward movement request
42 down_req Downward movement request
43 up_immed Stop request at immediate upper floor
44 down_immed Stop request at immediate down floor
47 more_up_req There are requests which need further car upward movements
48 more_down_req There are requests which need further car downward movements
49 no_req The car is stopped and there are no further requests made
50 en(UP_OFF) Entering the UP_OFF state of the statechart
57 t_pf While car is moving up it is stopped at a given floor due to a stop request

Table 1: Discrete events description

Runtime validation & HiL testing of complex hybrid systems 405

Journal of the National Science Foundation of Sri Lanka 47(4) December 2019

 Runtime Validation and Hardware in the Loop (HiL) Testing of Complex Hybrid Systems

22

VII. HiL TEST RESULTS

 (a) (b)

 (c) (d)

 (e) (f)

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3"U
1"

 re
qu

es
t b

ut
to

n
sta

tu
s

time (s)

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3Fl
oo

r_
1

,
m

ot
or

_u
p

si
gn

al
s

time (s)

Floor_1 sensor
motor_up

0
20
40
60
80

100
120

0 1 2 3

ro
to

r s
pe

ed
 (

ra
d/

s)

time (s)

reference

actual

-60

-40

-20

0

20

40

60

0 1 2 3

st
at

or
 p

ha
se

 A
 c

ur
re

nt
 (A

)

time (s)

0
2000
4000
6000
8000

10000
12000

0 1 2 3

ro
to

r a
ng

le
 (d

eg
)

time (s)

0
2
4
6
8

10
12
14
16

0 1 2 3

to
rq

ue
 (

N
m

)

time (s)

motor torque
load troque

Figure 4: HiL test results.
 (a) U1 passenger request; (b) floor_1 and motor_up signals; (c) reference and actual cabin speeds;

(d) stator phase A current; (e) rotor angle; (f) motor generated and applied load torque.

With minimal additional work, system parameters for
degraded performance could be computed based on an
online simulation of the currently configured system as

in (Vinczea et al., 2006; Pugi, 2007), or using the runtime
validation system as an online monitoring system
(Davydov and Keyno 2016).

406 S.D. Dewasurendra et al.

December 2019 Journal of the National Science Foundation of Sri Lanka 47(4)

Acknowledgement

The authors acknowledge the University of Peradeniya
for the Research Grant (RG/2006/32/E), the staff of the
Department of Electrical and Electronic Engineering,
sub-warden of the Ramanathan Hall of Residence and
the colleagues from the CECB and Schneider Electric
Co. Ltd.

REFERENCES

Abrial J.-R. (2010). Modelling in Event-B. System and Software
Design. Cambridge University Press, Cambridge, UK.

 DOI: https://doi.org/10.1017/CBO9781139195881
Aceto L., Inglfsdttir A., Larsen K.G. & Srba J. (2007). Reactive

Systems: Modelling, Specification and Verification.
Cambridge University Press, Cambridge, UK.

 DOI: https://doi.org/10.1017/CBO9780511814105
Alur R. (2011). Formal verification of hybrid systems.

Proceedings of the 9th ACM international Conference on
Embedded Software (EMSOFT’ 11), Taipei, Taiwan, 9–14
October, pp. 273-278.

 DOI: https://doi.org/10.1145/2038642.2038685
Alur R., Courcoubetis C., Halbwachs N., Henzinger T., Ho

P.H., Nicollin X., Olivero A., Sifakis J., Yovine S. (1995).
The algorithmic analysis of hybrid systems. Theoretical
Computer Science 138:3 – 34

 DOI: https://doi.org/10.1016/0304-3975(94)00202-t
ARTEMIS Project MBAT (2005). Combined Model-based

Analysis and Testing of Embedded Systems. Available at
http://www.mbat-artemis.eu/home/, Accessed 15 January
2018.

Belta C., Boyan Y. & Ebru A.G. (2017). Formal Methods for
Discrete-Time Dynamical Systems, Springer, USA.

 DOI: https://doi.org/10.1007/978-3-319-50763-7.
Bijl V., Rensink M.A. & Tretmans J. (2003). Compositional

Testing With Ioco. LNCS Book Series, volume 3395, pp.
86–100. Springer, Germany.

 DOI: https://doi.org/10.1007/978-3-540-24617-6_7.
Bringmann E. Kramer A. (2008). Model-based testing of

automotive systems. Proceedings of the 2008 International
Conference on Software Testing, Verification and
Validation (ICST’08),Lillehammer, Norway, 9–11 April,
pp. 485–493.

 DOI: https://doi.org/10.1109/ICST.2008.45.
Bringmann E. & Kramer A. (2006). Systematic testing of the

continuous behaviour of automotive systems. Proceedings
of the 3rd International Workshop on Software Engineering
for Automotive Systems (SEAS ’06) (Compiled by ACM),
Shanghai, China, 23–23 May, pp. 13–20.

 DOI: https://doi.org/10.1145/1138474.1138479.
Chaochen Z., Ji W. & Ravn A.P. (2005). A formal description

of hybrid systems. In: Hybrid Sytem III, Lecture Notes
in Computer Science, LNCS 1066 (eds. R. Alur, T.A.
Henzinger & E.D. Sontag) pp. 511–530. Springer-Verlag,
Germany.

 DOI: https://doi.org/10.1007/BFb0020972.

Cimatti A., Griggio A., Mover S. & Tonetta S. (2015). HyComp:
an SMT-based model checker for hybrid systems. In:
Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, LNCS 9035
(eds. C. Baier & C. Tinelli), pp. 52–67. Springer, Berlin,
Germany.

 DOI: https://doi.org/10.1007/978-3-662-46681-0_4.
CRYSTAL (2016). CRiticalsYSTem engineering Acceleration.

Available at http://www.crystal-artemis.eu/, Accessed 20
January 2018.

Daca P., Henzinger T.A., Krenn W. & Nickovic D. (2014).
Compositional specifications for ioco testing. Proceedings
of the Seventh IEEE International Conference on Software
Testing, Verification and Validation (ICST ‘14)Washington
DC, USA, 31 March – 04 April, pp. 373–382.

 DOI: https://doi.org/10.1109/ICST.2014.50.
Davydov Y. & Keyno M. (2016). Longitudinal dynamics in

connected trains. Procedia Engineering 165: 1490–1495.
 DOI: https://doi.org/10.1016/j.proeng.2016.11.884.
Dewasurendra S.D. (2013). Formal verification strategy for

statechart based design of reconfigurable control of high
integrity reactive systems. “ENGINEER”, Journal of the
Institution of Engineers, Sri Lanka 46(2):13–33.

 DOI: https://doi.org/10.4038/engineer.v46i2.6907.
Dewasurendra S.D. (2017). Fully Abstract Compositional Fix-

point Semantics for Statecharts to Model Safety-critical
Complex Reactive Systems. (Submitted to IEEE Trns. in SE).

Dewasurendra S.D., Abayaratne S.G. & Vidanapathirana
A.C. (2011). Development of an elevator prototype for
multi-disciplinary research in complex reactive systems.
Annual Transactions, volume 1– part B. The Institution of
Engineers, Sri Lanka,.

Dewasurendra S.D., Abayaratne S.G. & Vidanapathirana
A.C. (2011). Develpoment of an elevator prototype for
multi-disciplinary research in complex reactive systems.
Proceedings of the 2011 Peradeniya University Research
Sessions (PURSE ’11). Peradeniya, Sri Lanka.

Dewasurendra S.D. (2006). Statecharts for reconfigurable
control of complex reactive systems: a new formal
verification methodology. Proceedings of the First
International Conference on Industrial and Information
Systems (ICIIS 2006), Peradeniya, Sri Lanka, 8–11
August. Faculty of Engineering, University of Peradeniya,
Sri Lanka.

 DOI: https://doi.org/10.1109/ICIIS.2006.365736.
Drusinsky D. & Harel D. (1989). Using statecharts for

hardware description and synthesis. IEEE Transactions on
Computer-Aided Design 8(7):

 DOI: https://doi.org/10.1109/43.31537.
Dufor C., Aboyrida S. & Belanger J. (2005). Hardware in-the-

loop simulation of power drives with RT-lab. Proceedings
of the International Conference on Power Electronics and
Drives Systems (PEDS 2005), volume 2, 28 November–01
December, pp. 1646–1651

 DOI: https://doi.org/10.1109/PEDS.2005.1619952.
Ferrante O., Marazza M. & Ferrari A. (2016). Formal specs

verifier ATG: a tool for model-based generation of high
coverage test suites. Proceedings of The 8th European

Runtime validation & HiL testing of complex hybrid systems 407

Journal of the National Science Foundation of Sri Lanka 47(4) December 2019

Congress, Embedded Real-time Software and Systems
(ERTS22016), Toulouse, France, 27–29 January.

Harel D. (1987). Statecharts: A visual formalism for complex
systems. Science of Computer Programming 8(3): 231–275.

 DOI: https://doi.org/10.1016/0167-6423(87)90035-9
Harel D. (1979). First-order Dynamic Logic. Lecture Notes in

Computer Science LNCS 68, Springer, New York, USA.
 DOI: https://doi.org/10.1007/3-540-09237-4.
Henzinger T.A. (1996a). The theory of hybrid automata.

Proceedings of the 11th Annual IEEE Symposium on Logic
in Computer Science (LICS 1996), New Brunswick, NJ,
USA, 27–30 July, pp. 278–292.

 DOI: https://doi.org/10.1109/LICS.1996.561342.
Hoare C.A.R. (1985). Communicating Sequential Processes.

Prentice-Hall International, USA.
Kim J. & Lee I. (2003). Modular code generation from hybrid

automata based on data dependency. Proceedings of the 9th
IEEE Real-Time and Embedded Technology Applications
Symposium. Toronto, Ontario, Canada.

Liu J. & Liu J. (2014). A formal framework for hybrid event
B. Electronic Notes in Theoretical Computer Science
(ENTCS) 309(C): 3–12.

 DOI: https://doi.org/10.1016/j.entcs.2014.12.002.
Malik A. & Roop P. (2015). A unified framework for modeling

and implementation of hybrid systems with synchronous
controllers. ArXiv 2015. Available at https://arxiv.org.
Accessed 20 January 2018.

Malik A. & Roop P. (2019). System and method for emulating
hybrid systems. US Patent Application Publication, Pub
No: US 2019/0179988 A1, Accessed 21 July 2019.

Moreira A.M., Hentz C., Deharbe D., de Matos E.C.B.,
Neto J.B.S. & de Medeiros Jr V. (2015). Verifying code
generation tools for the B-method using tests: a case study.
Proceedings of the International Conference on Tests and
Proofs (TAP’15). L’Aquila, Italy, 22–24 July. Also in
LNCS, volume 9154. Springer, New York, pp 76–91.

 DOI: https://doi.org/10.1007/978-3-319-21215-9_5.
Müller O. & Scholz P. (1997). Functional specification of

real-time and hybrid systems. Proceedings of Hybrid and
Real-Time Systems (HART ’97), Grenoble, France. Also in
LNCS,volume 1201. Springer Verlag.

 DOI: https://doi.org/10.1007/BFb0014732.
Namjoshi K.S. & Trefler R.J. (2010). On the completeness of

compositional reasoning methods. ACM Transactionss on
Computational Logic 11(3):16:1–16:22.

 DOI: https://doi.org/10.1145/1740582.1740584.
Nielsen B. (2014). Towards a method for combined model-based

testing and analysis. Proceedings of the 2ndInternational
Conference on Model-Driven Engineering and Software
Development, Lisbon, Portugal, 07–09 January, pp. 609–
618.

Ogbuka C.U. (2009). Dynamic modelling and simulation of a

asynchronous motor driving a mechanical load. The Pacific
Journal of Science and Technology 10(2): 77–82.

Perko L. (2006). Differential Equations and Dynamical
Systems, 3rd edition. Springer-Verlag, USA.

Platzer A. (2010). Logical Analysis of Hybrid Systems: Proving
Theorems for Complex Dynamics. Springer, Heidelberg,
Germany.

Platzer A. & Clarke E.M. (2007). The image computation
problem in hybrid system model checking. LNCS 4416, pp
473–486, 2007. Springer-Verlag, Germany.

 DOI: https://doi.org/10.1007/978-3-540-71493-4_37.
Platzer A. & Clarke E.M. (2009). Computing differential

invariants of hybrid systems as fixedpoints. Proceeding
of the 20th International Conference on Computer Aided
Verification (CAV 2008), Princeton, USA, 7–14 July.

 DOI: https://doi.org/10.1007/s10703-009-0079-8.
Pugi L., Fioravanti D. & Rindi A. (2007). Modelling the

longitudinal dynamics of long freight trains during the
braking phase, Proceedings of the 12th IFToMM World
Congress, Besançon, France, 17–21 June, pp. 602–608.

Shah S., Rashid A. & Bhatti M.K.L. (2012). D-Q Modelling of
3-phase Induction-motor using Matlab/Simulink. Canadian
Journal on Electrical and Electronics Engineering 3(5):

Sloth C. & Wisniewski R. (2011). Verification of continuous
dynamical systems by timed automata. Formal Methods in
System Design 39(1): 47–82.

 DOI: https://doi.org/10.1007/s10703-011-0118-0.
Tretmans J. (2008). Model based testing with labelled transition

systems. In: Formal Methods and Testing (eds. R. Hierons,
J. Bowen & M. Harman), pp. 1–38. Springer-Verlag,
Germany.

 DOI: https://doi.org/10.1007/978-3-540-78917-8_1.
Vidanapathirana A.C. (2019). Correct-by-design methodology

for the control of safety-critical complex reactive systems.
PhD Thesis, University of Peradeniya, Sri Lanka.

Vidanapathirana A.C., Dewaurendra S.D. & Abeyaratne S.G.
(2013). Model in the loop testing of complex reactive
systems. Proceedings of the 7th International Conference
on Industrial and Information Systems (ICIIS), Kandy, Sri
Lanka.

 DOI: https://doi.org/10.1109/ICIInfS.2013.6731950.
Vidanapathirana A.C., Dewaurendra S.D. & Abeyaratne

S.G. (2011). Statechart based modelling and controller
implementation of complex reactive systems, Proceedings
of The 6th International Conference on Industrial and
Information Systems (ICIIS), 16–19 August, Kandy,
Sri Lanka.

 DOI: https://doi.org/10.1109/ICIINFS.2011.6038120.
Vinczea B. & Tarnaib G (2006). Development and analysis

of train brake curve calculation methods with complex
simulation. Advances in Electrical and Electronic
Engineering (AEEE) 5(1-2): 174–177.

