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Abstract

Reference ranges and control limits are used in many settings – for example, to assess a person’s 
health or to monitor the stability of a manufacturing process. Such ranges are established based on a 
baseline sample of what is considered normal data, but it is not possible to always avoid a few outliers 
being present even in this sample. If, as is common, the range is calculated using statistics, such as the 
mean and standard deviation, which could be influenced by outliers, then the use of such a range could 
adversely affect the decisions made. This can be avoided by constructing the reference range using 
statistics that are resistant to outliers. In this paper, we studied possible approaches and found two 
methods that had superior performance overall: one based on MM-estimation and one based on a form 
of Winsorization.  
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Introduction 

Reference ranges and control limits are used 
in various settings. In medicine, a reference 
range (often also called a normal range) is an 
interval of values that is deemed normal for a 
healthy person; a value outside the reference 
range limits could indicate a potential health 
issue. In manufacturing, control limits define 
the acceptable range of results for a process; 
a value outside the control limits could be 
indicating that the process being monitored 
is out of control. In agriculture, control limits 
have been used to monitor harvest yields. In 
environmental studies, control limits have 
been used to monitor air pollution levels.In 
general, a laboratory or a manufacturer will 
establish a reference range for a variable by 

testing a random sample of individuals from 
the “normal” population (we will refer to 
this sample as the “baseline”) and then using 
these baseline values to derive an interval 
which is such that the probability, β, that 
a random observation from the “normal” 
population would be large (usually β = 95% 
or 99%). Such β-level reference ranges are 
usually constructed using the mean, x, and 
standard deviation, s, of the baseline values. 
Some references for estimation procedures 
are Solberg (1984), Harris and Boyd (1995), 
Amaratunga (1997), Linnet (2000) and Wright 
and Royston (1999).In practice it is difficult to 
totally avoid a few atypical values or outliers 
being present in the baseline sample used to 

01

Page 01-07

DOI: https://doi.org/10.4038/sjhs.v3i1.45

Reference Ranges and Control Limits that are Resistant to Baseline Outliers



02

Reference Ranges and Control Limits that are Resistant to Baseline Outliers Page 01-07

construct a reference range. If that happens, 
then this can impair the development of the 
reference range if it was constructed using 
statistics such as the mean and standard 
deviation which can be unduly affected by 
outliers. In such situations, it is useful to 
consider reference ranges constructed using 
statistics that are resistant to sampling from 
contaminated distributions. Thus, for example, 
outlier-removal techniques and M-estimators 
have been recommended for deriving clinical 
reference ranges (Horn et al, 1998, Horn et 
al, 2001) and M-estimates of dispersion have 
been suggested for constructing manufacturing 
process control charts (Shahriari et al., 2009). 
The value of considering such approaches 
in data analysis in general was pointed out 
by Tukey (1960), in what is regarded as the 
seminal paper on robust statistics. In this 
paper, we will study some possible approaches 
for this particular problem – the construction 
of reference ranges.

Materials and Methods

The primary purpose of a reference range 
is to identify atypical values. Let f(.) be the 
probability distribution function of the typical 
values and let x be a new observation. If an 
interval Ι = (a,b) is to be used as a reference 
range, it would clearly be desirable for Ι to be 
such that Prob(ϰϵΙ)=∫  f(u)du is large if x is 
a typical value and small if x is an atypical 
value. Hence, we use the “positive rate”,

PR = 1−Ε[∫  f(u)du]                                    (1)

as a statistic to assess the performance of 
potential reference ranges. PR would be 
small for typical values and large for atypical 
values. We explore five methods (labeled RR1 
to RR5) for computing reference ranges.

Method RR1

First, we will assume that the typical 
values are Normally distributed or have 
been transformed to Normality, i.e., they 
have a N(μ,σ2) distribution, while atypical 
values are such that they have a N(μ+Δ,σ2) 
distribution where Δ≠0. In this case, it is 
natural to seek a reference range of the form:                                                                                                
Ι = (ϰ ± ks). Large values of k will result in 
small values of PR if Δ=0 and large values 
of PR if Δ≠0; in fact, the value of PR will 
increase monotonically with Δ. Making k too 
small will result in too many atypical values 
being judged typical while making k too large 
will result in the opposite. In order to balance 
this, we could choose k to be such that PR=β 
for a reasonable value of β when Δ=0. This 
produces a β -expectation tolerance interval 
and, as it turns out, also a β -level prediction 
interval (Guttman, 1970). The corresponding 
value of k is

k = t((1-β/2),(n-1))√(1+1/n)                                  (2)

where ta,n denotes the a-th quantile of a t 
distribution with n degrees of freedom (Wilks, 
1941). We call this reference range RR1.

Method RR2

Since both ϰ and s can be influenced by 
outliers, we can replace them in RR1 by the 
Median and MAD (median absolute deviation) 
respectively since they are highly resistant to 
outliers – they both have breakdown point 
50% meaning that they can tolerate up to 
about 50% of the sample being outliers. This is 
reference range RR2. A drawback however is 
that the Median and MAD have low efficiency 
at the Normal if the baseline sample size is 
small.
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Method RR3

Another possibility to avoid the reference 
range being overly influenced by baseline 
outliers is to use a robust method. Robust 
estimates strive to provide good efficiency 
at the nominal Normal distribution as well 
as resistance to outliers. Horn et al (1998) 
suggested using M-estimates and showed 
that doing this, besides providing resistance 
to outliers, also protects against imperfect 
transformations to Normality. Here we use 
MM-estimation, an extension of M-estimation, 
that has somewhat better performance (Yohai, 
1987) – it produces estimators with breakdown 
point 50% and high efficiency at the Normal. 
This is reference range RR3.

Method RR4

A common exploratory approach for detection 
and management of outliers is to run an outlier 
test and to eliminate any outliers found. For 
example, we could calculate standardized 
residuals using the median, M, and MAD, i.e., 
calculate ui=(ϰi−M)/MAD, and designate as 
outliers any values whose ui>k, where k is the 
value used in method RR1. However, instead 
of eliminating such values, which could lead 
to bias, we can instead set such values equal 
to the cutoff, k, a form of Winsorizing (Dixon, 
1960) We can then use method RR1 on the 
“cleaned-up” data as it now will not contain 
any outliers. This is reference range RR4.

Method RR5

In the event that, normality or a transformation 
to normality is not tenable, nonparametric 
reference ranges of the form Ιr = (x(r), x(n-r+1)), 
where x(r) denotes the rth order statistic (r<n/2), 

can be considered. Setting r small (i.e., setting 
the limits of the reference range close to the 
sample extremes) will result in small values of 
PR if Δ=0, but could also result in small values 
of PR if Δ≠0. In analogy with the discussion 
related to method RR1, it seems best to select 
r to be as large as possible but with PR set to 
its prespecified value of β when Δ=0. This is 
obtained by setting h=(n+1)(1-β)/2 (Guttman, 
1970) and, if h is an integer, letting r=h. If h is 
not an integer and h=s+f, where s is its integer 
part and f is its fractional part, the left endpoint 
of Ι is determined by linearly interpolating 
between the sth and (s+1)th order statistics: 
(1-f )x(s) + fx(s+1), with the right endpoint of 
Ι determined analogously (Hall and Rieck, 
2011). We shall refer to this as reference range 
RR5. These five methods are summarized in 
Table 1.

Table 1.
List of methods for deriving a reference 
range.

Method Formula Notation details
RR1 (ϰ ± ks) ϰ are the mean and standard 

deviation
RR2 (M ± kMAD)  M and MAD are the median 

and median absolute deviation
RR3 (ϰMM ± ksMM)  ϰMM  and sMM are the MM-

estimates of the mean and 
standard deviation

RR4 (ϰWIN ± ksWIN) ϰWIN and sWIN are the mean 
and standard deviation after 
replacing large values at the 
high and low ends with cutoff 
values

RR5 (x(r), x(n-r+1)) x(r) is the rth order statistic, 
where r is defined in the 
Methods section

Note: The value of k is the same in methods 
RR1 to RR4 and is given in Equation (2). 

Note that γ-content β-level tolerance intervals 
have been suggested in the literature for use 
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as reference ranges (see e.g., Liu et al., 2021). 
One rationale for this suggestion is that if a 
reference range based on a prediction interval 
is used repeatedly, it will, due to multiplicity, 
falsely flag too many typical values as atypical 
- a reference range based on a tolerance 
interval is less likely to do this. However, 
intervals based on tolerance intervals will be 
too wide (unless γ and/or β are set low) and 
many truly atypical values would miss being 
detected (Wellek & Jennen-Steinmetz, 2022). 
In practice, the balance desired between 
the rates of correct and incorrect decisions 
should be considered carefully before a 
method is implemented. Since β-level 
prediction intervals are directly consistent 
with the objective of constructing an interval 
I such that a fresh random observation from 
the baseline distribution falls into I with a 
specific probability, only such intervals were 
considered in this paper.

Results and Discussion

We ran a series of simulations to compare 
the above 5 reference range construction 
methods. The simulations were carried out as 
follows. A sample {zi} of size n was drawn 
from a N(0,1) distribution and a sample {di} 
of size n was drawn from a Bernoulli(p0) 
distribution. Then we set xi = zi+Δ0di. Here 
p0 and Δ0 are respectively the probability and 
mean shift of an atypical value in the baseline 
sample. Reference ranges were calculated 
using each of the methods, RR1 to RR5. The 
probability, p(Δ; n, p0, Δ0) , of an observation 
from a N(μ+Δ,s2) distribution being declared 
atypical was calculated for several different 
values of Δ using methods RR1 to RR5 with 
β=95%. This was repeated 500 times and the 
mean, PR(Δ; n, p0, Δ0), and standard deviation, 

SDPR(Δ; n, p0, Δ0), of the p(Δ; n, p0, Δ0) values 
were recorded.

The above simulation was carried out for 
several different values of n, p0, Δ0 and Δ. 
Table 2a shows the results for situations in 
which the baseline sample does not contain 
any atypical values, so that p0=Δ0=0.

Table 2.
The simulation results for situations in which 
the baseline sample (a) does not contain any 
atypical values, so that p0=Δ0=0 and (b). 
contains on average 10% atypical values 
(i.e., p0=0.1) with mean 3 (i.e., Δ0=3).

(a).
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(b).

Simulation results are reported for n=10, 30, 
50; and Δ=0, 1, 3, 5. Note that the PR when 
Δ=0 is an estimate of the false positive rate 
(FPR) of the method. Table 2b shows the 
results for situations in which the baseline 
sample contains on average 10% atypical 
values (i.e., p0=0.1) with mean 3 (i.e., Δ 0=3). 
Here, too, simulation results are reported for 
n=10, 30, 50; and Δ=0, 1, 3, 5. Figure 1 is a 
scatterplot of PR vs Δ when n=30 for both the 
normal and contaminated situations.

Figure 1.

Plot of the simulation results for N=30. The 
black lines show the PR values for situations 
in which the baseline sample does not 
contain any atypical values, so that p0=Δ0=0, 
while the red lines show the PR values for 
situations in which the baseline sample 
contains on average 10% atypical values 
(i.e., p0=0.1) with mean 3 (i.e., Δ0=3). The 

plotting character refers to the reference 
range construction method (RR1 to RR5).

When there were no atypical values in the 
baseline data, i.e., when (p0, Δ0)=(0,0), the 
conventional method RR1 and the robust 
methods RR3 and RR4 all performed equally
well - they had FPR of 5% as desired and had 
high PR when atypical values were present in 
the test data. On the other hand, method RR2 
had a somewhat higher FPR when the sample 
size was small and it had a higher variability 
than all the other methods due to the lower 
efficiency of the Median and MAD. Method 
RR5 also had high FPR and high variability 
that was too high at small sample sizes.

When there were atypical values in the baseline 
data, the performance of the conventional 
method RR1 deteriorated substantially, both in 
terms of FPR and its ability to detect atypical 
values when they were present in the test 
data. RR5 also had overall weak performance 
in this case. The methods based on resistant 
statistics, RR2, RR3 and RR4, all performed 
well except that RR2 had somewhat high FPR 
when the sample size was small and high 
variability.The findings from the simulation 
are consistent with the properties of the 
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statistics used to derive them. The mean and 
standard deviation are not at all resistant 
to outliers having zero breakdown point. 
The median and MAD are highly resistant 
to outliers having 50% breakdown point, 
but have high variability and are inefficient 
at the normal especially when the baseline 
sample size is small. MM-estimators and 
Winsorized estimators are robust; they have 
high efficiency at the normal and also when 
there are outliers in the data or when there 
is some kurtosis in the data (in the event of 
skewness, the data could be transformed to 
symmetry). Therefore, constructing reference 
ranges using these latter estimators is likely to 
lead to better performance overall.

Conclusions

We considered five methods for constructing 
reference ranges and compared their 
performance both in the absence as well as in 
the presence of atypical values in the sample 
on which the ranges were based. While the 
conventional method for constructing reference 
ranges based on mean and standard deviation 
worked well when there were no atypical 
values in the baseline sample, its performance 
deteriorated when there were some. On the 
other hand, methods based on robust statistics 
(methods RR3 and RR4) performed well in 
both situations. Therefore, we recommend 
using a robust approach, in particular either 
RR3 (based on MM-estimates) or RR4 (based 
on a form of Winsorized statistics), when 
constructing reference ranges.
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