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ABSTRACT

We examine the rate of decay to zero of the tail dependence coefficient of
the bivariate skew t distribution which is obtained via normal variance-mean
mizture in a case where there is no asymptotic tail dependence. Our result
helps to explain the difference in performance in model fitting between this
skew t distribution and the one based on the variance mizing of the bivariate
skew-normal distribution. This t distribution always displays asymptotic
tail dependence, as happens in the symmetric case which is common to both

models.
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1 Introduction

The skew t distribution, introduced in Demarta and McNeil [1]|, can be
defined as the distribution of a random vector X = (X1, X2)? in a normal

variance-mean mixture as
X=0V'+V 27 (1)

where Z ~ N3(0, R) is the bivariate normal distribution with mean 0 and
1

correlation matrix R = (p f), is independently distributed of V ~ I'(%, 2)

with n > 0 i.e. a gamma distribution with density

1)3
fly) = 2) yg_le_gy, y>0; =0, otherwise. (2)

I'(3)

—~
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7 is the shape parameter and is usually termed as the degrees of freedom
of the ¢ distribution. @ = (01,602)7 € R? controls the asymmetry of the
distribution and the symmetric case is then obtained as 8 = 0.

The coefficient of lower tail dependence of a (bivariate) random vector
X = (X1, X5)" with marginal inverse distribution functions Fr L and F2_1
is defined as

Ap = lim Ap(u) 3)
if this limit exists, where
Ar(u) = P(X1 < F ' (w)| X2 < Fy ' (u)). (4)

The coefficient of asymptotic upper tail dependence of a random vector X

can be defined similarly as

Av = lim Av(u), where Apy(u) = P(X1 > F{ ' (u)|Xe > Fyt(u).  (5)
1
In this note, we will mainly focus on the former dependence coefficient (3).
X is said to have asymptotic lower tail dependence if the limit A7 exists
and is positive. If A\ = 0, then X is said to be asymptotically independent
in the lower tail. This quantity provides insight on the tendency for the
distribution to generate joint extreme low values of X7, X5 since it measures
the strength of dependence (or association) in the lower tails of a bivariate
distribution. If the marginal distributions of these random variables are
continuous, then from (4), it follows that Az (u) can be expressed in terms
of the copula of X, C(u1,u2), as
M) = S (6)

u

The quantity Az (u) and the limit Az if it exists, is thus invariant under
strictly increasing transformations of the marginal random variables, which
is a necessary property of any measure of association. Nelsen [2] is a now-
standard introduction to copulas.

Tail dependence for the skew ¢ distribution defined in (1) is discussed in
Banachewicz and van der Vaart [3]. We will restate their Theorem 2.1 of
with small changes making them consistent with our context.
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Theorem 1: The lower tail dependence coefficient for X defined in (1) with
0 = (01,0)7 is given by

(1) If #; = 62 = 0 (i.e. the bivariate symmetric ¢), then

Y

AL = 2P(tys1 < — (77+111r(1p—P)>

(2) If 0y and 62 > 0, then A\, =0; (3) If 61 > 0 and 02 < 0, then A\, =0
(4) If 61 and O3 < 0, then A\, =1; (5) If 61 = 0 and 63 > 0, then Ay = 0;

(6) If 61 = 0 and 03 < 0, then

AL = /01 (1 - @((235(\/7;51));1#1!)) du,

where @ is the standard normal distribution function and ¢, is the Stu-

dent’s t distribution with 1 4+ 1 degrees of freedom.

The tail dependence coefficient for symmetric ¢ distribution, i.e. Case
(1), was first found by Embrechts, McNeil and Strumann [4] and reproduced
in Demarta and McNeil [1].

As noted by Banachewicz and van der Vaart [3|, the introduction of
skewness to the symmetric ¢ distribution as in (1) leads to trivial values - 0
or 1 - of the limit of (3) in most cases. This was used in Fung and Seneta [5]
to explain the difference in performance (in model fitting to simulated and
real data) from another skew ¢ distribution. This alternative bivariate skew
t distribution is obtained from variance-mixing the bivariate skew-normal
distribution, Z ~ SN3(0, R) (Azzalini and Dalla Valle [6]), inversely with a

gamma random variable V ~ I'(, 1), i.e.
X =V2Z, (7)

where Z is independently distributed of V. This skew ¢ distribution pos-
sesses nontrivial values of tail dependence under all conditions. The proof
of this result can be found in Fung and Seneta [7]. However, it should also
be noted that positivity of Az, as defined in (3) is too extreme a measure

as discussed in Fung and Seneta [8], since under independence of marginals,
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the numerator in (6) is u? and the limit A in (3) is zero. Now, if the nu-
merator is of the order of w7, for n > 1, the limit is also zero but we are
far from independence for 7 just above unity. Then we have no asymptotic
lower tail dependence but substantial probability mass in the joint tail of
the joint distribution (that is, in the lower rectangle with apex given by
(u,u)) and so the behaviour of C(u,u)/u as a regularly varying function
of positive index as v — 0 was foreshadowed. The authors demonstrated
this in the simplest case of all, the bivariate normal in (Fung and Seneta

[8]) and the result is summarised into the following theorem.

Theorem 2: Suppose the vector X = (X1, X2)T ~ No(0,%) where ¥ =

(7). Then

a() = A i ),

1 —p
L(u) ~ 24/ Jz(—éhr log u) =

is a slowly varying function (SVF) at 0%.

as u — 07, where

The regularly varying index of Ap(u) is %ﬁ and it tends to zero as p — 1.
In other words, as the linear correlation p increases, we will see more and
more weight at the tail of the joint distribution and Ar(u) largely reflects
the size of the measure of linear correlation but this does not contribute

towards asymptotic tail dependence.

As a result, in order for us to explain accurately the difference in the
tail dependence, we need to find a n > 0 for the skew ¢ distribution defined
in (1) when there is no asymptotic tail dependence, such that

) _ i),
U
as u — 0T for some SVF L(u) at 0. In the present paper, we will restrict
ourselves to focus solely on the case 8; = 03 = 6 > 0 and under this
condition we can show that regularly varying index coincides with that of
the bivariate normal, which means that the tail dependence of the bivariate
skew t decays at the same “polynomial” rate as the one of the bivariate
normal. This is an intriguing result because one would expect the tail
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dependence for the skew ¢ distribution to decay more slowly than in the
normal distribution especially when the degrees of freedom 7 is small since
t distribution is renowned for its heavy tails. But the only asymptotic
difference is in the nature of the slowly varying multiplier, L(u).

The paper is organised as follows: in Section 2, we review the skew ¢ and
its related distribution. In Section 3, we provide our main result and find
the regularly varying index of the tail dependence coefficient for bivariate
skew ¢ distribution defined in (1).

2 Preliminaries

For our quantitative development we need K, (w), the modified Bessel func-
tion of the third kind (Erdélyi et al. [9]) with index 7 € R and for w > 0

which can be represented as

1

K (w) = 3 /000 exp{—%(ufl +u) yu" "t du. (8)

For 7 € R, and as w — oo, we have (See Jgrgensen |?|)

K;(w) = \/Ze—“ (1+0<i>>. (9)

It is convenient for a unified exposition to introduce the notation K (-, -).
For 7 € R, a,b € R, with a and b not simultaneously 0, define K (a,b) as

(3)7 K7 (ab), forreR, a,b> 0;
K, (a,b) = b=27T(7)27 L, for 7,0 > 0, when a = 0; (10)
a¥ T'(—7)277"1, fora >0 and 7 <0, when b = 0,

where I'(+) is the gamma function and K, () is defined in (8). That the
second and third components of the definition (10) are appropriate follows

by continuity.

We shall also need to introduce the univariate skew generalised hyper-
bolic (GH) distribution which is necessary for our analytical development.

A random variable X is said to have a univariate skew GH distribution,
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first introduced in Barndorff-Nielsen [?], when
X|Y ~ N(u+0Y,Yo?) (11)

where Y ~ GIG(p, a,b), which is to say it has density

1 _ 1 _
fara(y) myp 1e:cp(—§(a2y Lb%y), y>0
p\ @,
= 0 otherwise (12)

with p € R, a,b > 0 with a and b not simultaneously 0. Then, using (11),
X has density:

efla—p)/o? (x—p)? 51 0% o1
= — - -7 2 _ 5
Px@) = oy <( 0 ayh (G >2>, TER.

(13)

We now turn our focus back to the skew ¢ distribution defined by (1).
The random vector X = (X1, X5)7 is said to have a skew ¢ distribution, if
it has density:

(n/2) 8% )

1_q ((XTRflx +n)2, OTRAB) . xeR%

Ix(x) = T —
X = i)

(14)
This implies the marginal density of X; is

(n/2)?
I'(3)

By using (15) with (9) and (10), the tail behaviour for X is

Ixi (x) =

2 _
\[re@le_g_%((xQ +n)2,101)), zeR.  (15)

n n
w2 hit -, h <o,
+12 °
~d DCm? —0:
P(X, < ) ﬁ%ng)" ||, 01 =0; (16)
07{12()75]2 ‘20911|2 |x’_g_1ei291‘x|a 61 > 07

as r — —oo. Consequently, if 1 < 0, then X7 possesses a power tail,
and likewise for X5 if 83 < 0. Discussion on the tail behaviour for skew ¢
distribution can be found in Aas and Haff [10] and Banachewicz and van
der Vaart [3].
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Combining (14) with (15) allows us to find the condition density of
X2.1 = (X2|X1 = y) as

szl(x) =

oy, (52 442 4yt )
- , (17)
K

27m(1 — p?) o ((y +n)2,161)

1
2

for x € R, where a = M + 6% and B(1—p?) = 02— pby. As a result,
(17) is the density of a unlvarlate skew GH distribution, and Xs1 can be

represented as a normal mean-variance mixture:
Xoa|[W ~ N(py + B(1 = p )W, (1 — p" )W),

where W ~ GIG(—3 — %, (v* + 77)%7 161]).

3 Main Result

By L’Hépital’s rule,

lim Ap(w) = lim S _ py 200Y)

u—0+F u—0t U w0t du

as C'(0,0) = 0. Moreover, by some well established basic properties of the
derivative of copulas (see Nelsen [2], pp 11, 36), we have dO(uu) 2P(X5 <
y(u)| X1 = y(u)), where y(u) = F~(u), if ; = 6 = § > 0. Furthermore,
by a result of de Haan (see Seneta [11] p.87), we have

C(u,u) 1/ dC’(w,x)d u L(u) w0+,
0

u u

dx v w41’

if W =2“L(z), w > 0 where L(z) is a slowly varying function.
As a result, in order for us to show that for the skew t distribution
defined in (1),
C(u,u)
—
when 67 = 0, = 05 > 0, it is sufficient for us to find an w > 0 such that

u”L(u), u— 0" (18)

dC(u,u)

= 9P(Xy < y(w)| X1 = y(w) = L (u) (19)
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as u — 07, for some slowly varying function L*(u) and (w+1)L(u) ~ L*(u)
and 6; = 65 = 6 > 0. We summarise our main result into the following
theorem.

Theorem 3: For a random vector X defined in (1) with 8; = 62 =6 > 0, we
have

*
u = L*(uw)ue,
where
_1
ogu r(2)20 2
log ( (Hogulyt+s — =, ﬂu>
() o L) < RRNCILD (Hogul 1 g T(5)20 ) 70
m0(1 — p) 20 20 (g)%@g '

Proof: Set y = y(u) = F; ' (u), so that as u — 0%, y — —oco. Under the
condition of #; = 0 = 0 > 0, we have

P(X; <y|X1=y)=Ew (P(Z < (1- P)ZJl—_Qp(zl)I;/p)W)> ’

where W ~ GIG(—% — 1, (y? + 77)%, |6]). Since

1 2 1 2
——e T <P(Z<y)<l|yt——=eT7,

Vor V2m

where Z ~ N(0,1), for |y| > 1 (See Feller [12], Chapter VII Lemma 2), we
have

Iy~ = yI7?)

2
(1—p>y—e<1—p>w>

_1
Ly (e
V2

dw < By (P(Z < (1—=p)y—0(1—pW

2Ky 1 (V42 +.0) =W

/°° 1=py—0(1-pw
0 V(1= pw

w5 e~ 3 (P Hmw T +0%w)

(1-=py—001-pw
(1—-pHw

)

2
» ,%<M> . o
1-py—00—pw| e V=pw w3~ 2e (W MW +6%w)

oo
S / — dw
0 1-pHw v2m 2K g 1 (Vy* +n.0)
) ,;<M> f
/oo 1-py—0(1-pw e 2 Va-p2)w w_g_%e_%((f""")wil"'gzw) d
= _ w
0 V(1= p?w varm 2K,g,%(\/yz+ ,0)
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,;((1—p>y—e(1—p>w
3 2
€

2
) wo B3 (P Hmw T +0%w)

/Oo 1-py—0601-pw B (1—p?)w .
B =, w
0 (1-p?)w Nox 2K7g7%(\/Z/2T79)
< Ew P(Zg(lip)yie(lfp)w) S/ 1-py—001—puw
(1=p*)W 0 (1 - p?)w
,;(w)
e’ Va-pw w— B3 (P Hmw T +0%w) o)
20

X

ors 21?7%7%(\/3/2—&- ,0)

We will consider the terms in (20) separately. Suppose we focus on the

(1—p)y—001—pw

) 4(%)
e PU Ve ) 33 em s (@R me T 40w

upper bound first and we have
V(L =pPw

I
Vi [
1—p)y||  w
2V27 %7% (Vy?+n,6) Jo

Ver

<

since |(1 — p)y — 0(1 — p)w|~ Lt < [(1 — p)|y|]~

/1_p269(%)y - ( 22
= ! K
Var(L=p)lylK_n 1 (Vy?>+n,0) 2\ 1+p

1
2

Similarly, for the second term in the lower bound of (20), we have

Q-py—001-pw

Las 6, w>0buty<0;

1 2
+ 5,61/—). 21
n) 1, (21)

2]?7%7;(\/3/2-"- ,9)

1 2y2 -1
1 s\ (FE5tnw +7w)
16 2 ( 1+p 1+p dw

)

. ,;(w)
e P\ Va-Dw w88 e (WP Hmw T 0% w)

Vor

V(L= pw

0(1L)y

/Ooo
(1-p*)3e

V(1= p)?|ylPK _y _

1
2

2K_y_1 (V42 +.0)

o _ 2y 2
o )K,ﬂ+ ((1+ +n)3, ”1+p>' (22)

Finally, for the first term in the lower bound of (20), we have

2
,;((1—p>y—e<1—p>w
e V(i-p2)w

(1—=py—001-pw

) w35~ (W Hmw T +0%w)

V2r

/0 V(L= pPw
JI= 2T

2Ky (VP +10.9)

1 2y —1
2((1+p+">w +Ew )

dw

2R _y_ 4 (VP F D) / T Lw

n
2

2 _
_n_ _7( 1zp+7])“) 1+

202
1+p

dw,

mef?(}%ﬂ)y /oo
2V21rK_ o1 (Y2 +n,0)
2

n
2

6
(1= p)lyle™T™
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as (1+ \zl w) < ell™ | since Bw/|y| > 0;

1—
_ ! —szG(ﬁ%)y /oo ! w_%_le %<( 1+p+77)w +(1+"+|y‘)w> dw
2\/2#]?7%7%(\/112 +1n,6) 1—p)lyl
1—p
V1= p2ef ey , 2y? 202 20
- pre 1T Koy (25 +mh( ) e
Var(l = pIK 5 (/P Tn0) AT

=

)

By combining (21) to (23) with (20), we have

1—p
V1= 2Ty _ 242 202 20
L K_y (( L mE( +—)%)
\/72Tr(17p)|y|K7g7%( w2 +n0) 2\1l+p 1+p |yl

V21— p)3yPK_q 1 (V2 +n,0) 2T 1+ TV 14p
< By P(Zg(lfp)y*G(lfp)W)
(1—p)W

V1= 2L (2?/2 +n)t,0,)—2
2 —
VIR = Ky (VoE 4 .0) Ry (G, +m20) 14,

1
2

202
(1+pjL [yl )< 1+p +7’)

mee(ﬁ)y( 1%p+" )1 w e
20° 4 20 202 | 20\, 2y2
o+ 2\/<m+‘7>(1+p+n)
=
_n_1 e —0+/
Ver(l=p)lyl(vy? +n/0) 272 By et 0Vyn
3 g(dlzey, Hoin _n.1 25(22 )
(1 —p?)2e’ THp (m) 113 2y2 prlte
(45 7’
V(L= p)3ly3 (VY2 +1/0) "3~ % N
1- —0(1 —p)W
< By P(Zg( Py —6(1—p) )
1-p)Ww
1-p 292 | 0./ 2 (22
VI ROyt - T TR R
202/(117) o) 2 22
_ V5 (T )
= _n_1 - _ ’
Var(L=p)lyl(Vy? +n/0)" 272 [t OVy?+n
202 | 20
by using (10) and then (9) as y — —oo in each term. Since limy_, H;’TQM =
1+p
1, we have

~1g-2, —0y) 125 (22 1) +0(A52 )y +01/y7 T
\/1—/?(1+p+77) L e T e " (1—p?) 1+p+7l

1 7 1-—
V2r(1 —p)lyl(292/(1+p))’%+1(y2+n)’T ( (1=p)ly[?
(1-py—001- p)W))

(1-pHW

)

N

< Ew(P(Z<
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2 04/ 0(372)y+04/y2
/1_p2(%+n)—£—i9—ge (35 2 )t (FF2)v+ +n

= 1
B Var(L - p)|yl(202/(1+ p)) 4+ (y2 4 )43
Therefore,
P(Xs <y(u)|X1 =y(u) = Ew(PZ< (1-py—0(1— p)W))

(1-pHW
VIR itV e (B 05 v oV
_ 1 _n_1
VET(1 = p)[yl(202/(1 + p) "4 i (y2 4 )~ 173

1—p
TR PRl e L]

V2r(1 = p)|yl(262/(1+ p)) "4 +i (y2)~ 13
(1+p) —1 2aoey

To complete the proof, we need the asymptotic behaviour of y = y(u) =
F[Y(u) as u — 0F. Suppose we set

1 n T'(2)26
10g<(|%ggu) +g g ;’u)

g(w) = — , (25)

so that g(u) — —oo as u — 0T. It is obvious that —g(u) is a slowly
varying function at 0.

By combining (25) and (16) with 6; = 6 > 0, we have

F
—0t U u—0F U

As aresult, F; ! (u) ~ g(u) as u — 07 follows from Theorem 1 of Fung and
Seneta [8]. Back-substituting (25) as y = y(u) = F~1(u) into (24) and we

have

2P(X2 < y(u)|X1 =y(u) = L*(u)ui%j

=

log (\logu\)1+" (g )29 " 1-p
(1+p) (1202 (|1ogu|)1+g r(2)20 \ ¢ 1-p
0(L - p) 20 “

This completes the proof.

The regularly varying index of the tail dependence coeflicient for the
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skew t distribution under the condition of ; = 0y = 6 > 0 is }%Z, which
does not depend on the skewness parameter # nor the shape parameter 7.
This index coincides with the one of the bivariate normal which can be seen
from Theorem 2. It is well established that the tails of the bivariate normal
decay quickly and therefore in this case the lower tail of the bivariate skew ¢
distribution decays quickly as well. However this is still just half the picture.
Under the condition of #; = 6 = 0 > 0, the joint upper tail of the bivariate
skew t distribution has complete tail dependence, i.e. the limit of (5) is 1,
this indicates the joint upper tail will decay very slowly. The tails under the
condition 6; = 0y = 6 < 0 behave similarly since they are the mirror image
of those of 8 = 6, = 0 > 0. As a result, this skew ¢ distribution always
has one tail which is very heavy and the other one decays very quickly in
the case 01 = 03 = 6 # 0 that we have considered here. This inflexibility is
a disadvantage in model fitting against the alternative skew t distribution
defined by (7) which posses nontrivial values of tail dependence under all
conditions. This is likely the cause of the relatively poor performance for
the classical skew ¢ model when compared to the alternative skew ¢ model
in Fung and Seneta [5] when they were fitted to both simulated and real
bivariate data. If the goodness of fit to the marginals is equally good as
in Fung and Seneta [5], the model that has a more flexible tail dependence

structure is more likely to perform better.
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