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ABSTRACT 

Any system when put on operation deteriorates over a period of time and fails on 
crossing a threshold. Maintenance is performed either on failure or for mitigating the 
effects of this deterioration. In general the system is either partially maintained or 
renewed to bring it back to its operating state. The general behaviour of the failure 
process of a maintained system is modelled by means of stochastic processes called 
general repair processes. In these processes the effect of the maintenance carried out on 
the system is captured by means of a variable called the maintenance indicator which 
indicates the degree to which the system has been maintained. Such a maintenance 
indicator acting on the system’s failure age or intensity post maintenance generalizes 
the modelling of the failure processes. The general repair process models based on the 
type of the maintenance indicator can be broadly classified into two categories based 
on age or intensity loss or recovery and two sub-categories based on whether these take 
place additively or multiplicatively. This paper focuses on such models, their 
inference, their uses, the physical reality they depict and their shortcomings when 
modelling the failure processes of maintained systems. 

 
Key words : Industrial maintenance, Maintained system, Point process, Intensity 
process, General repair. 

1. Introduction 

Any system when put on operation deteriorates over a period of time and fails on 
crossing a threshold. Maintenance is performed either on failure or for mitigating the 
effects of this deterioration. Maintenance can consist of simple cleaning, lubrication or 
bolt tightening to replacement of a damaged or failed component, sub assembly, 
assembly or sub system to replacing the entire system. The behaviour of the failure 
process of a maintained system is modelled by means of stochastic processes. 
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When the performance of the system deteriorates or it breaks down and the whole 
system is replaced every time this happens, the maintenance is termed as maximal. 
Such a system’s failure process is modelled by a renewal process. When the system is 
repaired as little as possible in putting it back to functional use, thus leaving it in the 
same condition as it was before maintenance, the maintenance is termed as minimal. 
Such a system’s failure process is modelled with a non homogeneous Poisson process.   
 
Both these are extreme cases and do not reflect the general behaviour of the failure 
processes of maintained systems, wherein the system is partially maintained or 
renewed. These failure processes are modelled with general repair processes. In these 
processes the effect of the repair or maintenance carried out on the system is captured 
by means of a variable which indicates the degree to which the system has been 
maintained. Such a degree of maintenance acting on the system’s failure age / 
intensity, post maintenance, generalises the maximal and minimal repair processes. 
The effect of the maintenance action taken represented by a maintenance indicator is 
used to distinguish the various conditional intensity processes used to describe the 
general failure processes. 

Pham and Wang [1] is the earliest paper that depicts and provides a classification of 
imperfect or general maintenance models. The models are classified into eight 
categories, each category being based on the method of treatment of imperfect 
maintenance. The methods of treatment are )q,p( rule, ))t(q),t(p( rule, 

improvement factor, virtual age, shock, ),( βα rule, multiple )q,p( rule and others. 
The models are treated independently and there is no attempt to link up the various 
models. Guo et al. [2] combine all virtual age models into one category based on the 
degree of repair and index the models based on the types of their degrees of repair and 
corresponding virtual ages. Lugtigheid et al. [3] is the first paper that defines and 
classifies maintenance indicators into three categories and provides methods to 
incorporate these into intensity process models for repairable systems. Lindqvist [4] 
and Syamsundar and Naikan [5] depict various imperfect repair models, provide 
methods of inference and their uses but do not classify them.  
 
The present paper depicts and classifies all general repair models based on the 
effectiveness of the maintenance actions taken as represented by a maintenance 
indicator. It studies the methods of their inference, and the physical reality that they 
depict when modelling the failure processes of maintained systems. The nature of the 
repair and maintenance indicator is presented in section 2 and the general repair 
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models built using this indicator along with their properties are presented in section 3. 
The methods of inference and application of these models to maintained systems is 
presented in section 4. The physical reality depicted by these models and their 
shortcomings are presented in section 5. The conclusion is presented in section 6. 
 
2. Maintenance Indicator 

A maintenance indicator indicates the system state by means of its age or failure 
intensity and conveys the effectiveness of the maintenance actions taken on the system. 
Such a maintenance indicator incorporated into the stochastic process of failures of the 
system will provide a tractable method of arriving at a general process model of the 
failures or maintenance events of a system. 

2.1. Maintenance Indicator Categories 

Maintenance indicators can be categorised in two ways based on the methods chosen to 
represent the system state, based on the effect of maintenance actions on the system 
age or the system intensity. These can be further sub-categorised on whether the effects 
are additive or multiplicative 

2.1.1. Maintenance Indicators Affecting System Age 

Maintenance actions on the systems modify the system’s age. Without maintenance 
action or with a minimal maintenance action, a system ages in line with its 
chronological age. Whenever a maintenance action is performed it affects the age of 
the system and the maintenance indicator is used to reflect the change in the system 
age from what it was before the maintenance action.  

The age of the system after maintenance called its virtual age, given byυ , is different 
from its chronological age. The maintenance action serves to reset the virtual age. This 
virtual age is a function of its chronological age and possibly the history of the failure 
process i.e., depending on its past failures. This is given by; 

)T,...,T,T,N;t()H|t(
tN21tt υυ =−  

When the maintenance indicator acts on the system age additively its virtual age is 

given by;   )T,...,T,T,i(St)H|t( i2

N
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When the maintenance indicator acts on the system age multiplicatively its virtual age 

is given by; )T,...,T,T,i(St)H|t( i2

N
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×=υ
 

2.1.2. Maintenance Indicators Affecting System’s Failure Intensity 

Maintenance actions on the system modify the system’s failure intensity. Whenever a 
maintenance action is carried out on the system it affects the system failure intensity 
and the maintenance indicator reflects the change in the system intensity either 
individually or cumulatively from what it was before the maintenance actions. 

The maintenance action serves to reset the failure intensity. This failure intensity is a 
function of its chronological age and possibly the history of the failure process i.e., 
depending on its past failures. This is given by; 

)T,......,T,T,N;t()H|t(
tN21tt

λλ =−  

When the maintenance indicator acts on the system’s failure intensity additively its 

failure intensity is given by; )T,...,T,T,i(S)t()H|t( i2

N
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When the maintenance indicator acts on the system’s failure intensity multiplicatively 
its failure intensity is given by; 

)T,...,T,T,i(S)t()H|t( i2
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2.2. Maintenance Indicators that Vary Over Time 

The maintenance indicators have generally been chosen to be constant i.e., the effect of 
maintenance actions on the system is averaged out.  

Maintenance indicators can also be generated to take into account the changing effects 
of maintenance actions on the system. Percy and Alkali [6], Kahle and Love [7], and 
Lugtigheid et al. [8] have proposed such type of maintenance indicators. 

Percy and Alkali [6] have developed maintenance indicators which vary with age. 
They state that the maintenance indicators given by ρ can be taken as random variables 
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(stochastic indicators), specified functions of i or t i.e., deterministic indicators or 
combined indicators having both the stochastic as well as the deterministic 
components. 

The maintenance indicator taken as independent exponential random variables is given 
by; 

)(Ex~|i λλρ  

These can also be gamma, lognormal or Weibull random variables. Deterministic 
maintenance indicators as increasing and decreasing functions of time may be given 

by; 
λ

ρρ
+

=−
i

i
ii t

t)1(or  

Other deterministic indicators can be functions with or without extended formulations. 
These are given by;  )iexp(~i,|i λλρ −  and  φλθλρ +−= )iexp(|i , where 

φθλλ ,,=  

Combined indicators are given by;   )(Ex~t,| iii λλρ  where  
λ

λ
+

=
i

i
i t

t
 

Kahle and Love [9] have developed a maintenance indicator that depends on the 
maintenance time. The indicator is given by;  )4.2)r(log(1 ii −−= Φρ  where  

Φ is the distribution function of the standard normal distribution, ir the repair time 

after thi failure and 2.4 the estimated mean value of the log repair times 

For this function the maintenance indicator nearly equals one for small repair times 
indicating minimal repair and nearly equals zero for large repair times indicating 
maximal repair.  

Lugtigheid et al. [8] have developed maintenance indicators that are a weighted 

average of the sub-system operating ages. This is given by;  )t()t( j

p

1j
jυωρ ∑

=
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where jω is the weight of the sub-system j with ∑
=

=
p

1j
j 1ω  
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itNj eTt)t(
it
+−=

−
υ is the accumulated operating time of the j the sub-system 

ite is the accumulated operating time of the j th sub-system used for replacement 

during maintenance. 

 

3. General Repair Models and Their Properties 

All the maintenance indicators devised above are used to generate general repair 
process models for maintained systems. The general repair process models, postulated 
over the past thirty five years can be broadly categorised into age based and intensity 
based models and sub-categorised based on whether they are modified additively or 
multiplicatively.  

3.1.   Age Based Additive General Repair Models  

The majority of the models the age based general repair models fall under the sub-
category where the ages of the system are modified additively. 
 
Kijima and Sumita [10] and Kijima [11] introduced a model based on age 
loss/recovery as Kijima model I also called the G-Renewal Process (GRP). In this 
model the system age of only the previous failure epoch i.e., the time between the 
previous two failures is improved. The conditional intensity of Kijima model I is given 
by; 

)Tt()H|t(
TT

NNt −−
− +−= υλλ
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Brown et al. [12] and Kijima [11] introduced BMS or Kijima model II, in which the 
total age of the system is improved. The conditional intensity of Kijima model II is 
given by; 

)Tt()H|t(
TT

NNt −−
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Finkelstein [13] extended Kijima’s model II by letting the failure intensity of the 
system be a function of the function of the system’s virtual age. The conditional 
intensity of the model is given by;  ))Tt(()H|t(

TT
NNt −−

− +−= υφλλ
 

Kijima’s model I reflects a reality where the maintenance action only reduces the 
damage that has occurred during the previous failure epoch while Kijima’s model II 
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reflects the reality where the maintenance action reduces the cumulative damage of all 
the previous failures. Dagpunar [14] observed that in Kijima model I as the failure 
intensity increases to infinity the failure times tend to zero i.e, the system will tend to 
fail immediately on maintenance. He suggested that this is not an appropriate model 
for most maintained systems. Jacopino et al. [15] observed that the mean cumulative 
intensity function of the Kijima model I can be adequately approximated by an 
exponential function while that of Kijima model II can be approximated by a linear 
function for high number of maintenance actions. At low number of maintenance 
actions, less than 10, no difference was found between both the models. 

The (p,q) rule model of Beichelt [16]  and Brown and Proschan [12]  and the (p(t),q(t)) 
rule model of Beichelt and Fisher [17] and Block et al.,[18] where p.q represent the 
probabilities of minimal and maximal repairs are special cases of Kijima model II. The 
conditional intensities of the models are given by;   )Tt()H|t(

TT
NNt −−

− +−= υλλ
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− −

−
=

−
=

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

t T

t

N

i
ii

N

ij
jN )tt()Z(

1
11υ  

B-P and BBS models depict a physical reality wherein, a minimal repair is performed a 
number of times on the system at each failure till a state is reached where the entire 
system is replaced. These models depict a system for which sequences of superficial 
repairs are interspersed with periodic overhauls. Such a possibility exists when a 
catastrophic failure leads to a replacement or major overhaul but other lesser failures 
lead to a minimal repair. Whitaker and Samaniego [19] also state that these models can 
also be applied to the case when the type of repair is dictated by external factors like 
availability of replacement rather than the age or condition of the system. 

Dagpunar [20 ] proposed a model III which is more general than the models I and II in 
that the current virtual age is a functional of the earlier virtual age and the current age 
since the last repair. The conditional intensity of the model is given by; 

)Tt()H|t(
TT

NNt −−
− +−= υλλ

  
where )Tt(

ttt
N1NN −−−

−+= −υφυ
 

Dagpunar [14] observed that in Kijima model I as the failure intensity increases to 
infinity the failure times tend to zero i.e, the system will tend to fail immediately on 
maintenance. He suggested that this is not an appropriate model for most maintained 
systems. He suggested a more general structure for the virtual age as a function of the 
previous virtual age and time since the last maintenance action. He indicated that 
Kijima model II is a special case of this model and called it model III. 
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Dagpunar [20] proposed a more general structure for the general repair model structure 
with the virtual age as a general function of the previous virtual age and time since the 
last maintenance action. The conditional intensity of the model is given by;

 )Tt,(
ttt

N1NN −−−
−= −υφυ

 
Guo and Love [21] provide a general repair model which has a linear function version 
of the virtual age function of Dagpunar [20]. The conditional intensity of the model is 
given by;  )Tt()1())(1(

ttt
Ni1NiN −−−

−−+−= − ρυωυ  

Dorado et al. [22] proposed a unified model (DHS), which contains as special cases all 
the above models, with a conditional intensity given by; 

))Tt(()H|t(
TTtt

NNNNt −−−−
− +−= υΘλΘλ  

For 1
t

N =
−

Θ , the model reduces to a virtual age model. 

For 0,1
tt

NN ==
−−

υΘ , the model reduces to a maximal repair model. 

For 
−−−

==
ttt

NNN T,1 υΘ , the model reduces to a minimal repair model. 

Malik [23 ] introduced the proportional age reduction (PAR) or improvement factor 
model. He stated that maintenance causes a system’s age to improve from what it was 
before maintenance. Kijima, Morimura and Suzuki [24] also proposed the same model. 
The conditional intensity of the model is given by;  )Tt()H|t(

T
Nt −

− −= ρλλ
 

where 0=ρ leads to minimal repair and 1=ρ leads to maximal repair. 
Stadje & Zuckerman [25] introduced a fixed improvement factor model wherein the 
fixed improvement factor reduces the chronological age of the system by a fixed 
amount after each maintenance action. The conditional intensity of the model is given 
by; 

)Tt()H|t(
tt

NNt ρυλλ −+−=
−−

−  

where 0=ρ and −−
=

tt
NN Tυ leads to minimal repair and 

−
=

t
Nυρ leads to maximal 

repair. 
Doyen and Gaudoin  [26] proposed the ARA (Arithmetic reduction of age) models 
with different memories, generalizing Malik’s improvement factor model.  The size of 
the memory represents the number of repairs whose deterioration can be mitigated by 
the current repair. The conditional intensity of the model is given by; 

⎟
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The PAR model indicated a proportional reduction of the chronological age. This was 
generalised by in the ARA model wherein in addition to the maintenance factor 
depending on the previous repair epoch, all repair epochs, or it could depend on m  
previous epochs with 1Nm2 t −≤≤ − . This afforded more flexibility to the age 

models with the maintenance action reducing the damage accumulated in the previous 
m failure epochs. 

Veber et al. [27] provided a novel improvement on Kijima model I. They replaced the 
baseline distribution with a weighted sum of component distributions to obtain a better 
approximation to the failure process of a maintained system.  The conditional intensity 
of the model is given by;  

)Tt(w)H|t(
TT

NjNjj
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j
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The properties of the models remain the same as Kijima model I.  

 

3.2.   Age Based Multiplicative General Repair Models  

The next sub-category of age based general repair models are generated with ages that 
are modified multiplicatively.  
Lam [28] a Geometric process and Wang and Pham [29] proposed a Quasi-Renewal 
(Q-R) process. In both these processes a factor is introduced which when acting 
multiplicatively on a random variable, produces another random variable forming a 
renewal process. The factor acts as a geometric ratio of the process and indicates the 
trend of system deterioration over a number of failures and repairs. The conditional 
intensity of the models is given by; 

))Tt(()H|t(
t

tt
N

NN

t −

−−
− −= ±±

ρλρλ
 

For 0
t

N =
−

υ , the DHS model reduces to the geometric process or quasi-renewal 

model. 
These models were proposed to model the failure processes of systems where the 
deterioration of the system was more. The inter failure times )Tt(

t
N −

− form a quasi-

renewal or geometric process if for any parameter 0>ρ  , )Tt(
t

t
N

N

−

− −ρ forms a 
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renewal process. These processes with a ratio 10 << ρ will be applicable for a failure 
process with successive inter-failure times which are stochastically increasing and with 

1>ρ will be applicable for a failure process with successive inter-failure times which 
are stochastically decreasing. They will approximate a renewal process i.e., a failure 
process exhibiting maximal repair if 1=ρ .  
Finkelstein [30] proposed a model similar to the geometric process model, terming it as 
geometrical particular deteriorating renewal process (GPDRP). In this model a scaling 
factor is applied to the inter-failure times. The conditional intensity of the model is 

given by;  ))Tt(()H|t(
t

tt
N

NN

t −

−−
− −= ρλρλ  

This process has properties similar to the geometric process. The process with a ratio 
10 << ρ is applicable for a failure process with successive inter-failure times which 

are stochastically increasing and with 1>ρ is applicable for a failure process with 
successive inter-failure times which are stochastically decreasing. It approximates a 
renewal process i.e., a failure process exhibiting maximal repair if 1=ρ .  
 
Finkelstein [31] defined a more general model, the non-ideal repair process model. In 
this model the time is perturbed by another process )Tt(W

t
N −

− . The conditional 

intensity of the process is given by; 
 ))Tt(W()Tt(w)H|t(

tttt
NNNNt −−−−

− −−= λλ   

The intensities are independent of each other and reflect a series of deteriorating 
intensities. These cannot be used to model preventive maintenance. The maintenance 
serves to bring the system back into operation but is not able to arrest the increasing 
deterioration of the system. 
 
Kaminskiy and Krivtsov [32] have proposed a G1-Renewal Process (G1RP) which is 
similar to the geometric and quasi-renewal process in that maintenance indicator acts 
multiplicatively on the age of the failure process. Its conditional intensity function is 
given by;   

⎟
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⎛
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For 0=ρ the system is set back to the age of a new system. For 0<ρ the system is a 

deteriorating one and for 0>ρ the system is an improving one. 
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Rangan and Thyagarajan [33] have proposed a model wherein a dampening factor acts 
on the virtual age to modify it multiplicatively. They also assumed that the system of 
initial age 0t is put into operation. The conditional intensity function of the model is 

given by; 
))texp(t()))Tt(exp(()H|t(

tt
NNt ρλρυλλ −=−−=

−−
− 0  

where;  )Texp(t))TT(exp(
ttttt

NNNNN −−−−−
−=−−= −− ρρυυ 011  

For 0=ρ the system is set back to the initial age 0t . For ∞=ρ the system is set back 

to the age of a new system. For 0<ρ the system is a deteriorating one and for 0>ρ
the system is an improving one. 
Wu and Clements-Croome [34] have proposed a novel general repair process model, 
the extended Poisson process model (EPP) on lines similar to the geometric process. 
The conditional intensity function of the model is given by; 

λβαλ )ba()H|t( tt
NN

t
−−

− +=  

where the distribution function is exponential. For
 

11 == b,a the process becomes a 

HPP. For either of the −− tt
NN bora βα being equal to zero while the other is not, the 

process becomes a GP. In other combinations the model can represent the failure 
patterns of the bathtub curve or other complicated patterns. 

 

 

3.3.   Intensity Based Additive General Repair Models  

The majority of the models developed under the category of intensity loss or recovery 
fall under the first sub-category where the intensities of the system are modified 
additively. 
 
Chan and Shaw [35] proposed two models based on intensity loss/recovery, one with a 
constant reduction and the second with a proportional reduction. The conditional 
intensity of the model with constant reduction is given by; 

ρλλ −=− )t()H|t( t
 

The conditional intensity of the model with proportional reduction is given by; 
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)T()t()H|t(
t

Nt −
− −= λρλλ  

For 0=ρ the system is under minimal repair. For 0<ρ the system is a deteriorating 

one and for 0>ρ the system is an improving one. 

Doyen and Gaudoin [26] proposed arithmetic reduction of intensity (ARI) model with 
different memories, generalising Chan and Shaw [35] model with proportional 
reduction of intensity. The size of the memory represents the number of repairs whose 
deterioration can be mitigated by the current repair. The conditional intensity of the 
model is given by; 

)T()()t()H|t( jN

)N,mmin(

j

j
t t

t

−
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=
−
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− ∑ −−= λρρλλ
11

0
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Chan and Shaw models (1993) were developed to indicate a constant and a 
proportional reduction of the failure intensity on carrying out a maintenance action on 
the systems. Similar models PIM and DPP were developed wherein scaling factors 
acting on the intensity function. These were generalised in ARI models wherein in 
addition to the maintenance factor depending on the intensity of the previous repair 
epoch or the intensity functions of all repair epochs, it could also depend on the 
intensity function of m  previous epochs with 1Nm1 t −<< − . This afforded more 

flexibility to the intensity models with the maintenance action reducing the damage 
accumulated in the previous m failure epochs. 
 
3.4.   Intensity Based Multiplicative General Repair Models  

The next sub-category of models under this category has models with intensities that 
are modified multiplicatively.  
Percy et al. [36] introduced proportional intensities models wherein they adopted 
different scaling factors for corrective and preventive maintenance intensities. They 
also provided for scaling factors which varied with time. The conditional intensity 
function of the model is given by; 

∑
−

−

=

=
t

N

i
it )t()H|t(

1

ρλλ
 
For 1=ρ the system is under minimal repair. For 1<ρ the 

system is an improving one and for 1>ρ the system is a deteriorating one. 
Calabria and Pulcini [37] proposed a model based on scaling of the intensity and called 
their model discontinuous point process (DPP) model. This is the same as the Percy et 
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al. [36] model with constant scaling factor. The conditional intensity function of the 

model is given by; )t()H|t( t
N

t λρλ −
− =  

For 1=ρ the system is under minimal repair. For 1<ρ the system is an improving 

one and for 1>ρ the system is a deteriorating one. 

Lawless and Thyagarajah  [38] have proposed a model wherein the intensity is 
modified multiplicatively by a factor based on the time since last repair. The 
conditional intensity function of their model is given by; 

))Tt(exp()t()H|t(
t

Nt −
− −= ρλλ

 
where;   

)texp()t( βαλ +=
 

For 0=ρ the system is under minimal repair with a log linear intensity. For 0=β the 
model reduces to a renewal process with times between failures distributed according 
to a Gumbel distribution. 

Calabria and Pulcini [37] have proposed different forms of the Lawless-Thyagarajah 
model with a power law – Weibull renewal (PL-WR) and a log linear – Weibull 
renewal (LL-WR) model. The conditional intensity of the PL-WR model is given by; 

 
 

 
where 1t)t( −= βαβλ and 

δγ )Tt())Tt(u(
tt

NN −−
−=−  

For 1=ρ  the process reduces to minimal repair. For 1>ρ the system is an improving 

one and for 1<ρ the system is a deteriorating one. For 1=β the process reduces to a 

Weibull renewal process. For 1,1 == ρβ the process reduces to a HPP. 

The conditional intensity of the LL-WR model is given by; 
1

Nt ))Tt(u)(t()H|t(
t

−
−

− −= ρρλλ  

where )texp()t( βαλ += and δγ )Tt())Tt(u(
tt

NN −−
−=−  

For 1=ρ the process reduces to minimal repair. For 0=β the process reduces to a 

Weibull renewal process. For 1,0 == ρβ the process reduces to a HPP. 

1))()(()|( −
−

− −= ρλλ
t

Nt TtutHt
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Guo et al. [39] have proposed a model wherein a dampening factor acts on the intensity 
to modify it multiplicatively. The conditional intensity function of the model is given 
by; 

)Nexp()t()H|t( tt −− = ρλλ  
For 0=ρ the system is under minimal repair. For 0<ρ the system is a deteriorating 

one and for 0>ρ the system is an improving one. 

Babykina et al. [40] have proposed a model to link the conditional intensity function to 
the number of previous failures of the system in order to take care of worse than old 
repair case also. The conditional intensity function of the model is given by; 

)N)(t()H|t( tt −− += ρλλ 1  

For 0=ρ the system is under minimal repair. For 0>ρ the system’s failure intensity 
is augmented by the number of previous failures and the system is a deteriorating one. 

4. Inference and Application of the General Repair Models to Maintained 
Systems 

To apply these models to maintained systems, parameters of the models are to be 
estimated from the data set of failures of maintained systems and goodness of fit of the 
model to the data set assessed. Methods of estimating the model parameters, assessing 
goodness of fit and applications to maintained systems are presented in the following 
sections. 
 
4.1.   Estimation Of Model Parameters  

The parameters of the models can be estimated non-parametrically, which is ideal as 
no distributional assumptions are necessary. However non-parametric procedures have 
a drawback in that they do not permit prediction of the future properties of the 
maintained system. Non parametric estimation for the Kijima model was developed by 
Dorado et al. [22], BP model by Whitaker and Samaniego [19], BBS model by 
Hollander et al. [41] and the geometric process (quasi-renewal process) model by Lam 
et al. [42]. 

The most common and widely used parametric method of estimating the parameters of 
a process from the data emanating from a maintained system is the method of 
maximum likelihood. Estimation of the parameters is obtained by maximizing the log 



131 
 

likelihood function. In most of the situations it may not be possible to obtain the 
analytical solutions of the likelihood function which may be complex. In such cases 
numerical methods like Newton-Raphson iteration, Quasi-Newton Methods or the 
simplex procedure of Nelder and Mead have been used to obtain the estimates. 
Estimates of variance of the parameters can be obtained by taking the inverse of the 
observed information matrix and using these, the interval estimates of the parameters 
can be obtained. 

Jack [43] has obtained maximum likelihood estimates of the Kijima models I and II 
using the Nelder Mead simplex procedure. Yanez et al. [44] have obtained estimates of 
the g-renewal process or Kijima model I using a numerical algorithm based on Monte 
Carlo simulation. Mettas and Zhao [45] have obtained the estimates of the Kijima 
model II using a form of the Newton search method. Love and Guo [46] obtained 
estimates for PAR model using assumed values of the maintenance indicator and only 
estimated the values of the other parameters using Newton-Raphson method. Calabria 
and Pulcini [37] obtained estimates of the PL-WR and the LL-WR models. They also 
obtained the confidence intervals of the parameters using the asymptotic log-normal 
distribution for PL-WR model and the asymptotic normal distribution for the LL-WR 
model. 

An inherently different approach to compute the maximum likelihood function 
numerically is via the Expectation-Maximisation or EM Algorithm. It consists 
basically of two steps, the E-Step which calculates the expected log likelihood and the 
M-Step which finds its maximum which are repeated iteratively. Thus one difficult 
maximisation is broken up into a sequence of easier maximisations converging to the 
maximum likelihood estimator. This is mostly used with missing data.  

Lim [47] carried out inference for the BP model using an EM algorithm for the case 
where the mode of repair is unknown for cases other than the exponential distribution 
being the lifetime distribution. Veber et al. [27] used the EM algorithm to obtain the 
estimates of the weights, the parameters of the component distributions and the 
maintenance effectiveness, assuming the number of component distributions.  
 
Parametric estimation can also be carried out using the method of least squares or the 
method of moments. Wu and Clements-Croome [34] use the method of least squares to 
estimate the parameters of the EPP. Dagpunar [1998] followed a different approach in 
estimating the expected number of failures for the general repair model type III. 
Integral equations have been generated for the expected number of failures and the 
solution obtained using numerical methods. 
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4.2.   Hypothesis Testing 

Hypothesis testing of general repair models presents a problem. As of now no proper 
goodness of fit tests are available to test for general repair models against alternative 
maximal or minimal repair models or to distinguish between different general repair 
models. The maximum value of log likelihood can be taken as a criterion for testing 
goodness of fit of one general repair model versus the other. However the same may 
not provide a good criterion versus maximal or minimal repair models. In the absence 
of any better test the maximum likelihood value can be taken as a criterion for 
checking goodness of fit. When the number of parameters is large and varies from 
model to model the Akaike Information Criterion (AIC) is used to distinguish between 
the models. Graphical methods can also be used to check goodness of fit of models.  

Guo and Love [21] and Love and Guo [46] obtain the standardised residuals of the 
fitted models and plot these against the expected residuals from a HPP. The model with 
the set of standardised residuals closest to the expected residuals from a HPP is taken 
as the model with the better fit. Calabria and Pulcini [37] have used the likelihood ratio 
test and the Wald test to test for DPP models against minimal repair models which are 
nested models. Both the test statistics are approximately distributed as )1(2χ . 
However to check for DPPP against DPLP general repair models they arrived at the 
model with the better fit by looking at the maximum of the likelihood values.  Lam et 
al. [42] used the mean squared error between the estimated values and the actual values 
of the failure times to check for the model with the better fit. The model with the least 
mean squared error was taken as the model with the better fit to the data set when 
comparing minimal repair and geometric process general repair models. Percy and 
Alkali [48] based their assessment of the fit of the models using the maximum 
likelihood values. The model with the highest value was taken as the model with the 
better fit. Veber et al. [27] obtained the model with the best fit by plotting AIC against 
the number of component distributions. The model with the lowest AIC was taken as 
model with the better fit. 

4.3.   Application To Maintained Systems 

The general repair process models have been applied to the failure data of various 
maintained systems. Guo and Love [21] applied the Kijima Type I model to roller mill 
failure data extracted from a local cement plant to obtain the estimates of the 
parameters with Weibull distribution for the baseline. They also estimated the 
parameters using a set of assumed maintenance indicators based on the judgement of 
the maintenance personnel on the effectiveness of repair.  Yanez et al. [44] applied the 
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g-renewal model or Kijima model I to the data sets of failures of a compressor and 
U.S.S. Halfbeak No. 3 main propulsion motor to obtain the expected number of 
failures. Mettas and Zhao [45] applied the general repair models of Kijima I and II to 
the failure times of eight systems along with a Weibull Renewal and NHPP. Based on 
the least likelihood estimate they found that for both a single system no. 8 as well as 
for multiple systems 1 to 6 the General Repair Model Kijima II provided the best fit. 
Kahle and Love [7] applied the maintenance indicator based on repair times to the 
failure data of a hydroelectric turbine unit within the British Columbia Hydro-Electric 
Power Generation System.  

Whitaker and Samaniego [19] applied the BP model to the failure data of the air-
conditioning system of Boeing 720 airplane 7914 by assigning reasonable values for 
the maintenance type. Lindqvist, Langseth and Stove [49] applied their repair alert 
model to the failure times of ARC-1 VHF communication transmitter-receivers of a 
single commercial airline using a BP model and a power law function for the 
cumulative repair alert function. They concluded that the PM carried out was optimum 
for this system as the data censor the failures in a near optimal way as regards the 
repair alert function.  

Shin et al. [50] applied the PAR model with power law baseline intensity to the data set 
of failures of a central cooler system of a nuclear power plant. Syamsundar and Naikan 
[51] have applied the ARA1 and ARI1 imperfect repair models to the failure times of 
the AMC Ambassador Cars 3 and 5 along with acceleration of the failure times using 
time averaged cumulative mileages.  

Calabria and Pulcini [37] applied the DPP model with power law and log linear 
baseline intensities to the failure times of a 180 T rear dump truck. Lam et al. [42] 
applied the geometric process model to the data sets of failures of air conditioning 
equipment of Boeing 720 aircrafts nos. 3, 6 and 7, electronic computer, main 
propulsion engine no. 3 of U.S.S. Halfbeak and main propulsion diesel engine no. 4 of 
U.S.S. Grampus. Percy and Alkali [48] applied the PIM models with log linear and 
power law baseline intensities to the failure data of a main pump A in a petroleum 
industry, and ascertained the PIM model with the log linear baseline as the model with 
the better fit. They also found that the PM scaling factor for this model was less than 
one indicating PM has a beneficial effect in reducing the failure intensity of the pump. 
Calabria and Pulcini [52] applied the PLWR and LLWR models to failure data sets 
AMC Ambassador Car no. 3, aircraft generator, air-conditioning equipment of Boeing 
720 airplane no. 6.   
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Veber et al. [27] applied the GRP with Weibull mixture distributions for the baseline to 
the failures data set of the main propulsion motor no. 3 of U. S. S. Halfbeak and 
obtained the model with a 3 component mixture distribution as the model with the 
better fit. 

The more general repair process models of Finkelstein [30], Dagpunar [14],[20], Guo 
and Love [53], Dorado et al.[22] and ARAm and ARIm models of Doyen and Gaudoin 
[26] are yet to be seriously applied to the failure data of maintained systems. 

5. Physical Reality Depicted by the Models and Their Shortcomings  

The general repair models are to be used to take maintenance decisions on a regular 
basis. The usefulness of these models can be judged only by the extent to which they 
fulfil the needs of the maintenance personnel. For this to happen answers to a number 
of questions are to be obtained. How to select a model based on the physical realities of 
the maintained system? How well do the model parameters reflect the state of the 
systems and the effects of maintenance on the systems? What can you say and not say 
about the nature of the maintenance based on these models? How can the models be 
used to help the maintenance personnel in making objective decisions about the 
maintenance actions to be taken?  

The following sections address these important questions and suggest some criteria for 
making rational decisions for selection of appropriate models for specific applications. 
This will help the maintenance engineers in planning their maintenance activities more 
effectively. 

5.1. Selection of the Models 

In almost all the papers the data sets of failures of maintained systems are used more as 
an illustration of the application of a general repair process model rather than as a real 
case study of maintained system. Even though a large number of models are available 
in the literature, no methodology has been published yet to decide the most appropriate 
model for a given situation. 

Some pointers can be obtained on the type of model that will fit a given data set of 
failures based on the model properties. The BP and BBS models are generated on the 
assumption of several minor maintenance actions followed by a major maintenance 
action or replacement and can be applied in such situations. The BP model is 
developed on the assumption that the times between major maintenance actions or 
replacements are homogeneous and the BBS model that the times between major 
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maintenance actions or replacements reduce with age. This can be used to distinguish 
between the models.  

When only one component or sub-system is changed on failure, the failure intensity 
may reset only the damage caused during the time since the previous failure and GRP, 
ARA1, ARI1 or Chan and Shaw [35] models can be applied to such situations. When 
more than one component or sub-system is replaced then the damage caused during a 
few past failures can be restored and ARAm and ARIm models may be used. If major 
maintenance activities are carried out on the system then ARA  and ARI models may 
be used. When the system is found to be continuously deteriorating even after 
maintenance actions are taken on the system then GP, QRP, GPDPRP or G1RP models 
can be seen as more appropriate. Babykina et al. [40] model is designed to take care of 
systems where the system state after maintenance becomes worse than before. 

A similar structure based on physical reality is not apparent in the case of all models. 
Given the plethora of general repair process models, a number of models become 
equally plausible candidates for modelling the general failure behaviour of the systems. 
When no physical basis is available one can only apply all the models to the failure 
times generated by the system and obtain the appropriate model by assessing the better 
fit to the data set based on the higher of the maximum log-likelihood values. This 
provides only a statistical fit to the data set of failures of the system rather than provide 
any physical basis for modelling the system. Sometimes more than one model may be 
found as suitable candidates for modelling the system based on the closeness of the 
goodness of fit. 

5.2. Understanding the Failure Process, State of the System and Nature of 
Maintenance Actions 

The estimated values of the parameters and the properties of the fitted models can be 
used to understand the behaviour of the failure process. The shape parameters of the 
models give an indication of the rapidity of deterioration of the system. The higher the 
shape parameter, the higher is the deterioration of the system. The maintenance 
indicator provides an estimate of the averaged effectiveness of the maintenance 
actions. The closer the maintenance indicator is to the maximal repair situation the 
better the quality of the maintenance actions. The intensity of failures of the system can 
be used to compare the failure processes of different systems. Higher intensities 
indicate more number of failures and the need for better maintenance. 

Maintenance indicators representative of the varying quality of maintenance have been 
developed. Guo and Love [21] have provided maintenance indicators for the various 
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maintenance actions based on the judgement of the maintenance personnel on the 
effectiveness of the maintenance actions. Their judgement was based on the time taken 
for repair and / or the amount of money spent on the replacement of parts. Kahle and 
Love [7] have provided a maintenance indicator to be a function of maintenance times. 
The more the time spent on maintenance the indicator is closer to the maximal repair 
condition. Lugtigheid et al. [8] based their maintenance indicators on a weighted 
average of the component ages bringing the maintenance actions closer to reality. This 
provides a better estimate of the system state and hence better indicates the 
effectiveness of maintenance actions on the system. 

The type of model, which provides the better fit to the failure data of the maintained 
system, and its properties can provide some information on the failure behaviour and 
maintenance actions on the system. GRP, PAR, ARA1 or ARI1 models providing a 
better fit indicate that the maintenance actions in general are not effective in reducing 
the cumulative deterioration of the system while the exact opposite is the case with 
Kijima model II, ARA  and ARI  models wherein the cumulative deterioration of the 
system is addressed. ARAm and ARIm processes model cases in between these two 
extremes and the maintenance actions help to mitigate the deterioration which has set 
in during the previous m failures. The sub-category of multiplicative models provide 
for the cases with a lesser improvement as compared to the sub-category of additive 
models. 

 

5.3. Use of the Models for Taking Maintenance Actions 

The above models are useful only when they satisfy the requirements of industrial 
maintenance. These models can help provide objective maintenance decisions by being 
able to estimate the quantities of interest to the maintenance managers / engineers. 

Kahle [54] proposed a maintenance policy that is failure rate optimal by carrying out 
maintenance actions at equal intervals of times dependent on the state of the system. 
Lindqvist et al. [49] applied their repair alert model to the failure times of ARC-1 VHF 
communication transmitter-receivers of a single commercial airline. They concluded 
that the PM carried out was optimum for this system as the data censor the failures in a 
near optimal way as regards the repair alert function i.e., the crew were alert enough to 
carry out the PM actions in time to prevent damaging breakdowns. Percy and Alkali 
(2006) applied the PIM models with log linear and power law baseline intensities to 
the failure data of a main pump in a petroleum industry and found that the PM scaling 
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factor for these models was less than one indicating PM has a beneficial effect in 
reducing the failure intensity of the pump.  

General repair process models have been studied or used to optimise the maintenance 
actions based mostly on cost or reliability. Wang [55] presented a survey of various 
models used for optimising the timing of PM actions based on cost or reliability. Jiang 
et al. [56] studied a maintenance model with GRP process and two types of 
replacement: failure and preventive to find a repair or replacement policy to minimise 
the long run expected average cost per unit time. They developed such a policy but did 
not apply it to any maintained system. Wu and Clements-Croome [34] have proposed 
two optimum maintenance policies using EPP for both preventive and corrective 
maintenance times.  

5.4.  Shortcomings of the Models 

The general repair models have been developed one after the other by generalising 
existing models without recourse to physical reality i.e., without an application in mind 
and often based more on satisfying mathematical appropriateness rather than 
explaining physical phenomena. Hence given a data set of failures it is not easy to 
select the appropriate models for the data set. If the appropriate model is not chosen 
then all the estimates based on this model will prove to be not true.  

A constant maintenance indicator averages out the effect of maintenance actions on the 
system and will not be able to indicate the exact state of the system at any given time. 
Indicators based on maintenance times or cost or weighted average of sub-system ages 
provide better indicators of system state but need additional information other than 
system failure times. These are to be incorporated into the general repair models to 
obtain the estimates of the other parameters. 

To set up a maintenance policy the preventive maintenance carried out on the systems 
is also to be taken into consideration, which when added to corrective maintenance can 
only provide a better planning of maintenance actions. This can be used to optimise the 
maintenance based on cost or reliability. However no optimisation can be successful if 
considered in isolation for that particular piece of equipment. It has to be incorporated 
into the shop schedule along with the maintenance schedules of other equipment as 
well as their operating regimes. Hence the modelling needs to take care of these 
aspects also. 

A variety of maintenance actions can be performed on the system. Routine 
maintenance actions like cleaning, adjustments, bolt tightening, oil change, changing 
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of small parts or consumables like filters, gaskets etc. are carried out. In case these 
actions are not carried out it may lead to the deterioration of the system and lead to 
quicker failures. These actions do not form part of the general repair models and are 
generally ignored in the modelling process.  

The general repair models do not provide any information on the nature of the 
maintenance action to be carried out or the parts, components or sub-systems required 
to be changed other than indicating that the actions should depend on the state of the 
systems. They cannot also provide an indication of the necessary resources required for 
maintenance. 

The basic assumption in all the general repair models is that the maintenance activity 
does not change the baseline distribution or the intensity as the case may be. This 
means that the probabilistic or parametric structure of the systems’ failure process does 
not change but only the structure is shifted horizontally. In reality the distribution of 
time to failure is bound to change for each failure epoch even with a small maintenance 
improvement. These changes are again not reflected by the models.  

General repair models can only describe a failure process intensity of a system which 
is monotonously increasing or decreasing with the operating time. They cannot 
appropriately model the failure process of a system when a non-monotonic or 
complicated trend in the failure data is observed. General repair models do not take 
into account times taken for maintenance actions hence cannot provide estimates of 
maintainability or availability of the systems. 
Unless all these aspects are taken into consideration modelling of a maintained system 
will be only partial and will not lead to correct decisions on maintenance of systems. 
 

6. Conclusion 

Though the general repair models depict a picture of reality closer to the nature of 
maintenance activity being carried out there still remains a lot to be done. Most of the 
models are motivated by statistical reasons rather than providing a picture of physical 
reality seen on the ground. The general repair process models fail to address a number 
of issues required for the maintenance of industrial systems and hence will be able to 
provide only partial answers to maintenance problems. There is a need for better 
modelling of the failure-maintenance processes of maintained systems before these can 
be deployed to take actions in an industrial environment on a regular basis. 
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