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ABSTRACT

The method of fitting a hierarchical model with Dirichlet process mixing is a
versatile tool for data analysts. It has been applied to density estimation, clas-
sification, clustering, and high dimensional data analysis. Many computing al-
gorithms have been proposed to evaluate this mixture. Different labels in the
algorithm that assign data points into clusters may actually yield the same par-
tition configuration. This paper makes this notion rigorous by establishing an
equivalence theorem. Thus, we would recommend adding the step of check-
ing for equivalent configurations to the algorithms for evaluating hierarchical
Dirichlet process mixing models for improved results, especially when cluster
assignments are the major goals of the analysis.
Keywords: Clustering configuration, Dirichlet process, Hierarchical Dirichlet
process mixing, MCMC algorithm.

1. Introduction
The Dirichlet process (DP) has received a lot of attention since its development
by Ferguson (1973). It constructs a prior measure on a large space of distri-
bution functions. It allows users to specify two parameters α and G0, where
distribution function G0 reflects the prior mean (‘center’) of the unknown dis-
tribution G chosen by the DP and the positive real number α characterizes the
prior precision. Larger α, stronger prior belief, indicates smaller variation of
the unknown distribution G. Ferguson (1973) also showed that DP is intuitive
and interpretable for some nonparametric statistical problems. Consequently,
the Dirichlet process has been applied to many areas including text mining, ma-
chine learning, bioinformatics, biostatistics, and phylogenetics, where Bayesian
nonparametric inference on an unknown distribution is called for.
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Mixture of Dirichlet processes (MDP) originated from Antoniak (1974) as a
further development from the DP, where a smoothing kernel with an unknown
parameter θ is convolved with an unknown distribution chosen from a DP. An-
toniak (1974) studied properties of this mixture and showed how it can be ap-
plied to measurement error, empirical Bayes, and quantal bioassay problems.
Later Lo (1984) developed it further to construct rigorously a prior measure
on a space of density functions. Kuo (1983) has extended MDP to a Bayesian
experimental design problem to study the optimal dosages for quantal bioassay
with the potency curve chosen from a DP. Kuo (1986a) has also applied MDP
to empirical Bayes problems.
Suppose we observe a set of n observations y = (y1, . . . , yn). We consider a
hierarchical model where the ith observation is modeled by the density fi(yi|θi)
with an unobserved latent variable θi. Then we assume the latent variables
θ1, . . . , θn are independent and identically distributed with a common unknown
distributionG chosen from theDP (α,G0). Consequently, Neal (2000) pointed
out the name Dirichlet process mixture (DPM) model would be more appropri-
ate. The Bayes solution to this mixture problem can be written concisely as
in Kuo (1980, 1986a). However, the number of mixing components, which is
given by the Bell exponential number (Berge, 1971), increases rapidly as the
sample size increases due to the discrete nature of the DP. Therefore, many
computing algorithms have been proposed to evaluate this mixture, such as Kuo
(1986b), Escobar and West (1995, 1998), MacEachern and Müller (1998), Neal
(2000), Ishwaran and James (2001), Walker (2007), Dunson (2010), and Kalli et
al. (2010). All these algorithms need to specify the latent allocation process that
assigns each observation to a cluster. The confusion comes from the fact that
different allocations (usually designated by labels) in the algorithm may actu-
ally denote the same cluster. Overlooking this subtlety may lead to an incorrect
conclusion. In this paper, we clarify this issue. We define equivalent classes of
labels if they lead to the same partition of the latent parameter space. So we
suggest adding the checking for equivalence step to the computing algorithm
when correct clustering allocation is essential in the solution.
Section 2 contains basic formulations of DP and MDP. Section 3 lists two sam-
pling algorithms for evaluating the MDP. One, called the truncated blocked
Gibbs sampler, is based on Ishwaran and James (2001), where the number of
atoms of the DP is truncated at a fixed number determined before running the
sampler. The other is based on Kalli et al. (2010), where the number of atoms
in the DP is determined from slice sampling in each iteration. Section 4 dis-
cusses the equivalence formulation which needs to be included in the sampling
procedure for MDP, especially when the cluster allocation is of primary interest
in the study. Section 5 contains a simulation study and a real data analysis to
illustrate our method. We conclude the paper with brief discussion in Section 6.
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2. Hierarchical Dirichlet Process Mixing
2.1. Introduction to the Dirichlet Process
The DP process denoted byDP (α,G0) allows users to select two components:
a base distribution G0 that defines the center of the DP, and a concentration
parameter α that reflects the prior strength of belief on the base distribution
G0. If G is taken as a sample from DP (α,G0), then by construction, we have
E[G(A)] = G0(A) and Var(G(A)) = G0(A)[1 − G0(A)]/(α + 1) for any
measurable set A. If we think of the DP constructing a tube of random cumu-
lative distribution function G centered around G0, then the variance formula
shows how α controls the variation of this tube in an inverse relation at a linear
rate. Suppose the prior on a random distribution is DP (α,G0), then Ferguson
(1973) showed that the posterior distribution of this random distribution given
a sample of size n (from this distribution) is also a DP with new parameters: a
concentration parameter α+ n, and a base distribution (αG0 + nF̂n)/(α+ n),
where F̂n is the empirical distribution function.

2.2. A Constructive Representation of the Dirichlet Process
In order to sample a random distribution from DP, it is helpful to know the con-
structive definition of the DP. There are several versions of it, which include the
Pólya urn scheme by Blackwell and MacQueen (1973), the stick-breaking pro-
cess by Sethuraman and Tiwari (1982) and Sethuraman (1994), and the Chinese
restaurant process by Aldous (1985).
We are summarizing the Sethuraman (1994) construction here. Suppose G is a
random sample chosen from DP (α,G0). Then G can be represented by

G =
∞∑
k=1

wkδφk , (2.1)

where δφk is a measure of mass 1 concentrated at φk and the locations φk of the
random jumps of the distribution G are independent and identically distributed
(i.i.d.) fromG0 with stick-breaking weightswk given by the following formula:

wk = vk

k−1∏
l=1

(1− vl), (2.2)

where vl are also i.i.d. from a beta density Be(1, α).
So this representation shows that DP selects discrete distributions with prob-
ability 1. Each distribution has atoms chosen as a sample from G0 and with
weights defined as the stick-breaking weights given in (2.2).

2.3. Hierarchical Dirichlet Process Mixing Model
The hierarchical model of a compound decision problem starts with modeling
each observation with an unobserved latent variable at the first stage. Then DP
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is used as a prior over the common distribution shared by the latent parameters
at the second stage:

yi|θi
ind∼ fi(yi|θi), for i = 1, . . . , n.

θi|G
i.i.d.∼ G, for i = 1, . . . , n.

G ∼DP (α,G0). (2.3)

This model was first proposed and called MDP by Antoniak (1974). Instead,
we will call it DPM (Dirichlet process mixture) as in Neal (2000) to emphasize
the mixing is done by the DP construction.
The mixture model allows borrowing information across components. Its for-
mulation is flexible and adaptable, yet quite efficient in combating the curse
of dimensionality. It avoids specifying a fixed number of clusters for the latent
population. It is an ideal candidate for clustering problems where the distinct
number of clusters is unknown beforehand. Although the DP assumes that there
are infinitely many clusters in the latent population, the posterior distribution for
the number of clusters for the latent variable has a sparseness favoring structure
due to the discrete nature of the DP. Suppose we have latent variables θ1, . . . , θn
in k clusters with k ≤ n. When an (n + 1)st latent variable is added, then the
new θn+1 is assigned to a new cluster with a probability of α/(α + n), and to
a previous cluster j with probability of nj/(α+ n), where nj is the number of
θs in the jth cluster. Note we have

∑k
j=1 nj = n. The prior expected number

of clusters for the latent variables of size n is proportional to α log n. Thus,
the number of clusters a priori increases slowly with the sample size at a rate
determined by α. The posterior distribution of the number of clusters not only
depends on n and α, and is also sensitive to the choice of G0 as pointed out
by Dunson (2010). Therefore, he argued for the need to choose G0 with careful
thought; he also suggested to standardize the data first and specify G0 with lo-
cation zero and scale one in order to have good practical performance.

2.3.1. Bayes Solution
Typically, the objective is to estimate each of the latent parameters θi for i =
1, . . . , n. The above DPM setting allows multivariate observations and multi-
variate latent parameters for each component in the mixture model. However,
in the following expression for the posterior mean of each latent variable, we
will just use the univariate version for a more streamlined presentation. To de-
rive the posterior mean of θi, we usually integrate out the random G. Following
Antoniak (1974), the posterior distribution of G is a mixture of DP with con-
centration parameter α + n and base distribution (αG0 +

∑n
j=1 δθj )/(α + n)

and mixing distribution H(θ|y). That is

G|y ∼
∫
PαG0+

∑n
j=1 δθj

(dG)dH(θ|y).
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Let H(θ) denote the unconditional marginal distribution of θ = (θ1, . . ., θn),
where

dH(θ) =

n∏
j=1

αG0 +
∑j−1

l=1 δθl
α+ j − 1

(dθj).

Then by applying Lo (1984), we can show the posterior distribution of θ given
y is

dH(θ|y) =
∏n
j=1 fj(yj |θj)dH(θ)∫ ∏n
j=1 fj(yj |θj)dH(θ)

.

So the posterior mean for θi, for any i, can be written as

θ̂i(y) =

∫
Rn
· · ·

∫
θidH(θ|y) =

∫
Rn · · ·

∫
θi
∏n
j=1 fj(yj |θj)dH(θ)∫ ∏n

j=1 fj(yj |θj)dH(θ)

=

∫
Rn · · ·

∫
θi
∏n
j=1 fj(yj |θj)

∏n
j=1

αG0+
∑j−1
l=1 δθl

α+j−1 (dθj)∫
Rn · · ·

∫ ∏n
j=1 fj(yj |θj)

∏n
j=1

αG0+
∑j−1
l=1 δθl

α+j−1 (dθj)
. (2.4)

A direct derivation for the above expression given in Kuo (1980) is omitted
here. Although the above expression (2.4) looks deceptively simple, it is actu-
ally a weighted mean from many distributions. Antoniak (1974) had given a
detailed account on calculating the probabilities for various configurations for
the latent variables. For n = 3 and i = 3 as an example, then (2.4) is a weighted
mean of 5 terms which is proportional to

α2

(α+ 2)(α+ 1)

∫
f1(y1|θ)G0(dθ)

∫
f2(y2|θ)G0(dθ)

×
∫
θf3(y3|θ)G0(dθ)

+
α

(α+ 2)(α+ 1)

∫
θf1(y1|θ)f3(y3|θ)G0(dθ)

∫
f2(y2|θ)G0(dθ)

+
α

(α+ 2)(α+ 1)

∫
θf2(y1|θ)f3(y3|θ)G0(dθ)

∫
f1(y1|θ)G0(dθ)

+
α

(α+ 2)(α+ 1)

∫
f1(y1|θ)f2(y2|θ)G0(dθ)

∫
θf3(y3|θ)G0(dθ)

+
2

(α+ 2)(α+ 1)

∫
θf1(y1|θ)f2(y2|θ)f3(y3|θ)G0(dθ),

where the five terms are obtained from cases (1) θ3 6= θ2 6= θ1, (2) θ3 = θ1 6=
θ2, (3) θ3 = θ2 6= θ1, (4) θ2 = θ1 6= θ3, and (5) θ3 = θ2 = θ1, respectively. So
the first term (for case (1)) is a product of three integrals where each kernel is
integrated against its prior latent variable density. Each of the next three terms
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(for cases (2), (3) or (4)) is a product of two integrals where the first integral
having two observations sharing the same latent variable integrated against the
prior latent density, and the second integral using the third kernel integrated
against the latent density G0. For the fifth term, all observations share the same
latent variable θ, and integrated against the G0(dθ) distribution.
The number of components in the mixture distribution given by the Bell expo-
nential number goes up to 15, 52, 203, and 787 for n=4, 5, 6, and 7. So many
computational algorithms have been developed to evaluate the posterior distri-
bution. In the following we will discuss two algorithms: the truncated blocked
Gibbs sampler by Ishwaran and James (2001), and the slice sampler by Kalli et
al. (2010) to handle computation for large samples.

3. Sampling From DPM Process
3.1. Sampling from DP
From Sethuraman’s representation of DP (Sethuraman, 1994), we can derive an
equivalent representation for a DPM process:

w1, w2, . . . ∼ GEM(α);

θ1,θ2, . . .
i.i.d.∼ G0;

Pr(si = j) = wj ,with j = 1, 2, . . . for each i = 1, . . . , n;

yi
ind∼ fi(yi|θsi), for each i = 1, . . . , n,

where si is a discrete latent allocation variable that assigns the ith latent variable
to one of the latent class; so si = j denotes the ith latent variable belongs to
the jth cluster. The GEM condition is the same as described in (2.2), the name
was attributed to Griffiths, Engen, and McCloskey (Ewens and Tavaré, 1998).
We next describe two samplers: truncated blocked Gibbs sampler and slice
Gibbs sampler for the DPM.

Truncated Blocked Gibbs Sampler for DPM:
This algorithm developed by Ishwaran and James (2001) consists of truncating
the infinitely many atoms of the random mixing distribution G to a fixed finite
number of atoms before hand. This is done by truncating the stick-breaking
weights to at most R terms, where R is prespecified and vls are defined as in
(2.2) for l < R and VR = 1. So the number of atoms of G is fixed at at most R.
Then the latent parameters θ’s are clustered and updated with a dimension to be
at mostR, where the clusters are represented by their distinct values θ∗1, . . . , θ

∗
R.

Then we list the MCMC steps as follows:
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Step 1. Initialization

1.1 Generate v1, . . . , vR−1 ∼ Be(1, α), and set VR = 1; Calculate
wj = vj

∏
`<j(1− v`), for j = 1, . . . , R;

1.2 Generate θ∗1, . . . ,θ
∗
R ∼ G0;

1.3 For each i, i = 1, . . . , n, generate a discrete random variable si with
integer values 1, . . . , R such that Pr(si = j) = wj =
vj

∏
`<j(1− v`), for j = 1, . . . , R.

Step 2. Update the discrete random variable si for each i, i = 1, . . . , n, where

Pr(si = j|...) =
vj

∏
`<j(1− v`)× fi(yi|θ

∗
j )∑R

k=1[vk
∏
`<k(1− v`)× fi(yi|θ

∗
k)]
,

with j = 1, ..., R;

Step 3. For each j, j = 1, 2, . . . , R, sample θ∗j with

π(θ∗j |...) ∝ dG0(θ
∗
j )

∏
si=j

fi(yi|θ∗j ).

These θ∗s can be updated simultaneously.

Step 4. Update vj , j = 1, ..., R, such that

π(vj |...) ∼ Be(1 + nj , α+mj)

where nj =
∑n

k=1 I(sk = j) and mj =
∑n

k=1 I(sk > j).

Step 5. Go back to Step 2 and repeat.

If DPM has another parameter, say σ, shared by all components in the first
stage, then we can easily add Step 4.5 after Step 4. In Step 4.5, σ is updated by
the Metropolis-Hastings algorithm (Hastings, 1970), where the posterior den-
sity of σ is proportional to π(σ)

∏n
i=1 fi(yi|θi, σ) with π(σ) being the prior

density of σ.

Slice Gibbs Sampler for DPM:
Walker (2007) first proposed a slice sampler for DPM. Later Kalli et al. (2010)
proposed a more efficient version of the slice sampler. The slice sampler updates
the truncation point at each iteration, so only needs to update a finite mixture
in each iteration of the MCMC algorithm. We briefly describe the Kalli et al.
algorithm in the followings:
Let R denote the number of mixing components. Unlike the truncated blocked
Gibbs sampler, the slice Gibbs sampler updates R as follows.
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Step 1. Initialization

1.1 Generate v1, . . . , vj ∼ Be(1, α); Calculate wj = vj
∏
`<j(1 − v`),

for j = 1, . . . , n;

1.2 Generate θ1, . . . ,θn ∼ G0;

1.3 Pr(si = j) = wj = vj
∏
`<j(1− v`), for i = 1, .., n, j = 1, . . . , n;

1.4 R=1.

Step 2. Update si
2.1 Sample ui ∼ U(0, wsi), i = 1, . . . , n;

2.2 Let u∗ = min{u1, ..., un},

-If
∑R (number of clusters)

j=1 wj > 1− u∗, sample si according to

Pr(si = j|...) = wj × fi(yi|θj)∑R
`=1[w` × fi(yi|θ`)]

with j = 1, ..., R;

-Otherwise, let R=R+1.

Step 3. For each j, sample θj with

π(θj |...) ∝ dG0(θj)
∏
si=j

fi(yi|θj),

for j = 1, 2, ..., R.

Step 4. Update vj , j = 1, ..., R, such that

π(vj |...) ∼ Be(1 + nj , α+mj)

where nj =
∑n

`=1 I(s` = j) and mj =
∑n

`=1 I(s` > j).

Step 5. Go back to Step 2 and repeat.

4. DP Configuration Tracking
4.1. General Theory
We first define a few notations to facilitate describing the equivalence relation.
Let the superscriptm denote themth iteration of the Markov chain Monte Carlo
(MCMC) sampler, where m = 1, ...,M .
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We now introduce three index sets:

• Cluster allocation index set: s(m) = {s(m)
1 , ..., s

(m)
n }, for i = 1, ..., n, where

s
(m)
i denotes the allocated cluster for the ith latent variable in the mth itera-

tion.

• Distinct cluster index set: k(m) = {k(m)
1 , . . . , k

(m)

K(m)}, where K(m) denotes
the number of distinct cluster allocation index from s(m), and each compo-
nent of k(m) denotes the unique allocation index for each cluster.

• Configuration index set: L(m) = {L(m)
1 , . . . , L

(m)

K(m)}, where L(m)
j = {i :

s
(m)
i = k

(m)
j } for j = 1, ...,K(m). So the configuration index set is the set

of subject labels for each distinct cluster.

Next, we present the definition of equivalence between two cluster allocation
index sets.

Definition of Equivalence. Let s(m1) and s(m2) denote two sets of allocation
indices. Then, s(m1) and s(m2) are said to be equivalent or belong to the same
configuration, denoted by

s(m1) w s(m2),

if the conditional posterior distribution of the distinct components of θ(m1) =
(θ
s
(m1)
1

, ..., θ
s
(m1)
n

)′ is identical to the conditional posterior distribution of the

distinct components of θ(m2) = (θ
s
(m2)
1

, ..., θ
s
(m2)
n

)′, which is denoted by

θ(m1) L
= θ(m2).

When s(m1) w s(m2), we can claim that s(m1) and s(m2) belong to the same
configuration in MCMC sampling from the DP process. The following theorem
characterizes the conditions to determine the equivalence between s(m1) and
s(m2) or whether s(m1) and s(m2) belong to the same configuration.

Theorem 4.1. Let s(m1) and s(m2) denote two sets of allocation indices from
the m1th and m2th iterations of MCMC sampling. Then, s(m1) w s(m2) if and
only if

(i) K(m1) = K(m2); and

(ii) L(m1)
j = L

(m2)
j for all j = 1, . . . ,K(m1).

The proof is straightforward.

We next count the number of distinct configurations and the number of itera-
tions that yield the same configurations.
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DP Configuration Tracking Algorithm:

Step 0. Set Nc = 1, m = 1, t(1) = 1, K∗(1) = K(1), L∗(1) = L(1), Γ =
{(K∗(1),L∗(1))}, and T = {t(1)}.

Step 1. Let m← m+ 1.

Step 2. If (K(m),L(m)) = (K∗(j),L∗(j)) ∈ Γ, then t(j) ← t(j) + 1 and go to
Step 4.

Step 3. If (K(m),L(m)) 6∈ Γ, then let K∗(Nc+1) = K(m), t(Nc+1) = 1, and
L∗(Nc+1) = L(m), add (K∗(Nc+1),L∗(Nc+1)) to Γ, also add t(Nc+1) to
T , and then update Nc ← Nc + 1.

Step 4. if m < M , then go to Step 1 and if m =M , then stop.

At the end of the above algorithm, Nc is the number of distinct configurations,
Γ includes all members of Nc distinct configurations, and T tracks the cor-
responding frequencies of the members of Nc distinct configurations in Γ in
the M MCMC iterations. In addition, t(j)/M gives an MCMC estimate of the
probability of configuration L∗(j) for j = 1, . . . , Nc.

4.2. An Illustrative Example
Suppose we have M = 4 MCMC iterations for four observations y1, . . . , y4
(n = 4). Assume the allocation indices for them are s(1) = {1, 2, 2, 3}; s(2) =
{2, 1, 1, 3}; s(3) = {3, 3, 1, 2}; and s(4) = {2, 2, 1, 1}. Hence, by applying the
notations from Section 4.1, we have

k(1) = {1, 2, 3}; k(2) = {2, 1, 3}; k(3) = {3, 1, 2}; and k(4) = {2, 1}.

By definition, we have K(1) = K(2) = K(3) = 3, K(4) = 2,

L
(1)
1 = {1}, L(1)

2 = {2, 3}, L(1)
3 = {4}, L(1) = (L

(1)
1 , L

(1)
2 , L

(1)
3 );

L
(2)
1 = {1}, L(2)

2 = {2, 3}, L(2)
3 = {4}, L(2) = (L

(2)
1 , L

(2)
2 , L

(2)
3 );

L
(3)
1 = {1, 2}, L(3)

2 = {3}, L(3)
3 = {4}, L(3) = (L

(3)
1 , L

(3)
2 , L

(3)
3 ); and

L
(4)
1 = {1, 2}, L(4)

2 = {3, 4}, L(4) = (L
(4)
1 , L

(4)
2 ).

Based on the configuration tracking algorithm, we further have Nc = 3,

K∗(1) = K∗(2) = 3, K∗(3) = 2, L∗(1) = L(1) = L(2),

L∗(2) = L(3), L∗(3) = L(4), t(1) = 2, t(2) = t(3) = 1,

Γ = {(3,L∗(1)), (3,L∗(2)), (2,L∗(3))}, and T = {2, 1, 1}.

10 ISSN -1391-4987 IASSL
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It is clear that K(1) = K(2) = K(3) = 3, which satisfies Theorem 4.1 (i).
Since K(4) = 2 which is different from the other 3 iterations, it is ruled out
by Theorem 4.1 (i) that s(4) is equivalent to any of s(1), s(2), and s(3). We
continue to check condition (ii) in Theorem 4.1. It shows that L(1)

j = L
(2)
j

for j = 1, 2, 3, which satisfies Theorem 4.1 (ii). And L(1)
j 6= L

(3)
j for j =

1, 2, which does not satisfy Theorem 4.1 (ii). Thus, in this example, we have
showed that s(1) w s(2), s(1) 6w s(3), s(1) 6w s(4), s(2) 6w s(3), s(2) 6w s(4), and
s(3) 6w s(4).

5. Examples
5.1. Simulation Study
In this subsection, we generated two data sets with sample sizes 5 and 10 each
from two different mixtures of normal distributions, where the first mixture
consists of 3 normal distributions well separated with equal weights, and the
second mixture, similar, but not so well separated. We applied DPM in (2.3)
with fi to be a normal density with mean θi and variance 1. The base distribu-
tion G0 was specified to be N(0, 1/τ). We varied the precision τ in G0 with
τ = 1, 0.1, or 0.00001, and α to be 0.1, 1 or 10. Then we applied the truncated
blocked Gibbs sampler with fixedR to be the same as the sample size. We report
the results from each MCMC run with 20,000 iterations after 1000 “burn-in”
iterations. In the following, we list the populations, the simulated data sets (de-
noted by 1a, 1b, and 2a, 2b) from each population, the resulting most probable
cluster configurations and tables for the probabilities for the most probable con-
figuration with various choices of α and τ . For the varying choices of α and τ ,
the resulting most probable configuration was always the same except in the 1b
scenario, so we summarized them before the table of probabilities.

1.Population 1
3N(−5, 1) + 1

3N(0, 1) + 1
3N(5, 1)

1a:
Simulated Data −5.33 4.16 5.41 −5.82 4.71
Most Probable Configuration 1 2 2 1 2

1b:
Simulated Data
-5.33 4.16 5.41 -5.82 4.71 0.58 0.76 -4.61 -5.29 1.12
Most Probable Configuration

1 2 2 1 2 3 3 1 1 3
* Most probable configuration

1 2 2 1 2 2 2 1 1 2
** Most probable configuration

1 2 2 1 2 3 4 1 1 2
2. Population 1

3N(−1, 1) + 1
3N(0, 1) + 1

3N(1, 1)

IASSL ISSN -1391-4987 11



Rui Wu, Ming-Hui Chen, Lynn Kuo, and P.O. Lewis

Table 5.1: Probability for the most probable configuration for three choices of
α and τ each

Prior Choice Scenario 1a Scenario 1b
α\τ 1 0.1 0.00001 1 0.1 0.00001

0.1 0.999 0.971 0.999 0.413 0.841 0.608*
1 0.986 0.780 0.990 0.297 0.409 0.858
10 0.984 0.757 0.988 0.350** 0.098 0.879

2a:
Simulated Data −0.51 −0.37 −1.61 0.39 −0.76
Most Probable Configuration 1 1 1 1 1

2b.
Simulated Data
-0.51 -0.37 -1.61 0.39 -0.76 -1.63 0.98 0.76 0.54 -.26
Most Probable Configuration

1 1 1 1 1 1 1 1 1 1

Table 5.2: Probability for the most probable configuration for three choices of
α and τ each

Prior Choice Scenario 2a Scenario 2b
α\τ 1 0.1 0.00001 1 0.1 0.00001

0.1 0.854 0.916 0.997 0.776 0.895 0.999
1 0.256 0.465 0.991 0.125 0.317 0.986

10 0.234 0.443 0.990 0.003 0.021 0.933

The results are expected and reasonable. Moreover, the columns with τ =
0.00001 show the sampler converges to the resulting configuration with a high
probability. Viewing for each fixed column, we can also observe the probabili-
ties tend to decrease as α increases, which is also expected because the number
of clusters increases as α increases.

5.2. Real Data Analysis
The real data set consists of (y1, . . . , y12) = (8, 4, 0, 0, 0, 0, 1, 4, 4, 0, 0, 0) (n =
12), which are pollen counts over 12 days collected in the late season of 1991
at Kalamazoo, Michigan taken from Chen and Ibrahim (2000). We fit a hier-
archical mixture model (2.3) to it with a Poisson model in the first stage, and
G0, to be a gamma distribution G(a, b) with mean a/b in the second stage. We
used the blocked truncated Gibbs sampler to truncate the model to be at most
three clusters. We report the three most frequent configurations for α = 0.1, 1,
or 10, and four choices of hyperparameters a and b with a MCMC run of 10000
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iterations with 1000 iterations as burn-in in Table 5.3. The hyperparameters
a = 0.591 and b = 0.338 in the second block were chosen from the matching
functional form consideration for the parametric empirical Bayes model, that
is the marginal mean and variance of y are matched to the empirical mean and
variance of y. The other choices were more arbitrary except the mean of G0

was chosen to be the empirical mean or close to it and the variance of G0 was
chosen around ten fold up as we go down each block of the table.

Table 5.3: Three most frequent configurations with their probabilities in paren-
theses for three choices of α

Prior choice Most frequent configuration with probability
G0 =
G(a, b) α First Second Third

a = 1.75 0.1 112222211222 112222111222 111111111111
(0.350) (0.138) (0.0648)

& 1 112222211222 112222111222 112222311222
(0.126) (0.0541) (0.0308)

b = 1 10 112222211222 112222111222 112222311222
(0.367) (0.0477) (0.0382)

a = 0.591 0.1 112222211222 112222111222 111111111111
(0.312) (0.242) (0.0397)

& 1 112222211222 112222111222 112222311222
(0.0989) (0.0922) (0.0416)

b = 0.338 10 112222211222 112222111222 112222311222
(0.346) (0.0822) (0.0582)

a = 0.2 0.1 112222111222 112222211222 111111111111
(0.363) (0.199) (0.0281)

& 1 112222111222 112222211222 112222311222
(0.130) (0.0652) (0.0368)

b = 0.1 10 112222211222 112222111222 112222311222
(0.272) (0.152) (0.076)

a = 0.0175 0.1 112222111222 111111111111 112222211222
(0.546) (0.0347) (0.0297)

& 1 112222111222 112322111222 112232111222
(0.197) (0.0264) (0.0263)

b = 0.01 10 112222111222 112222211222 112222311222
(0.430) (0.0765) (0.0311)

The results show two clusters are well supported for various choices of a, b, and
α. The first cluster consists of pollen counts (8, 4, 4, 4, 4) observed on day 1, 2,
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8, and 9. The second cluster consists of all pollen counts that are zero, observed
on 3, 4, 5, 6, 10, 11, and 12. The count 1, observed on day 7th, is clustered into
the second cluster of count zero for the first two choices of G0 (small variance)
and clustered into the first cluster for the last two choices of G0 (big variance).
When α was chosen to be 0.1, we see the results also support only one cluster
with 6% to 3% probabilities depending on the hyperparameters we chose. This
is expected due to higher tendency for doubling up of the atoms of the DP in the
mixing distribution for small α. When α = 10, we see the results also support
three (the maximum number allowed) clusters with 3% to 8% probabilities,
where the count 1 observed on the day 7th often forms the third cluster.

6. Discussion
In this paper, we have discussed a hierarchical Dirichlet process mixing model
as in (2.3). We wrote it very general to allow different components to have dif-
ferent models, and also to allow vector forms of observation for each compo-
nent and vector latent parameters. The DP process constructed on the distribu-
tion of the latent parameter relaxes the strong parametric assumptions made in
the usual hierarchical model. We discussed two MCMC algorithms for updat-
ing the parameters. The blocked truncated Gibbs sampler restricts the number
of atoms in DP to be at most R; the slice Gibbs sampler updates the number
of atoms in DP using slice with no a priori restriction on it. When applying
these algorithms to formulate cluster configurations, allocation indices (labels)
are usually not uniquely defined. In order to preserve the posterior distribution
of the latent variables given the data, we establish an equivalence theorem for
two allocation indices to be equivalent from two iterations of the MCMC run.
This theorem establishes that the two sets of indices not only need to have the
same number of distinct clusters, but also need to have the same components
for each cluster. We recommend adding this check for equivalence algorithm to
the DPM algorithm. This check will identify permutations of labels that lead to
the same cluster configuration. It will effectively recognize the label switching
problem and tabulate the equivalent cluster configuration correctly. We have
conducted a simulation study and a real data analysis using the blocked trun-
cated Gibbs sampler and the configuration checking algorithm in Section 4. Our
simulation study shows our method is efficient; and our real data analysis with
varying prior choice provides more insights on the sensitivity analysis to the
prior choice.
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