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ABSTRACT 

In this paper, we have established several explicit expressions and recurrence 

relations for single and product moments of  k -th lower record values from 

exponentiated Burr XII distribution. Two characterizing results of exponentiated 

Burr XII distribution has been obtained by using the recurrence relation for 

single moments and conditional expectation based on lower record values. The 
method of maximum likelihood is adopted for estimating the model parameters 

based on k -th lower record values. We carried out Monte Carlo simulations to 

compare the performances of the proposed methods and providing one real data 

case study for illustration of the results obtained. 

 

Keywords: Lower record values, single and moments, recurrence relations, 
exponentiated Burr XII distribution, characterizations, maximum likelihood 
estimates, Simulation 

1. Introduction 

Record values find extensive applications in many real life situations involving 
data relating to weather, sport, economics, life testing studies and so on. There 
are several situations like Guinness World Records where only record values are 
observed. News items like fastest time taken to recite the periodic table of the 
elements, shortest ever tennis matches both in terms of number of games and 
duration in terms of time, fastest indoor marathon, longest time to hop on one 
foot, etc are of immense interest to people . Several attempts are made to make a 
record and records are made only when attempts are successful. Usually, we do 
not get the data on all of the attempts made to break the records around the world. 
The data that we have are the records. Another example is the situation in the 
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assessment of glucose level among diabetic patients, the researchers may be 
interested to study the behaviour of the ordered records of glocodine. Also, there 
are several situations where the lower record values are of special interest. For 
example, if various voltages of equipment are considered, only the voltages less 
than the previous one can be recorded. These recorded voltages are the lower 
record value sequence. Many scientists specially the statisticians have become 
interested in record values over the past 60 years or so since 1952 when Chandler 
(1952) first studied the distributions of lower records, record times and inter-
record times for iid sequences of random variables. There are hundreds of papers 
and several books published on record-breaking data and its distributional 
properties see, for instance, Chandler (1952), Feller (1966), Resnick (1973), 
Shorrock (1973), Glick (1978), Nevzorov (1987), Balakrishnan and Ahsanullah 
(1995), Ahsanullah (1995), Kumar (2012, 2015, 2016), Kumar and Kulshrestha 
(2013) and Kumar and Saran (2014), Kumar et al.  (2015) and so on. 

Let }1,{ nX n  be a sequence of independent and identically distributed .)..( dii  
random variables with cumulative distribution function cdf )(xF  and 
probability density function )( pdf )(xf . The j th order statistic of a sample 

),,,( 21 nXXX   is denoted by njX : . For a fixed 1k , we define the sequences 

}1),({ )( nnL k  of  k th lower record times of ,, 21 XX  as follows: 

 1)1()( kL    

  )1()( nL k min }:)({ 1:1)(:
)(

)( 
 kjkknLk

k XXnLj k . 

The sequence }1,{ )( nY k
n  with )(

)(
)( nL

k
n kXY  , ,2,1n  is called the 

sequence of k th lower record values of }1,{ nX n .  

For 1k  and ,,2,1 n  we write nLnL )()1( . Then }1,{ nLn  is the 
sequence of lower record times of }1,{ nX n . For convenience, we shall also 

take 0)(
0 

k
Y . Note that for 1k  we have 

nLn XY )1( , 1n  which are lower 

record values of }1,{ nX n . Moreover 
)(

1
k

Y min kk XXXX :121 },,,{   

(Ahsanullah, 1995). 

The joint pdf  of k th lower record values )()(
1 ,, k

n
k

YY   can be given as  
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The pdf  of )(k
nY  and the joint pdf  of )(k

mY  and )(k
nY  are given respectively by 

 )()]([)](ln[
)!1(

)( 11
)( xfxFxF

n

k
xf kn

n
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
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 , 1n                              (2) 
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)!1()!1(
),()()(



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YY
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m

 

  )()]([
)(
)()](ln)([ln 11 yfyF

xF

xf
yFxF kmn  , yx  ,    

                                   nm1 ,   2n .                                                  (3) 

Further, for lower record values, the conditional pdf  of )1(
nY  given xYm )1( , 

nm 1  in view of (2) and (3) for 1k  is 

 )(
)()](ln)(ln[

)!1(
1)( 1

| )1()1(
xF

yf
xFyF

mn
yf mn

xYY mn







 , yx  .      (4) 

 A random variable X is said to have exponentiated Burr XII (EB XII) 
distribution if its pdf is of the form 

1)1(1 ])1(1[)1()(    xxxxf ,  0,,,0  x  
                                                                                                          (5) 

and the corresponding cdf  is given, by 
 ])1(1[)(  xxF  , 0,,,0  x .                                      (6) 

Further, the survival function and hazard rate function of EB XII distribution  are 
given, respectively by 

 ])1(1[1)(  xxS , 0,,,0  x                                      (7) 
and  

 
]})1(1{1[

])1(1[)1()(
111













x

xxx
xh .                          (8) 

The paper is organized as follows. Section 2 gives explicit expressions 
and recurrence relations for single moments of k -th lower record values from 
exponentiated Burr XII distribution. The obtained relations are used to 
compute first four moments, variance, skewness, kurtosis and coefficient of 
variation of lower record values. In Section 3, explicit expressions and 
recurrence relations for product moments of k -th lower record values from 
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exponentiated Burr XII distribution are derived. Further, in Section 4, two 
characterization theorems of this distribution are also obtained on using a 
recurrence relation for single moments and conditional expectation of record 
values. Also, maximum likelihood estimates of the parameters of 
exponentiated Burr XII distribution based on k -th lower record valuesare  
derived and the confidence intervals using Fisher information matrix are 
obtained in Section 5. Section 6 consists of simulation study based on the 
maximum likelihood estimates of the parameters of exponentiated Burr XII 
distribution based on lower record values.  In Section 7, a case study is 
provided to illustrate the performance of maximum likelihood estimates of 
exponentiated Burr XII distribution. 

 
2. Relations for single moments 

In the section, we obtain the explicit expressions and recurrence relations for 
the single moments of the k -th lower record values from the EB XII 

distribution. 
Note that, the marginal distribution of lower record values is 

 111 }])1(1ln{[)1(
)!1(
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  1])1(1[  kx  . 

Let us denote the r-th moment of )(k
nY  by )(

:)(
r

knL
 . Similarly, let ),(

:),(
sr

knmL


denote the ),( sr -th product moment of  )(k
mY  and )(k

nY . 


 


 0

11)(
:)( .)()]([))](ln([
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k knr
n

r
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                   (9) 

By substituting /1)]([ xFt  in (9), we get 
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 Again by putting tu ln , we obtain 
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Remark 1: For 1k  in (11), we deduce the explicit expression for single 
moments of lower record values from the EB XII distribution. 
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Theorem 1: For a positive integer 1k and for 1n and ,.....,2,1,0r  
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Proof: Clearly,We have  from (5) and (6), we see that 
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Therefore, for ,2,1,0r , we have  

  
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Integrating by parts taking )()]([ 1 xfxF k for integration and the rest of the 
integrand for differentiation, we get 
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the constant of integration vanishes since the integral considered in (14) is a 
definite integral. On using (13), we obtain 
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and hence the result given in (12). 
 
Remark 2: For 1k  in (12), we deduce the recurrence relation for single 
moments of lower record values from the EB XII distribution. 
Table 1:First four moments, variance, skewness, kurtosis and coefficient of 
variation of lower record values from equation (11) for 1k . The parameter 
values are taken 1,2    and 2 . 
 

n  1r  2r  3r  4r  Variance Skewness Kurtosis 

1 0.7854 1.0000 2.3521 24.631 0.3831 16.554 134.882 
2 0.3888 0.2274 0.1810 0.1901 0.0762 2.5179 7.9598 
3 0.2334 0.0867 0.0440 0.0285 0.0323 2.2578 6.5833 
4 0.1481 0.0379 0.0137 0.0064 0.0160 2.7393 7.0446 
5 0.0963 0.0176 0.0047 0.0017 0.0083 3.5843 8.3549 
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3. Relations for product moments 
In this section, we obtain the explicit expressions and recurrence relations for 
product moments of the k-th lower record values from the EB XII distribution. 
The (r, s)th distribution of )(k

mY  and )(k
nY , nm  is given by  

11
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The explicit expression for the product moments of k-th lower record values can 
be obtained as 
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where   
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By setting ))(ln())(ln( yFxFw  in (16), we obtain 
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On substituting the above expression of )(xG in (15), we obtain 
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By setting /1)]([ xFt  in (17), we get 
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Remark 3: For 1k  in (18), we deduce the explicit expression for product 
moments of lower record values from the EB XII distribution. 
Theorem 2: For 21  nm and ,....2,1, sr , 
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Proof: For 21  nm and  ,....2,1, sr ,  
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where  
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and hence the result given in (19).

  

Remark 4: For 1k  in (19), we deduce the recurrence relation for product 
moments of lower record values from the EB XII distribution. 
One can also note that Theorem 1 can be deduced from Theorem 2 by setting  

0r and replacing s by r . 
 

4. Characterization 
This section contains characterizations of EB XII distribution by using the 
recurrence relation for the moments of k -th lower record values and conditional 
expectation of lower record values.  
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 Let ),( baL  stands for the space of all integrable functions on ),( ba . A 
sequence ),(}{ baLfn   is called complete on ),( baL  if for all functions 

),( baLg  the condition   

  
b

a n dxxfxg 0)()( ,     n , 

implies 0)( xg   a.e. on ),( ba . We start with the following result of Lin (1986). 
 

Proposition 1:   Let 0n  be any fixed non-negative integer,  ba  and 
0)( xg , an absolutely continuous function, with 0)(  xg  a.e. on ),( ba . Then 

the sequence of functions },))({( 0
)( nnexg xgn   is complete in ),( baL iff  

)(xg  is strictly monotone on ),( ba . 
 Using the above Proposition we get a stronger version of Theorem 1. 
 

Theorem 3: Let 1k  be a fixed positive integer, r  be a non-negative integer 
and X  be an absolutely continuous random variable with cdf )(xF and pdf

)(xf  on the support ),0(  , then 
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if and only if 

  ])1(1[)(  xxF  , 0,,,0  x . 
Proof: The necessary part follows immediately from equation (12). On the other 
hand if the recurrence relation in equation (21) is satisfied, then on using equation 
(1), we have 
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   dxxfxF k )()]([ 1 .                                                      (22) 
Integrating the first integral on the right hand side of equation (22) by parts and 
simplifying the resulting expression, we find that 
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It now follows from Proposition 5.1 that 
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which proves that 

  ])1(1[)(  xxF  ,   0,,,0  x . 
Theorem 4: Let X be an absolutely continuous random variable with cdf )(xF

and pdf )(xf  on the support ),0(  . Then 

  
















0 0

)(

)1/1()1()1(
)/()1/1()1(

]|(
p q

q
p

mn
LL

pqp

p
xXXE

mn 






 

   
mn

q

q

x










)(
])1(1[





,                                                        (24) 

if and only if  

  ])1(1[)(  xxF ,     0x ,  0,,  . 
Proof: From (4), we have 
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By setting 
)(
)(ln
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t   in (25), we get 
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Simplifying the above expression, we derive the relation given in (24). 
To prove the sufficiency part, we have from (24) and (25) 
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Differentiating (26) both sides with respect to x , we get 
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which proves that 

   ])1(1[)(  xxF ,    0,,,0  x . 
 
5. Parameter estimation 
5.1 Maximum likelihood estimation 
In this section, we obtain the maximum likelihood estimators of the parameters 
 ,   and  of EB XII distribution when the available data are lower record 
values. Let nXXX ,,, 21   be a sequence of ... dii  random variables cdf )(xF  
and pdf  on positive support. Let },,,min{ 21 nn XXXY   for 1n . The 
observation jX , 1j , is a lower record value of this sequence, if it is greater 

than all preceding observations that is 1 jj YY  for 1j .  

Suppose we observe n  lower record values denoted by, say,
},,,{ )()2()1( nLLL XXXx   from a sequence of ... dii  random variables 

following EB XII distribution with pdf  (5). The likelihood function based 
on the random sample of size n  is obtained from 
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By using (5), equation (27) can be rewritten as   
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The log-likelihood function )|,,(ln)|,,( xLxl    is 
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We assume that the parameters  ,   and  are unknown. To obtain the normal 
equations for the unknown parameters, we differentiate (28) partially with respect 
to  ,   and and equate to zero. The resulting equations are 
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The solutions of the above equations are the maximum likelihood 
estimators of the EB XII distribution parameters ,   and , denoted 

MLE̂ , MLE̂  and MLE̂ , respectively. As the equations expressed in (30), 
(31) and (32) cannot be solved analytically, one must use a numerical 
procedure to solve them. 
 
5.2 Approximate confidence intervals 

In this section, we present the asymptotic confidence intervals for the parameters 
of the EB XII distribution. For interval estimation and hypothesis testing on the 
model parameters, we require the 3 3 Fisher information matrix 
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where the elements are defined in Appendix A. The expectations in the Fisher 

information matrix can be obtained numerically. Let T)ˆ,ˆ,ˆ(ˆ   be the 

maximum likelihood estimate of T),,(  . Under the usual regularity 
conditions and that the parameters are in the interior of the parameter space, but 

not on the boundary, we have: ))(,0()ˆ( 1
3  INn

d , where )(I  is the 
expected Fisher information matrix. The asymptotic behaviour is still valid if 

)(I is replaced by the observed information matrix evaluated at ̂ , that is )ˆ(I

. The multivariate normal distribution ))ˆ(,0( 1
3 IN , where the mean vector 

T)0,0,0(0  , can be used to construct confidence intervals and confidence 
regions for the individual parameters and for the survival and hazard functions. 
The above approach which is used to derive approximate )%1(100   two-sided 
confidence intervals for the parameters  , and are given by: 
 

 )ˆ(ˆ 2/   Varz ,  

     )ˆ(ˆ
2/   Varz  

and       

 )ˆ(ˆ
2/   Varz , 

respectively, where 2/z  is the upper th)2/(  percentile of a standard normal 

distribution. 
 
 
6.  Simulation study 

In this section, we examine the performance of maximum likelihood estimates for 
the parameters of EB XII distribution based on lower record values by conducting 
various simulations for different sizes )15,10,5( n . We carry out 1000 iterations 
each for the true values of the parameters I: 2,1,1    and II: 

2,2,1    . Table 2 lists the means of MLEs of the three parameters 
along with the respective mean squared errors (MSE). From the results, we see 
that as the sample size n increases, the mean estimates of the parameters tend to 
be closer to the true parameter values.  We also see that MSEs of the MLEs of 
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 ,  and   decreases as the sample size n  increases which quantifies the 
consistency of the estimation procedures.  
 
Table 2 Monte Carlo simulation results: mean estimates and MSEs of  ̂ , ̂  

and ̂ . 
 

 
n 

 
Parameter 

  
Mean MSE Mean MSE 

 
5 

      0.2856507 0.9318336 0.3381612 1.127984 
  0.2842037 0.9893721 0.3039655 3.397408 
  0.7120387 3.4946390 0.4602336 3.444630 

 
10 

      0.5629003 0.6682980 0.5542888 1.110543 
         0.3989100 0.8870512 0.3523907 3.206682 
          1.1500920 2.6165210 0.5421800 3.382426 

 
15 

         0.6204872 0.5573083 0.7237106 1.023590 
         0.4415545 0.8837439 0.4471304 3.246006 
         1.1649730 2.4881020 0.5798811 3.343053 

 

7. Real data analysis 

To illustrate the result of this paper, we analyze  a real data set. Table 8.1 
represents Floyd river flood rates for the years 1935-1973 in Iowa, USA. 
Akinsete, et al. (2008) and Alzaatreh et al. (2012) studied these data using 
the beta Pareto (BP) and gamma Pareto (GP) distributions respectively.  
 
Table 3Annual flood discharge rates of the Floyd river data 
 
Years Flood discharge (ft3/s) 

1935-

1944 

1460 4050 3570 2060 1300 1390 1720  6280 1360 7440 

1945-

1954 

5320 1400 3240 2710 4520 4840 8320 13900 71500 6250 

1955-

1964 

2260  318 1330 970 1920 15100 2870 20600 3810 726 

1965-

1973 

7500 170 2000 829 17300 4740 13400 2940 5660  

 
Form this data set, we extract the 4n  lower record values 1460, 1300, 

318 and 170.Using the methods described in Section 5 we compute the 
maximum likelihood estimates as well as 95% confidence interval for  ,
  and   as given in Table 4. 
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Table 4MLE’s and their confidence intervals 
 

                      Data set  

̂  0.1782 
̂  2.1031 

̂  0.7393 
)ˆ(CI

 
0.375683) , -0.019228(  

)ˆ(CI

 
)4.399487 , -0.193245(  

)ˆ(CI

 
2.058032) , (-0.579416  
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Appendix A 

Theelements of the Fisher information matrix )(I for the parameters 
),,(  are: 
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