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ABSTRACT 

Claim frequency data in general insurance may not follow the traditional 

Poisson distribution when there are many zeros. When the number of observed 

zeros exceeds the number of expected zeros under the Poisson distribution, extra 

dispersion appears. This paper summarizes several dispersed and zero-inflated 

count data models, which are used to handle dispersion and excess zeros. We 

model the insurance claim count data with excess zeros with these models. We 

use chi-square goodness-of-fit, to test the validity of the assumption of the count 

data distribution and fit count data regression model with predictors. We 

compare the fits through AIC and BIC. The generalized Poisson model and 

Negative binomial model provide a good fit to the data. 

Keywords: Claim frequency, zero-inflated Poisson, zero-inflated Negative 
Binomial, zero-inflated generalized Poisson model. 
 
1. Introduction 

 
The modeling of count data is of a primary interest in many fields such as 
insurance, public health, epidemiology, psychology, and many other research 
areas. The Poisson model is most commonly used for modelling count data. It 
assumes that the mean and variance are equal. However, this assumption is 
violated in many applications. The situation in which the variance is larger 
(smaller) than the mean is known as overdispersion (under-dispersion). The 
dispersion occurs when the single parameter   of the Poisson distribution is  
unable to fully describe event counts. For modelling the dispersed data, a choice 
of analysis is a Negative binomial (NB) model and a Generalized Poisson (GP) 
model (introduced by Consul and Jain, 1973). 
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Generally, two sources of over-dispersion are determined: heterogeneity of the 
population and excess of zeroes. The heterogeneity is observed when the 
population can be divided into many homogeneous subpopulations. The excess of 
zeroes is detected when the number of observed zeroes exceeds largely the 
number of zeroes produced by the fitted Poisson model, i.e. when the frequency 
of ‘zero’ is significantly higher than the one predicted by the Poisson model. 
Generally, in insurance a precise ratemaking system allows insurers to cover 
expected losses, expenses and make adequate provision for contingencies. The 
first step in ratemaking is to model the claim frequency distribution. 
Traditionally, the claim count distribution in general insurance is assumed to 
follow the Poisson and NB distributions (Thomas &Samson, 1987; Renshaw, 
1994). Under the usual deductible agreement in general insurance policies, a 
claim will not be created unless the loss exceeds the prescribed deductible limit. 
Furthermore, the no claim discount (NCD) system, which is widely adopted by 
automobile insurers, leads to excess zero claims because policyholders seldom 
make a claim if the amount to be claimed is small. Such practice results in excess 
zeros in the observed claim frequency distribution, even though the original 
accident count distribution follows a Poisson or NB distribution. Yip and Yau 
(2005) discussed the claims in motor insurance data may contain excess zeros 
due to the conditions of deductible and no claim discount that discourage insured 
drivers to report small claims. Neyman (1939) and Feller (1943) introduced the 
concept of zero-inflation for the problem of more zeros. The zero-inflation 
phenomenon is a very particular type of over-dispersion, which is specifically 
handled by the zero-inflated count data models. 
There are many situations in insurance, econometric, medical, engineering, 
manufacturing, public health, road safety, epidemiology,etc. where zero-inflation 
can be observed. Lambert (1992)studies some of the real life situations 
(manufacturing). Some other work can be found in Yip and Yau, (2005) (motor 
insurance), Mouatassim and Ezzahid, (2012) (health insurance), Neelon et al., 
(2010) (healthcare data), Pandey, (1964) (number of flowers of the plants with 
Primula Veris), Yip, (1988) (number of insects per leaf), Bohning et al., (1999) 
(dental epidemiology) etc.  
The zero-inflation phenomenon is common in general insurance practice and 
appropriate modelling of such a data structure is necessary to precisely fit the 
claim frequency distribution. However, the use of zero-inflated Poisson (ZIP) 
model receives little attention in the insurance and actuarial literature (Lambert, 
1992). Among mostly discussed zero-inflated models, most common models are 
zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) and zero-
inflated generalized Poisson (ZIGP). In this paper, an application of the ZIP, 
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ZIGP and ZINB distribution on the modeling of the claim frequency is discussed. 
The paper is organized as follows. 
Description of the automobile insurance dataset is given in Section 2. In Section 
3, we describe various count data models and zero-inflated models, which are 
most common for modeling over-dispersed and zero-inflated count data.  In 
Section 4, we discuss goodness of fit measures,  fit various count data models to 
automobile insurance dataset and compare the fitted models.  In Section 5, we 
demonstrate the performance of different zero-inflated models and compare the 
results with the Poisson, GP and NB models via the log-likelihood and related 
statistics. Finally, in Section 6, we provide concluding remarks. 
 
2. Insurance claim data from Singapore  

 
These data are from a portfolio of year 1993, which includes 7,483 automobile 
insurance policies from a major insurance company in Singapore. The data are 
described in Table 2 and provide the distribution of the claim counts. The 
variable of interest is the number of insurance claims per policyholder. For this 
dataset, it turns out that the maximum number of accidents in a year was three. 
There were on an average 0.06989 accidents per person. Frees and Valdez (2008) 
investigated hierarchical models of Singapore driving experience. Here, we 
consider a subset of this data, focusing on counts of automobile accidents and 
claims in 1993. The purpose of the analysis is to understand the impact of vehicle 
and driver characteristics on accident experience. We compare the performance 
of different zero-inflated models with the Poisson, GP and NB models to find the 
most suitable fit for modeling automobile insurance data. 

2.1 Description of data 
 

The number of observations in the present database is 7,483. Around 90.64% of 
the policyholders are males. From this database, several characteristics were 
available to explain the number of claims. These characteristics include different 
vehicle variables, such as type and age of vehicle, as well as the variables related 
to driver, such as age, sex, and prior driving experience. 
 

Table 1: Variable description of the automobile insurance data set 
 

Variable Type Description 

Clm_Count Discrete Number of claims during the year 

Female Binary Takes the value 1 if the insured is female, 0 
if the insured is male 
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Variable Type Description 

AgeCat Categorical 

The age of the policyholder, in years 
grouped into seven categories. 0-6 indicate 
age groups 21 and younger, 22-25, 26-35, 
36-45, 46-55, 56-65, 66 and over, 
respectively 

NCD Categorical 

No claims discount. This is based on the 
previous accident record of the policyholder. 
It indicates the categories from 0,10,20,30, 
40 and 50. The higher the discount, the better 
is the prior accident record 

VAgeCat Categorical 
The age of the vehicle, in years, grouped into 
seven categories. 0-6 indicates groups 0, 1, 2, 
3-5, 6-10, 11-15, 16 and older, respectively. 

PC Binary Takes the value 1 if private vehicle, 0 
otherwise 

Auto Age Categorical 
It is a combination of Private vehicle takes 
the value 1 and VAgeCat as 0, 1 or 2, 
otherwise it is 0 

Vehicle 
Type Categorical The type of vehicle being insured with levels 

A, G, M, P, Q, S, T, W, Z 

Exp_weights Numeric Exposure weight or the fraction of the year 
that the policy is in effect  

LNWEIGHT Numeric Logarithm of exposure weight, 
(log(Exp_weights)) 

 
 

Table 2: Observed claim counts in 
the motor insurance data 

Observed 

Claim 

Counts 

Frequency 

% 

claim 

count 

0 6996 93.49 
1 455 6.08 
2 28 0.37 
3 4 0.05 
4 0 0.00 

 

 

Fig.1. Claim count distribution 
 of the motor insurance data set 
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3. Dispersed and zero-inflated count data models  

 

If the count data contains excess zeros along with over-dispersion, one may 
consider ZIGP or ZINB model to fit the data. Several forms of GP model have 
been introduced by the researchers. The primary interest to introduce the different 
functional forms of GP model is to use the proper mean-variance interrelation in 
a regression context. The other objective is to achieve flexibility in the 
development of various test procedures and inferential advantages. 

Zamani and Ismail (2012) introduced a functional form of the GP regression 
model, which is referred as the GP-P model, that parametrically nests the Poisson 
and the two well-known GP regression models (GP-1 and GP-2). Zamani and 
Ismail (2014) proposed a functional form of ZIGP regression model, which 
mixes a distribution degenerate at zero with the GP-P distribution. The ZIGP-1 
and ZIGP-2 regression models are particular cases of ZIGP-P model with   

  and     , respectively. We summarize the functional forms of several 
dispersed and zero-inflated count data models in Table 3, along with its mean and 
variance. 
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4. Goodness-of-fit statistic and model selection criteria 

 
Data is said to be over-dispersed if the conditional variance exceeds the 
conditional mean. An indication of the magnitude of over-dispersion or 
under-dispersion can be obtained simply by comparing the sample mean and 
variance of the dependent count variable using the dispersion index, which is 
the ratio of variance and mean. Here the dispersion index is calculated as, 
1.0832, it shows that the data is over-dispersed. The zero-inflation index (ZI 
index) is a measure of detecting zero-inflation from the Poisson distribution. 
If  is a nonnegative integer random variable (count variable) with mean  and 
   is the proportion of zeros in a random sample of size  then ZI index,   for 
the sample is defined as, 
 
                 
 
 For the large sample from Poisson distribution   isclose to zero with high 
probability.  
The proportion of zeros in the insurance claim count data is 0.95 and ZI index 
is 0.037150. We fit various count data models to insurance claim count data 
to identify the best fit. The Chi-squared statistic is used to assess the 
goodness of fit of the distribution.  For large sample sizes, the distribution of 
the Chi-squared statistic is approximately a Chi-squared with       
degrees of freedom, where   is the number of observations and   is the 
number of parameters. A significant  valueindicates that the model does not 
fit the data well and another model with an additional parameter or 
parameters may be considered a significant improvement over the nested 
model. 
In assessing the performance of the models and for model selection, the zero-
inflated models are compared with the Poisson, GP, and NB models by 
means of the log-likelihood, Akaike’s information criteria (AIC) and 
Bayesian information criterion (BIC). In general, the smaller is the AIC and 
BIC, the better is the model fit. If  is the number of parameters estimated and 
  is the number of observations in the data, the AIC and BIC are defined as 
follows. 
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Results of fitting the claim frequency distribution by using various models 
are given in Table 4. Based on the chi-square statistic, the Poisson 
distribution does not provide an adequate fit to the automobile insurance data. 
The Poisson distribution is inappropriate in modeling the automobile claim 
frequency data. 
Based on the chi-square statistic    =1.7599), the ZIGP-1 distribution 
provides a good fit to the data. However, it should be noted that the Poisson 
variance is inflated by the dispersion parameter of the GPD. Therefore, the 
GPD, NB distribution indicate an adequate fit according to the   statistic 
when the underlying count, random variable is in fact zero-inflated.  
 

Table 4: Comparison of Fitted Models 
 

  Freq. Poisson GP-1 GP-2 NB ZIP ZIGP-1 ZIGP-2 ZINB 

0 6996 6977.86 6996.43 6996.44 6996.41 6996.00 6996.44 6996.38 6996.00 

1 455 487.69 452.83 452.82 452.78 452.69 452.83 452.90 452.69 

2 28 17.04 31.24 31.24 31.41 32.68 31.24 31.22 32.68 

3 4 0.40 2.30 2.30 2.23 1.57 2.30 2.30 1.57 

4 0 0.01 0.18 0.18 0.16 0.06 0.16 0.16 0.06 

Total 7483 7483 7483 7483 7483 7483 7483 7483 7483 
Proportion 
 of zeros 0.9325 0.9350 0.9350 0.9350 0.9349 0.9350 0.9350 0.9349 

   0.0699 0.0699 0.0699 0.0699 0.1444 0.0699 0.0699 0.1443 

   NA 0.0381 0.6609 1.1441 NA 0.0381 0.6609 0.0002 

   NA NA NA NA 0.5159 0.000008 0.000005 0.5158 

   41.9843 1.7786 1.7831 1.9502 4.4851 1.7599 1.7631 4.4840 

   3 2 2 2 2 1 1 1 

       0.00000 0.410951 0.410903 0.377149 0.106187 0.184640 0.184232 0.034215 

     
           -1941.18 1932.35 1932.35 -1932.38 -1933.17 1932.35 1932.35 -1933.00 

    3884.35 3868.70 3868.70 3868.77 3870.34 3870.70 3870.70 3872.34 

    38.23 3882.50 3868.70 3872.51 3874.08 3868.70 3868.70 3877.62 
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5. Regression model fitting results 

 
The zero-inflated models can be extended to accommodate covariates in a 
regression setting. The estimation of the proportion of zeros and the 
parameters can be divided into two parts. A logit part can be used to model 
the odds of structural zeros proportion and a Poisson part to model the counts 
that follow the Poisson distribution. Covariates could enter both the logit part 
and the Poisson part (Lambert, 1992). Estimation of parameters for zero-
inflated models are done through the R and SAS software via the 
optimization of relevant log-likelihood functions using the NLMIXED 
procedure. 
The following Table 5 shows the various count data models fitted to claim 
frequency data with covariates. To further analyze the automobile insurance 
data, the use of zero-inflated regression models is examined. The choice of 
variable is achieved through an exhaustive search of the database in which 
variables providing a significant improvement in the Poisson’s log-likelihood 
function at convergence are chosen. Among these nine explanatory variables, 
the NCD, VAgeCat, gender of policyholders is shown to be significant in the 
Poisson regression model. For comparison, the same set of variables is used 
in other models. Results from fitting the Poisson, GP, NB, ZIP, ZIGP and 
ZINB regression models are given in Table 5. We consider the Poisson, GP, 
NB, ZIP, ZIGP and ZINB models and the performance of these models is 
evaluated via the log-likelihood, AIC, BIC.  
 

Table 5:Results of fitting Poisson, GP, NB and zero-inflated regression 
models 

Parameter/ 

coefficient 

of 

Parameter estimate and its standard error when fitted model is 

Poisson GP-1 GP-2 NB ZIP ZIGP-1 ZIGP-2 

(Intercept) -2.2991 -2.3602 -2.3013 -2.3012 -1.7655 -2.3585 -2.3013 

 (0.1615)* (0.1698)* (0.1678)* (0.1681)* (0.2316)* (0.1920)* (0.1678)* 

Female -0.1493 -0.1616 -0.1524 -0.1522 -0.1480 -0.1616 -0.1525 

 (0.1550) (0.1591) (0.1598) (0.1599) (0.1593) (0.1591) (0.1598) 

AutoAge 0.0654 0.1242 0.0689 0.0687 0.0573 0.1240 0.0689 

 (0.1573) (0.1652) (0.1638) (0.1640) (0.1630) (0.1653) (0.1638) 

(NCD)10 -0.3726 -0.3648 -0.3774 -0.3772 -0.3768 -0.3650 -0.3772 

 (0.1261)* (0.1295)* (0.1305)* (0.1306)* (0.1300)* (0.1295)* (0.1305)* 

(NCD)20 -0.5190 -0.5129 -0.5195 -0.5193 -0.5192 -0.5137 -0.5192 
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Parameter/ 

coefficient 

of 

Parameter estimate and its standard error when fitted model is 

Poisson GP-1 GP-2 NB ZIP ZIGP-1 ZIGP-2 

 (0.1305)* (0.1336)* (0.1345)* (0.1343)* (0.1342)* (0.1336)* (0.1345)* 

(NCD)30 -0.3742 -0.3855 -0.3724 -0.3720 -0.3688 -0.3879 -0.3720 

 (0.1938)* (0.2001)* (0.2002) (0.1999)* (0.1996)* (0.2003)* (0.2002)* 

(NCD)40 -0.7391 -0.7101 -0.7351 -0.7355 -0.7361 -0.7087 -0.7356 

 (0.2427)* (0.2436)* (0.2484)* (0.2480)* (0.2480)* (0.2434)* (0.2485)* 

(NCD)50 -0.6639 -0.6531 -0.6632 -0.6631 -0.6616 -0.6534 -0.6631 

 (0.1370)* (0.1394)* (0.1411)* (0.1409)* (0.1406)* (0.1394)* (0.1411)* 

(VAgeCat)1 0.2764 0.2758 0.2730 0.2732 0.2725 0.2754 0.2732 

 (0.1475)* (0.1521)* (0.1531) (0.1532)* (0.1522)* (0.1521)* (0.1530)* 

(VAgeCat)2 0.5037 0.5334 0.5041 0.5041 0.4963 0.5334 0.5040 

 (0.1400)* (0.1424)* (0.1462)* (0.1459)* (0.1455)* (0.1425)* (0.1462)* 

(VAgeCat)3 0.2143 0.2779 0.2186 0.2182 0.2079 0.2779 0.2181 

 (0.2007) (0.2087) (0.2085) (0.2083) (0.2076) (0.2088) (0.2085) 

(VAgeCat)4 -0.1781 -0.1183 -0.1726 -0.1727 -0.1826 -0.1192 -0.1727 

 (0.2080) (0.2160) (0.2151) (0.2148) (0.2143) (0.2162) (0.2151) 

(VAgeCat)5 -0.9925 -0.9241 -0.9896 -0.9897 -0.9996 -0.9258 -0.9894 

 (0.2363)* (0.2438)* (0.2420)* (0.2420)* (0.2414)* (0.2440)* (0.2420)* 

(VAgeCat)6 -1.3693 -1.2815 -1.3627 -1.3628 -1.3724 -1.2819 -1.3628 

 (0.5241)* (0.5267)* (0.5296)* (0.5288)* (0.5289)* (0.5268)* (0.5296)* 

   NA NA NA NA -0.3679 -6.8487 -11.5501 

   NA NA NA NA 0.4091 0.0011 9.64E-06 

 - - - - (0.0936) (0.0822) (0.0040) 

   NA 0.0301 0.3783 0.7639 NA 0.0301 0.3782 

 - (0.0115)* (0.1444)* (0.5060)* - (0.0119)* (0.1444)* 
Log-

likelihood -1883.39 -1878.40 -1878.15 -1878.20 -1878.85 -1878.40 -1878.15 

AIC 3794.78 3786.80 3786.30 3786.39 3787.70 3788.80 3788.30 

BIC 3891.67 3890.60 3890.10 3890.20 3891.50 3899.50 3899.10 

 

Bracketed figures denote the standard error of the parameter estimates while 
* denotes the significant estimates at the 5% level of significance. Based on 
the AIC values, the GP2, NB and the zero-inflated regression models fit to 
the automobile insurance data reasonably well. 
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6. Discussion and conclusions 

 
Accurate modeling of the claim count distribution is one of the essential steps 
in calculating policy rates. Motivated by the dispersion and zero-inflation 
problem in the claim counts of the automobile insurance dataset, this study 
proposes the use of several count data models. The method accommodates 
the extra zeros possibly caused by the unreported minor losses. The Poisson, 
GP, NB, ZIP, ZIGP and ZINB models are considered and the performance of 
these models is evaluated via the log-likelihood, AIC, BIC. Based on the 
findings shown in the previous section, the GP-2, NB and the zero-inflated 
regression models fit the automobile insurance data reasonably well. The 
ZIGP distribution provides the best fit to the data. Other than the zero-
inflated models, parametric methods such as the mixture of distributions can 
be used to model the claim frequency distribution with extra zeros. 
Hurlimann (1990) discussed the use of several pseudo compound Poisson 
distributions in modelling the claim count data. Dobbie and Welsh (2001) 
considered the use of the Neyman type-A distribution to model zero-inflated 
counts. Accordingly, the Neymen type-A distribution models the count data 
via two Poisson parameters and it becomes more flexible in modelling 
multimodal data. 
 Due to the possible over-dispersion in the Poisson part, the baseline 
ZIP model may not be adequate. As such, the Poisson part in ZIP has been 
modified by using NB distributions. Referring to this over-dispersion 
problem in the Poisson part when fitting the claim count data, the quasi-
likelihood (QL) model defined by Wedderburn (1974) can be an alternative in 
modelling the extra-dispersion. 
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