
Sri Lankan Journal of Applied Statistics, Vol (23-1)

Unit Gamma/Gompertz Quantile Regression with
Applications to Skewed Data
M.H.B. Mustapha∗ and S. Nasiru

Department of Statistics, School of Mathematical Sciences,
C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana

*Corresponding author: mhmustapha.stu@cktutas.edu.gh

Received: 16th March 2022/ Revised: 10th August 2022/ Published: 31st August 2022

©IAppstat-SL2022

ABSTRACT
In this study, new unit quantile regression model, called the Unit Gamma/

Gompertz quantile regression for bounded responses is developed by
re-parameterizing the Unit Gamma/Gompertz distribution. To estimate the
parameters of the new quantile regression model, the maximum likelihood
approach is used to develop estimators for the parameters. Monte Carlo sim-
ulations are used to test the consistency of the maximum likelihood estimators
for the parameters of the new quantile regression model. The application of
the new quantile regression model is illustrated using three real life datasets
and the results revealed that the Unit Gamma/Gompertz quantile regression
performs better than the beta regression model when the unit response vari-
able has skewed observations and outliers.
Keywords: Distribution, Probability density function, re-parameterizing,
Maximum likelihood estimation, Cox-Snell residuals.

1 Introduction

In recent years, the development of unit distribution has accelerated signifi-
cantly. The emphasis is on modeling a wide range of events using data with
values within the unit interval, such as proportions, probabilities, and percent-
ages, among others. The development of parametric, semi-parametric, and
non-parametric regression models is also in high demand in applied fields for
the analysis of such data, and it is growing year after year. The conditional
mean function is used in classical linear regression analysis to estimate the
mean of the response for each fixed value of the explanatory variables. The
mean is one of the most important measures of central tendency, but it tells us
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very little about the tail area of the distribution. If researchers’ primary goal
is to examine the entire conditional distribution, then the classical regression
model cannot be extended to non-central locations.
The beta regression model is the most commonly used model where variables
are linked with responses that are continuously measured on the unit interval
due to its flexibility and clear parameter interpretation. The regression pa-
rameters in this model are interpretable in terms of the mean, as the model
is naturally heteroscedastic and can accommodate asymmetries. Although the
beta distribution is adaptable to fit data on the unit interval, additional unit
interval regression models have been presented in the literature. The most
popular are the simplex regression model (Barndorff-Nielson and Jørgensen,
1991), Kumaraswamy regression model (Mitnik et al., 2013), log-Lindley re-
gression model (Gómez-Déniz et al., 2016), Johnson SB regression model
(Lemonte et al., 2016), Unit Gamma (UG) regression model (Mousa et al.,
2016), unit-Logistic regression model (Paz, 2017), unit-Lindley regression
model (Mzucheli et al., 2019), Flexible quasi-beta regression (Bonat et al.,
2019), unit-improved second-degree Lindley regression (Altun and Cordeiro,
2020), unit generalized half normal regression model (Korkmaz, 2020) and
log-weighted exponential regression model (Altun, 2021) among others. In
contrast to the classical regression model, the quantile regression model is ro-
bust because the mean is sensitive to outliers and is delicately impacted by
skewed data. Thus, quantile regression modeling is superior to classical mean
regression modeling if the response variable contains outliers (Mazucheli et
al., 2021). Some quantile regression models for bounded response that are
in literature are: the Bayesian quantile regression model (Santos et al., 2015),
newKumaraswamy quantile parametric mixed regressionmodel (Bayes et al.,
2017), unit-Weibull quantile regression (Mazucheli et al., 2020), unit Birnbaum–
Saunders quantile regression model (Mazucheli et al., 2021), transmuted unit
Rayleigh (TUR) quantile regression model (Korkmaz et al., 2021). unit Burr-
XII quantile regression model (Korkmaz et al., 2021), exponential geomet-
ric quantile regression model (Jodra et al., 2021) and log exponential-power
quantile regression model (Korkmaz et al., 2021).
In this study, we formulated a quantile regression model considering a re-
parameterization of the unit-Gamma/Gompertz (UG/G) distribution in terms
of its quantile function. By re-parameterizing the UG/G distribution in terms
of ρth quantile, one gets the interpretation of its location parameter as being
the ρth quantile of the distribution. The idea of re-parameterizing was inspired
by Mazucheli et al. (2020), Mitnik et al. (2013) and Bayes et al. (2012).

The rest of this study is structured as follows. Section 2 describes the UG/G
distribution, the re-parameterized UG/G Distribution and some of its key fea-
tures. Section 3 describes the UG/G quantile regressionmodel, parameter esti-
mation and the Cox-Snell residual diagnostic. Section 4 conducts a simulation
analysis to examine the maximum likelihood estimators’ finite sample behav-
ior. Section 5 offers three real-life applications that make use of the proposed
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quantile regression model and the beta regression model, as well as a resid-
ual analysis to evaluate the efficacy of the new model. The study concludes
with some discussions, conclusions and recommendations for future study in
section 6.

2 Unit Gamma/Gompertz Distribution and Re-parameterized Unit
Gamma/Gompertz Distribution

2.1 Unit Gamma/Gompertz Distribution
Bantan et al. (2021) presented the UG/G distribution by inverse-exponentially
converting the Gamma/Gompertz distribution established by Bemmaor and
Glady (2012). The probability distribution function (PDF) and the cumulative
distribution function (CDF) of the UG/G distribution are given by

fUG/G(y;α, ϑ, θ) =
αϑθϑyαϑ−1

(1 + (θ − 1)yα)ϑ+1
, y ∈ (0, 1), (1)

and
FUG/G(y;α, ϑ, θ) =

θϑ

(θ − 1 + y−α)ϑ
, y ∈ (0, 1), (2)

respectively, where α > 0, ϑ > 0, θ > 0 are shape parameters.
The corresponding hazard rate function of the UG/G distribution is given by

hUG/G(y;α, ϑ, θ) =
αϑθϑyαϑ−1

(1 + (θ − 1)yα)[(1 + (θ − 1)yα)ϑ]
, 0 ≤ y ≤ 1 (3)

Also, the quantile function of the UG/G distribution is the inverse of the CDF.
It is mathematically expressed as

QUG/G(ρ;α, ϑ, θ) =
(
1 + θ

(
ρ−

1
ϑ − 1

))− 1
α
, ρ ∈ [0, 1]. (4)

2.2 Re-parameterized Unit Gamma/Gompertz Distribution
The UG/G distribution is redefined based on its quantile function in this sec-
tion to enable us study the effect of one or more covariates on a response
variable that follows the UG/G distribution. To obtain the re-parameterized
density function we make the subject in the quantile function given in equa-
tion (4). Let τ = QUG/G(µ; a, r, θ) in equation (4), then

θ =
τ−α − 1

ρ−
1
ϑ − 1

, ρ ∈ [0, 1]. (5)
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where ρ is an assume quantile value. Substituting θ in equation (5) into the
density function of the UG/G distribution given in equation (1) yields the re-
parameterized density function. Hence, the new density function in terms of
the quantile is given as

fUG/G(y;α, ϑ, ρ, τ ) =
αϑ(τ−α − 1)ϑyαϑ−1

(ρ−
1
ϑ − 1)ϑ[1 + ( τ

−α−ρ
− 1

ϑ

ρ
− 1

ϑ−1
)yα]ϑ+1

, 0 < y < 1, (6)

where α > 0 and ϑ > 0 are shape parameters, 0 < τ < 1 is the quantile pa-
rameter and ρ ∈ [0, 1]. Figure 1 shows the PDF plot of the re-parameterized
UG/G distribution for some selected parameter and quantile values. The PDF
exhibits approximately symmetric, left skewed, right skewed, decreasing, in-
creasing and bathtub shapes as shown in Figure 1 for the chosen parameter
and quantile values.
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Fig. 1: PDF plot of RUG/G for some selected parameter and quantile val-
ues

The corresponding CDF of the RUG/G distribution is obtained by substituting
θ into equation (2). The re-parameterized CDF is given by

FUG/G(y;α, ϑ, ρ, τ ) =
(τ−α − 1)ϑ

(τ−α − ρ−
1
ϑ + (ρ−

1
ϑ − 1)yα)ϑ

, 0 < y < 1. (7)

The survival function, often known as the complimentary CDF is a function
that estimates the likelihood that a patient, device, or other object of interest
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Fig. 2: Hazard rate function plot of the RUG/G distribution

will survive for a certain period of time. The survival function is sometimes
referred to as the reliability function in the realm of engineering. The survival
function is widely employed in a variety of domains, including applied biol-
ogy, engineering, social and environmental sciences among others. It can be
used to study the survival time of patients in medication trials. It may also be
used to calculate the amount of time between employment transfers (Klein-
baun, 2012). The survival function of the RUG/G distribution is given by

SUG/G(y) =
(τ−α − ρ−

1
ϑ + (ρ−

1
ϑ − 1)yα)ϑ − (τ−α − 1)ϑ

(τ−α − ρ−
1
ϑ + (ρ−

1
ϑ − 1)yα)ϑ

, 0 < y < 1. (8)

The hazard rate function of the re-parameterized UG/G distribution is given
by

hUG/G(y) =
αϑ(ρ

−1
ϑ − 1)(τ−α − 1)ϑ[(ρ

−1
ϑ − 1) + (τ−α − ρ−

1
ϑ − 1)yα]−1

y1−αϑ([(ρ−
1
ϑ − 1) + (τ−α − ρ−

1
ϑ )yα]ϑ − (τ−α − 1)ϑyαϑ)

, 0 < y < 1.

(9)

The plots of the hazard rate function for some selected parameter and quantile
values are shown in Figure 2. The plots indicate that the hazard function of
the RUG/G distribution has increasing shape and bath tub shape.
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3 Results

3.1 The Unit Gamma/Gompertz quantile Regression Model
Let Y1, ..., Yn be independent random variables such that each Yi has the PDF
described in equation (1), Yi ∼ RUG/G(τi;α, ϑ, ρ) for a known ρ ∈ (0, 1)
with quantile parameter τi and shape parameters α > 0 and ϑ > 0. The
UG/G quantile regression model is expressed such that the quantile τi meets
the following functional relation:

g(τi) = ϕTZi, i = 1, ..., n (10)

where ϕ = (ϕ0, ..., ϕp−1) is a p-dimensional vector of unknown regression
coefficients (p < n) and Zi = (1, zi1,..., zi(p−1)) represents the observations
on p known covariates.
Since the quantile is between 0 and 1, the most useful well-known link func-
tions for g(.) are logit given by logit(τi) = log( τi

1−τi
), probit given by g(τi) =

Ψ−1(τi), where Ψ−1(τi) is the standard normal quantile function and comple-
mentary log-log given by log(τi) = log[−log(1 − τi)]. We consider the logit
link in this study as a result of the direct explanation of the parameters. Thus
we have

τi
1− τi

= exp(ϕ0 + ϕ1z1i + ...+ ϕpzpi), (11)

which leads to the following interpretations:

• If z1i is continuous, for a unit increase, the percentage change
in the mode response is 100% · (eϕ̂1 − 1), keeping the other
predictors fixed.

• If z1i is an indicator variable then 100% · eϕ̂1 represents the
percentage change in the mode response for z1i = 1 to z1i = 0,
holding the other predictors fixed.

3.2 Parameter Estimation of the UG/G quantile Regression Model
In this study, the MLE is employed to estimate the parameters of the UG/G re-
gression model. Suppose y1, ..., yn are random samples for the UG/G distribu-
tion with PDF defined by equation (6). Let ξ = (ϑ, α, τi)

T be the set of param-
eters of the distribution. From the likelihood functionL(ξ) =

∏n
i=1 fUG/G(yi; ξ)

the total log-likelihood function is

ℓ =nlog(αϑ) + ϑ

n∑
i=1

log(τ−α
i − 1) + (αϑ− 1)

n∑
i=1

log(yi)−

nlog(ρ−
1
ϑ − 1)ϑ − (ϑ+ 1)

n∑
i=1

[1 + (
τ−α
i − ρ−

1
ϑ

ρ−
1
ϑ − 1

)].

(12)

54 ISSN-2424-6271 IASSL



Unit Gamma/Gompertz Quantile Regression

The maximum likelihood estimates of the parameter set ξ̂ = (ϑ̂, α̂, τ̂i) is ob-
tain by differentiating equation (12) with respect to each parameter, equating
it to zero and solving the system of equations for the parameters. The partial
differentials are given by the following equations

∂ℓ

∂ϑ
=
n

ϑ
− n[

ρ−
1
ϑ log(ρ)

ϑ(ρ−
1
ϑ − 1)

+ log(ρ−
1
ϑ − 1)] + α

n∑
i=1

log(yi)+

(ϑ+ 1)
n∑

i=1

ρ−
1
ϑ log(ρ)[1 + (τ−α

i − ρ−
1
ϑ )(ρ−

1
ϑ − 1)−1]yαi

ϑ2[(ρ−
1
ϑ − 1) + (τ−α

i − ρ−
1
ϑ )yαi ]

+

n∑
i=1

log(τ−α
i − 1)−

n∑
i=1

[1 + (
τ−α
i − ρ−

1
ϑ

ρ−
1
ϑ − 1

)yαi ],

(13)

∂ℓ

∂α
=
n

α
+ (ϑ+ 1)

n∑
i=1

[τ−α
i log(τi)− (τ−α

i − ρ−
1
ϑ )log(yi)]y

α
i

(ρ−
1
ϑ − 1) + (τ−α

i − ρ−
1
ϑ )yαi

−

ϑ
n∑

i=1

log(yi)− ϑ
n∑

i=1

τ−α
i log(τi)

τ−α
i − 1

,

(14)

and

∂ℓ

∂ϕr

=
α(ϑ+ 1)

(ρ−
1
ϑ − 1)

n∑
i=1

(τ
−(α+1)
i yαi )

∂

∂ϕr

τi − αϑ
n∑

i=1

τ
−(α+1)
i

(τ−α
i − 1)

∂

∂ϕr

τi, (15)

for r = 1, ..., p. The derivative ∂
∂ϕr

τi, will depend on the chosen link function.
For example, if it is considered the logit link, which is given by

τi =
exp(Zt

iϕ)

1 + exp(Zt
iϕ)

, (16)

then the derivative in terms of the quantiles is given by

∂

∂ϕr

τi = τi(1− τi)zir, i = 1, ..., n, r = 1, ..., p. (17)

3.3 Cox and Snell Residuals Analysis
The differences between the observed and predicted values are referred to as
the residuals. They are the popular tool for determining a model’s adequacy.
If a model is adequate, the Cox–Snell residuals should be approximated to a
unit exponential distribution, and the Cox–Snell residuals plotted against the
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cumulative hazard need to be a straight line with a zero intercept and unit
gradient (Nasiru, 2021). The residuals of Cox-Snell are defined as

r = −logŜ(yi|xi) = Ĥ(yi|xi), (18)

where Ĥ is the estimated cumulative hazard function based on the model, ŝ(·)
is the estimated survival function and Ŝ(ri) is the estimate of Kaplan–Meier
of the Cox–Snell residuals.

4 Simulation Study

Monte Carlo simulations were used to evaluate the estimators for the param-
eters of the UG/G regression model. The two covariates were generated from
uniform distribution for sample sizesn = 30, 80, 130, 180 and 230. The exper-
iment was carried out 3000 times each one of the sample sizes. The following
true parameter sets of values I : (ϕ0, ϕ1, ϕ2, α, ϑ) = (0.8, 0.9, 1.4, 0.2, 5.0),
II : (ϕ0, ϕ1, ϕ2, α, ϑ) = (1.29, 0.9, 1.5, 0.2, 1.6) and III : (ϕ0, ϕ1, ϕ2, α, ϑ) =
(0.4, 0.5, 1.5, 0.6, 0.8)were used at 0.25, 0.50, and 0.75 quantiles respectively
to generate random samples from the UG/G model. Table 1 and 2 show the
average value (AV), absolute bias (AB) and root mean square error (RMSE)
for the estimators. As seen in Table 1, the AV varies with sample size and ap-
proaches the real parameter values as sample size increases. TheABs andRM-
SEs for all the parameters are positive, and reduces as the sample size grows.
This shows that the consistency of the MLEs will be achieved as n → ∞.



Table 1: Simulation Results for Unit Gamma/Gompertz Quantile Regression
I II III

PARAMETER n AV AB RMSE AV AB RMSE AV AB RMSE
30 -2.5624 3.2774 3.5785 -1.3262 2.8353 3.0964 -0.102 1.142 1.4457
80 -2.5003 3.2003 3.3055 -1.3526 2.8526 2.9415 -0.0576 0.6826 0.8411

ϕ0 130 -2.5022 3.2022 3.2653 -1.3475 2.8475 2.9026 -0.0407 0.5741 0.7078
180 -2.5155 3.2005 3.2595 -1.3546 2.8456 2.8938 -0.0337 0.5309 0.6438
230 -2.5245 3.1245 3.2507 -1.332 2.832 2.8605 -0.0289 0.4949 0.5896

30 0.0552 1.6093 2.048 -0.0502 1.4839 1.8611 -0.0191 1.4666 1.8969
80 -0.0207 1.083 1.3368 -0.0028 0.9534 1.1744 0.0151 0.8558 1.0689

ϕ1 130 -0.0024 0.9388 1.1546 -0.0181 0.8356 1.0222 -0.0036 0.7153 0.8909
180 0.0122 0.8779 1.0556 0.0041 0.7795 0.932 0.0107 0.6339 0.7829
230 0.0103 0.8547 1.0103 -0.008 0.7519 0.8863 -0.0076 0.607 0.7461

30 -0.0067 1.8748 2.3395 -0.0226 1.6567 2.0356 -0.0002 1.8909 2.3407
80 -0.0111 1.4171 1.6869 -0.0079 1.3013 1.5317 -0.0167 1.5517 1.7823

ϕ2 130 -0.0111 1.3595 1.5522 0.0179 1.2198 1.406 -0.002 1.515 1.6698
180 0.0015 1.3119 1.4723 0.0127 1.2024 1.3499 -0.014 1.5143 1.6315
230 0.0034 1.305 1.4378 -0.0116 1.2173 1.3297 0.0138 1.4874 1.5787

30 2.962 2.7765 5.5601 2.1302 1.9538 5.8894 11.7228 11.501 57.1874
80 2.2755 2.1142 5.3283 1.9129 1.7825 4.7444 3.0378 2.8496 9.3239

α 130 2.0398 1.9021 4.4283 1.8602 1.7379 4.6024 3.0343 2.8416 8.886
180 1.744 1.6102 3.6178 1.6952 1.5838 3.7753 2.8001 2.6007 7.6187
230 1.7268 1.6036 3.4303 1.5692 1.4672 3.4818 2.7526 2.5557 7.3986

30 72.7297 72.1899 103.949 62.7267 62.2806 93.287 49.6607 49.365 80.3951
80 58.1775 57.8708 97.1921 54.7544 54.3873 89.8144 41.2763 41.0181 74.0449

ϑ 130 55.5244 55.7652 95.6587 51.8524 51.4797 87.6113 39.8738 39.6163 72.7697
180 56.141 55.1413 96.4809 51.6195 51.2338 87.5141 36.2566 36.014 69.1556
230 56.7788 55.3532 97.4531 51.3758 50.9758 87.2882 34.615 34.3617 67.3595



5 Applications of the UG/G quantile regression model Using Real-life
Data

In this section, we utilize three real life datasets to show the efficacy of the
UG/G quantile regression model. In the first example, we used the Gasoline
Yields from Crude Oil data present in the betareg package in R. In the second
example, the long term interest (LTI) rates against the foreign direct invest-
ment (FDI) data found in Nasiru et al. (2021) and Altun et al. (2020) is used.
While in the third example, the ammonia data available in the ugomquantreg
R package is utilized. The logit link function was considered in all cases. The
performance of the UG/G quantile regression model was compared with the
classical beta regression model using goodness of fit measure such us the -
2log-likelihood function (−2ℓ) and the Akaike Information Criteria (AIC).
In order to model different locations within the distribution of the response
variable and also to investigate how the changes in the covariates affect the
behavior of the response variable,0.200, 0.500, 0.800, 0.900 and 0.999 quan-
tile values were selected for the quantile model specifications. Again the 0.999
quantile value was employed to measure an extreme value impact, which is
unlikely to be captured when using the mean regression.

5.1 Gasoline Yields from Crude Oil Data
The dataset is made up of 6 variables containing 32 observations on the re-
sponse and 32 observations on the independent variables. The dataset was
collected by Prater (1956). Proportion of crude oil converted to gasoline after
distillation and fractionation (yield) is the response variable, while crude oil
gravity (gravity), pressure vapor pressure of crude oil (pressure), temperature
at which 10 percent of crude oil has vaporized (temp10), temperature at which
all gasoline has vaporized (temp) and factor indicating unique batch of condi-
tions gravity, pressure, and temp10 (batch) are the independent variables. In
this study all the variables were considered except the batch.

The descriptive statistics of the data shown in Table 2 revealed that the depen-
dent variable has the minimum (min) and maximum (max) values of 0.0280
and 0.457 respectively. The mean yield is 0.1966. The coefficient of skew-
ness (skew) is 0.3687 and excess-kurtosis value is -0.8003 indicated that the
data was right skewed and less peaked compared to the normal distribution.
The coefficients of skewness of the covariates revealed that the covariates are
right skewed except the temp data which is negatively skewed.

Table 3 shows the parameter estimates, standard errors (SE), and p-value for
five quantile functions, ρi = (0.200, 0.500, 0.800, 0.900, 0.999) and the beta
model. The estimates of pressure parameters are not significant at 5% except
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Table 2: Descriptive statistics of the GasonlineYield data

yield gravity pressure temp10 temp
Mean 0.1966 39.2500 4.1813 241.5000 332.0938
Sd 0.1072 5.6354 2.6198 37.5414 69.7560
Min 0.0280 31.8000 0.2000 190.0000 205.0000
Max 0.4570 50.8000 8.6000 316.0000 444.0000
Skew 0.3687 0.5612 0.1101 0.4934 -0.2658

Kurtosis -0.8003 -0.1222 -1.1667 -0.8439 -1.1941

at the 0.900 quantile. Also the estimates of gravity parameters are not signif-
icant at 0.8, 0.9, 0.999 and in the beta model at 5%.
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Table 3: The maximum likelihood parameter estimates for the GasonlineYield datasets

Quantile Parameter
ρ intercept gravity pressure temp10 temp α ϑ

0.2 Estimate 1.3832 -0.0241 -0.0515 -0.0245 0.0117 6.2192 10.5573
SE -0.5001 0.0093 0.0263 0.0016 0.0006 0.4658 0.0150

p-value 0.0057 0.0091 0.0500 <0.0001 <0.0001 <0.0001 <0.0001
0.5 Estimate 0.6364 -0.0266 -0.0238 -0.0214 0.0120 9.4307 10.4220

SE 0.0004 0.0059 0.0185 0.0010 0.0005 0.0001 0.0000
p-value <0.0001 <0.0001 0.1981 <0.0001 <0.0001 <0.0001 <0.0001

0.8 Estimate -1.0560 -0.0091 0.0007 -0.0175 0.0125 9.8083 10.4730
SE 0.0004 0.0054 0.0167 0.0009 0.0004 0.0000 0.0000

p-value <0.0001 0.0917 0.9682 <0.0001 <0.0001 <0.0001 <0.0001
0.9 Estimate -2.3912 0.0010 0.0533 -0.0138 0.0128 8.2871 1.4511

SE 0.0088 0.0076 0.0262 0.0013 0.0007 0.1457 0.4946
p-value <0.0001 0.8937 0.0422 <0.0001 <0.0001 <0.0001 <0.0001

0.999 Estimate -1.2201 0.0009 0.0258 -0.0197 0.0160 9.4243 2.5250
SE 0.0006 0.0075 0.0251 0.0014 0.0007 0.0000 0.0001

p-value <0.0001 0.9024 0.3034 <0.0001 <0.0001 <0.0001 <0.0001

Beta Estimate -2.6949 0.0045 0.0304 -0.0110 0.0106 248.2400
SE 0.7626 0.0071 0.0281 0.0026 0.0005 62.0200

p-value 0.0004 0.5249 0.2791 <0.0001 <0.0001 0.0001
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The goodness-of-fit statistics in the case of fitted models are shown in Table
4. The UG/G quantile regression model at the 0.999 quantile is the most ap-
propriate model for the data since it has the lowest −2ℓ and AIC values. The
model is shown in equation (19) and it could be seen that gravity, pressure
and temp have positive influence on the yield whiles the temp10 has negative
influence on the yield.

yield =− 1.2201 + 0.0009gravity + 0.0258pressure−
0.0197temp10 + 0.0160temp

(19)

Table 4: Goodness-of-fit statistics for GasonlineYield dataset

Quantile −2ℓ AIC
0.2000 -118.0121 -104.0121
0.5000 -116.7779 -102.7779
0.8000 -135.0878 -121.0878
0.9000 -144.6250 -130.6250
0.9990 -154.9649* -140.9649*
Beta -151.3600 -139.3614

*: means best fit model

In order to assess the fitted models, the Cox Snell residuals were generated.
If the model is appropriate, then the Cox-Snell residuals should behave ap-
proximately in the same way as a sample from the standard exponential dis-
tribution (Lawless, 2003). Figure 3 revealed that probability-probability (P-P)
plot, where the empirical probabilities of the Cox Snell residuals are compared
with those of the standard exponential distribution. The depicted points for the
UG/G quantile regression at the 0.999 quantile are noted to be closer to the di-
agonal line than those for the traditional beta regression. This implies that the
UG/G quantile regression provides better fit than the classical beta regression.
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Fig. 3: Cox–Snell residuals plots for the UG/G quantile regression model
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For model diagnostics, we have taken into account the goodness-of-fit mea-
sures such as the Kolmogorov-Smirnov statistic (KS), the Cramér-von Mises
statistic (CVM) and the Anderson-Darling statistic (AD) of the Cox Snell
residuals. The Cox-Snell residuals are said to follow an exponential distri-
bution of parameter 1 if the fitted model is good. The statistics with smaller
values and larger p-values are said to be better fits.
Table 5 shows the model diagnotics results for the GasonlineYield data. Table
5 revealed that the data sets can be modeled using the UG/G quantile regres-
sionmodel and the classical beta regression except at the 0.5 quantile. In terms
of goodness of fit statistics, the UG/G quantile regression model at the 0.999
quantile outperforms the UG/G quantile regression at other selected quantiles
and the classical beta for the data sets.

Table 5: Residuals goodness-of-fit statistics for GasonlineYield data

KS CVM AD
Quantile Statistic P-Value Statistic P-Value Statistic P-Value
0.200 0.1397 0.5153 0.1504 0.3898 0.9434 0.3876
0.500 0.2875 0.0078 0.6452 0.0167 4.6193 0.0044
0.800 0.2104 0.1013 0.2664 0.1686 1.6305 0.1484
0.900 0.1623 0.3320 0.1513 0.3872 0.8443 0.4492
0.999 0.1057 0.8306 0.0444 0.9122 0.3459 0.8994
Beta 0.1034 0.8488 0.0644 0.7896 0.4797 0.7663

5.2 Long Term Interest rates against Foreign Direct Investment data
The application of UG/G quantile regression is demonstrated by simulating
the link between the Organization for Economic Cooperation and Develop-
ment (OECD) countries’ long-term interest rates and foreign direct investment
(FDI). From Table 6, it could be observed that the averages of the LTI and the
FDI were 0.0200 and 0.6469 with standard deviations of 0.0200 and 0.8848
respectively. The degrees of asymmetry (Skew) of the distributions of the two
data sets were 1.4268 and 2.2861 respectively. These imply that the distribu-
tions are skewed to the right with a heavier right tail. The extents to which the
data fall within the centre of the distribution were 2.1029 and 4.4225 which
indicate that the distributions were leptokurtic with higher peaks as compared
to the standard normal distribution.

Table 7 gives the MLEs, their standard errors (SEs) and corresponding p-
values for the UG/G quantile and the classical beta regressions fitted to the
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Table 6: Descriptive statistics of the LTI FDI datasets

statistics LTI FDI
mean 0.0200 0.6469
Sd 0.0200 0.8848
Min 0.0004 0.0356
Max 0.0775 3.8010
Skew 1.4268 2.2861
kurtosis 2.1029 4.4225

LTI rates. The p-values in Table 8 reveal that the parameters are statistically
significant at 5% level for both regression models. We conclude that the FDI
stocks explain the LTI rates.

Table 7: The maximum likelihood parameter estimates for LTI FDI data

Quantile Parameter
ρ intercept FDI α ϑ

0.2 Estimate -4.8344 -0.5234 4.5419 0.2087
SE 0.3033 0.1076 1.7270 0.1041

p-value <0.0001 <0.0001 0.0085 0.0451
0.5 Estimate -3.8479 -0.5261 4.5398 0.2087

SE 0.1802 0.1081 1.7254 0.1042
p-value <0.0001 <0.0001 0.0085 0.0450

0.8 Estimate -3.2522 -0.5296 4.5373 0.2089
SE 0.1586 0.1087 1.7231 0.1041

p-value <0.0001 <0.0001 0.0085 0.0448
0.9 Estimate -3.0073 -0.5317 4.5379 0.2088

SE 0.1623 0.1090 1.7224 0.1040
p-value <0.0001 <0.0001 0.0084 0.0447

0.999 Estimate -1.8462 -0.5530 4.5867 0.2060
SE 0.4884 0.1093 1.7191 0.1013

p-value 0.0002 0.0000 0.0076 0.0421

Beta Estimate -3.7591 -0.3716 71.2100
SE 0.1686 0.1722 18.8100

p-value <0.0001 0.0309 0.0002
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The performance of the UG/G quantile regression model was compared to
that of the beta regression model. The −2ℓ and AIC values are used to select
the best fitted regression. Since the UG/G quantile regression has the lowest
values of these statistics, it provides a better fit than the classical beta regres-
sion for the current data as shown in Table 8.
The best UG/G quantile regression model occurred at the 0.20 quantile value.
Its mathematical expression is shown in equation (20). It could be observed
that the FDI has negative influence on the LTI. This means that one unit in-
crease in FDI will reduce the LTI by 52.34%.

LTI = −4.8344− 0.5234FDI (20)

Table 8: Goodness-of-fit statistics for LTI FDI data

Quantile −2ℓ AIC
0.2 -211.6940* -203.6940*
0.5 -211.6783 -203.6783
0.8 -211.6581 -203.6581
0.9 -211.6457 -203.6457
0.999 -211.5246 -203.5246
Beta -207.6 -201.5314

*: means best fit model

The plots of Cox–Snell residuals for the UG/Gquantile and the classical beta
regressions are displayed in Figure 4. The P-P plots of the Cox–Snell residuals
revealed that the UG/G quantile regression at the various quantile functions
provide adequate fit to these data.
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Fig. 4: Cox–Snell residuals plots for the UG/G quantile regression model
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Table 9 shows the model diagnosis results for the LTI FDI data. Table 9 re-
vealed that the data sets can be modeled using the UG/G quantile regression
model and the classical beta regression. In terms of goodness-of-fit statistics,
the UG/G quantile regression model performs better than the classical beta for
the data sets.

Table 9: Residuals goodness-of-fit statistics for LTI FDI data

KS CVM AD
Quantile Statistic P-Value Statistic P-Value Statistic P-Value
0.20 0.0866 0.9415 0.0303 0.9769 0.1903 0.9929
0.50 0.0863 0.9427 0.0304 0.9766 0.1906 0.9928
0.80 0.0861 0.9440 0.0305 0.9762 0.1912 0.9927
0.90 0.0859 0.9447 0.0305 0.9760 0.1915 0.9926
1.00 0.0845 0.9515 0.0309 0.9747 0.1938 0.9921
Beta 0.1608 0.3086 0.2896 0.1445 1.5899 0.1566

5.3 Ammonia Data
The data are from the operation of a plant where ammonia is oxidized to ni-
tric acid; the oxidation is measured on 21 consecutive days. The data set con-
sist of 3 covariates and 1 response variable. The percentage of ammonia lost
(StackLoss) is the response variable while the air flow to the plant (AirFlow),
the cooling water inlet temperature (WaterTemp) and the acid concentration
(AcidConc) are the covariates. Table 10 presents the descriptive statistics of
the Ammonia data. From Table 10, the StackLoss has minimum and maxi-
mum values of 0.0700 and 0.4200 respectively. The average was 0.1752 with
a standard deviation of 0.1017. The coefficient of skewness of 1.1564 and
excess kurtosis value of 0.1344 revealed that the distribution of StackLoss is
right-skewed, and it is highly peaked than the normal distribution due its value
of excess kurtosis.

The parameter estimations are provided in Table 11. The parameter estimates
were significant at the 5% significance level for all the independent variables
except the AcidConc, which has its coefficients fluctuating between positive
and negative and have p-values larger than 5%. This means that, the covariate,
AcidConc has no influence on the response variable.

Table 12 presents the goodness-of-fit statistics for the fitted models. It can be
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Table 10: Descriptive statistics of Ammonia data

Statistics StackLoss AirFlow WaterTemp AcidConc
Mean 0.1752 60.4286 21.0952 86.2857
Sd 0.1017 9.1683 3.1608 5.3586
Min 0.07 50 17 72
max 0.42 80 27 93
skew 1.1564 0.8119 0.4688 -0.873

kurtosis 0.1344 -0.2592 -1.2315 0.1896

Table 11: The maximum likelihood parameter estimates for Ammonia data
Quantile Parameter

ρ intercept AirFlow WaterTem AcidConc α ϑ

0.2 Estimate -6.1169 0.0478 0.0686 -0.0005 10.6418 1.5466
SE 0.5017 0.0099 0.0254 0.0077 0.4039 0.7948

p-value <0.0001 <0.0001 0.0070 0.9506 <0.0001 0.0517
0.5 Estimate -6.2439 0.0514 0.0628 0.0015 11.4249 1.2354

SE 0.4896 0.0101 0.0245 0.0078 0.1655 0.5899
p-value <0.0001 <0.0001 0.0104 0.8488 <0.0001 0.0363

0.8 Estimate -5.7050 0.0461 0.0909 -0.0061 8.6632 3.4454
SE 0.5934 0.0082 0.0225 0.0081 1.4573 0.4848

p-value <0.0001 <0.0001 0.0001 0.4552 <0.0001 <0.0001
0.9 Estimate -5.9320 0.0519 0.0796 -0.0034 9.4776 2.0504

SE 0.5738 0.0107 0.0261 0.0084 0.8384 0.8754
p-value <0.0001 <0.0001 0.0023 0.6830 <0.0001 0.0192

0.999 Estimate -6.6419 0.0706 0.0616 0.0017 12.7830 0.9018
SE 0.5797 0.0105 0.0258 0.0080 3.1016 0.4773

p-value <0.0001 <0.0001 0.0168 0.8350 0.0000 0.0588

beta Estimate -5.8466 0.0394 0.0905 -0.0012 207.0600
SE 0.7727 0.0075 0.0218 0.0099 63.8600

p-value <0.0001 <0.0001 <0.0001 0.9010 0.0012

seen from Table 12 that the UG/G quantile regression models for the selected
quantile values performed better than the classical beta regressionmodel since
they have the least −2ℓ and AIC values.
The UG/G quantile regression model at the 0.999 quantile value is the best
among the selected quantiles since it records the least of the goodness-of-
fit-measures. Its expression is shown in equation (21.The AirFlow and Wa-
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terTemp have a positive effect on the StackLoss, while the AcidConc has a
negligible effect.

StackLoss =6.6419 + 0.0706AirF low + 0.0616WaterTem+

0.0017AcidConc
(21)

Table 12: Goodness-of-fit statistics for Ammonia data

Quantile −2ℓ AIC
0.200 -99.3219 -87.3219
0.500 -99.8405 -87.8405
0.800 -98.5533 -86.5448
0.900 -99.6211 -87.6211
0.999 -101.7153* -89.7153*
Beta -96.2200 -86.2127

*: means best fit model

Figure 5 reports the P-P plots of the Cox Snell residuals of UG/G quantile
regressions and the classical beta regression. It is observed that the plotted
points for the UG/G quantile regression at 0.999 quantile are closer to the
diagonal line than those of the classical beta regression. This implies that the
UG/G quantile regression provides better fit than the classical beta regression.
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Fig. 5: Cox–Snell residuals plots for the UG/G quantile regression model
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Table 13 shows the model diagnosis results for the Ammonia data. Table 13
revealed that the data sets can be modeled using the UG/G quantile regression
model and the classical beta regression. In terms of goodness-of-fit statistics,
the UG/G quantile regression model performs better than the classical beta for
the data sets.

Table 13: Residuals goodness-of-fit statistics for Ammonia data

KS CVM AD
Quantile Statistic P-Value Statistic P-Value Statistic P-Value
0.200 0.1579 0.6162 0.0877 0.6536 0.4897 0.7554
0.500 0.1540 0.6461 0.0929 0.6253 0.5061 0.7386
0.800 0.1706 0.5192 0.1259 0.4753 0.6594 0.5917
0.900 0.1911 0.3787 0.0855 0.6655 0.4956 0.7493
0.999 0.1345 0.7945 0.0543 0.8552 0.4117 0.8355
Beta 0.1909 0.1909 0.1908 0.2874 1.0125 0.3498

6 Conclusion

In this study, a new unit quantile regression model was developed. The pro-
posed model is based on a re-parameterization of the UG/G distribution in
terms of its quantiles. MLEs was employed for estimating the parameters of
the regression model. AMonte Carlo simulation study was performed and has
shown that the parameters were well estimated in terms of the bias and RMSE.
Three real life datasets were analyzed for illustrative and model comparison
purposes. For these datasets, the UG/G quantile regression model has outper-
formed the beta models according to the information criteria, goodness-of-fit
measures and the P-P plots for the Cox–Snell residuals. Subsequent study in
this area should focus on the modal regression to determine whether it will
produce a better fit than the classical beta model.
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