Review Article

Clinical usefulness of brain-derived neurotrophic factor in paediatric psychiatry

*Pathum Sookaromdee¹, Viroj Wiwanitkit²

Sri Lanka Journal of Child Health, 2022; **51**(1): 129-133 DOI: http://dx.doi.org/10.4038/sljch.v51i1.10020 (Key words: Brain - derived neurotrophic factor, Psychiatry, Paediatrics)

Introduction

Many proteins originate from the neurological system¹⁻⁵. Brain derived neurotrophic factor (BDNF) is a neurotrophin, related to the canonical nerve growth factor¹⁻⁶. It has physiological effects on neurons of the central nervous system (CNS) and the peripheral nervous system. Clinically BDNF is altered in many psychological disorders⁴. BDNF plays a role in many clinical psychiatric disorders, including schizophrenia, depression, and autism via a neuro-inflammatory process resulting from several BDNF related signalling pathways⁶.

Genetically, BDNF is encoded by the BDNF (also known as BULN2) gene (Gene ID 627) in humans. The specific gene encoding BDNF is at chromosome 11, location 11p14.1. BDNF is first synthesized in the endoplasmic reticulum before it is secreted from dense-core vesicles⁷⁻⁸. The genetic polymorphism of BDNF plays a role in its phenotypic association. Considering RNA expression, tissue enhancement is detected in the brain with its highest levels at the cerebral cortex and skeletal muscle. There are expressional levels at lung, liver, kidney, eye and endocrine tissue. In blood, the expression is very low⁷. For protein expression, a medium score is observed in the brain, whereas a low score is observed in thyroid, parathyroid, adrenal gland and sexual organs⁷. There is no protein expression in blood and other tissues⁷.

¹Private Academic Consultant, Bangkok Thailand ²Honorary Professor, Dr. DY Patil University, Pune, India

*Correspondence: pathumsook@gmail.com

https://orcid.org/ 0000-0002-8859-5322

The authors declare that there are no conflicts of interest

Personal funding was used for the project.

Open Access Article published under the Creative

Commons Attribution CC-BY C U License

BDNF is generated by the human neurological system and plays an important role in neurological homeostasis, promoting neuron survival and controlling growth and differentiation of new neurons and synapses. Specific intracellular signalling and changed expression of BDNF are reported in many diseases. Briefly, background genetic factors and external environmental insults play roles as triggering factors resulting in local abnormalities. Regional increase or decrease of DNF expression occurs and further plays a role in phenotypic expression, the clinical presentation (Figure 1). There are applications of BDNF testing in many clinical problems including psychiatric disorders (Table 1). In this review, authors provide insights into the molecular characteristics of BDNF and highlight important details of BDNF laboratory diagnostic tests in clinical paediatric psychiatry.

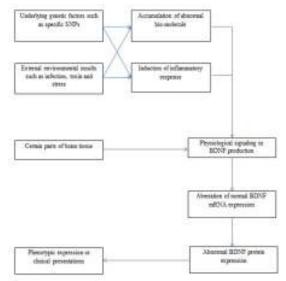


Figure 1: BDNF and specific intracellular signalling and changed expression of BDNF in important medical disorders

Medical disorder	Summary
Epilepsy	The upregulation of BDNF is observed. Regional increases are detected in temporal lobes. There is an association with epileptic activity. Anticonvulsant therapy results in downregulation. Monitoring of BDNF is a possible useful tool for determining epileptic activity.
Neurodegenerative disease	The downregulation of BDNF is seen at the specific degenerative part of the brain in each neurodegenerative disease. There are specific regional decreases in different neurodegenerative disease (cortex in Alzheimer disease, basal ganglia in Parkinson disease and hippocampus in autism). There is an association between BDNF level and severity of the neuro-deficit. Since there is usually a cellular abnormality that results in deteriorated BDNF in neurodegenerative disease, the BDNF becomes a newly proposed therapeutic alternative for management of the patient.
Psychiatric disorders	Stress can induce downregulation of BDNF. The decreased BDNF level is observed during dysthymia episode. The progression of psychiatric disorder can be assessed by monitoring change in BDNF level.
Infectious disease	Increased BDNF level is observed in some infections such as HIV infection and Zika virus disease. The role of BDNF in infectious disease is limited currently is an issue for further research.

 Table 1: The main effects of BDNF in different medical disorders

BDNF: Brain derived neurotrophic factor

Psychiatric disorders and BDNF Schizophrenia

Schizophrenia is an important neuropsychiatric disorder that presents in children and adolescents with a combination of hallucinations, delusions, extremely disordered thinking and behavioural changes⁸⁻¹¹. The molecular dysfunction in the BDNF signalling pathway, which results in downregulation, is associated with susceptibility to schizophrenia^{5,12-13}. The role of BDNF in the pathogenesis of schizophrenia is widely studied. Basically, there is a downregulation of BDNF in the brain of a schizophrenia patient. There is a longlasting down-regulation of BDNF transcripts III and IV induced by social defeat stress in schizophrenia¹³. Many studies have shown that BDNF is relevant to schizophrenia-related phenotypes¹³. The genetic polymorphism, especially for Val \rightarrow Met substitution, is widely studied^{13,14-17}. Di Carlo P, *et* al^5 concluded that the Val \rightarrow Met substitution was related to impaired activity-dependent secretion of BDNF and disruption of BDNF signalling was associated with altered synaptic plasticity and neurodevelopment. Nevertheless, Di Carlo P, et al⁵ noted that genome-wide association studies failed to associate the BDNF locus with schizophrenia. Therefore, the inter-relationship between schizophrenia and BDNF is an interesting issue for further research.

Major depressive disorder

Major depressive disorder is a mood disorder that can be seen in any age group including the paediatric population^{17,18}. It can cause a persistent feeling of sadness and loss of interest and it might interfere with daily functioning of the patient^{17,18}. The role of BDNF in pathogenesis of major depressive disorder is widely studied. Basically, depressive stress resulted in reduced BDNF expression in the hippocampus and this downregulation of BDNF in the brain is associated with the occurrence of major depressive disorder.

Bipolar disorder

Bipolar disorder is another important psychiatric problem presenting as extreme shifts in mood from depression to mania¹⁹⁻²¹. The role of BDNF in pathogenesis of bipolar disorder is widely studied. In bipolar disorder, downregulation of BDNF mRNA expression in the hippocampus is believed to be an important pathogenesis. In a bipolar patient, lower BDNF levels in the blood and brain are observed during depressive and manic episodes than in the euthymic period²²⁻²⁸.

Autism

Autism is a developmental disorder characterized by social difficulties with interaction and communication²⁹⁻³². The patient with autism might express restricted and repetitive behaviour²⁹⁻³² BDNF is observed in autism. The regional downregulation at hippocampus is observed²⁹⁻³². The role of BDNF in pathogenesis of autism is widely studied. All conditions associated with the autism spectrum disorder (ASD) show similar trends regarding BDNF concentration. The serum BDNF level is different in atypical autistic subjects (clinically milder phenotype) and typical ASD cases (clinically severe phenotype). Regarding the differential trend, lower DNF is observed in cases with more severe neuro-behavioural deficit³³.

Conclusion

The BDNF test is useful in diagnosis and follow-up of the patient. The determination of abnormal BDNF mRNA and protein expression can help identify the regional decreases or increases that are pathognomonic findings in each disease. The peripheral BDNF test is also a new laboratory diagnostic test that helps monitor the progression of disease and response to therapy since the changed expression level in disorder is generally related to disease progression in the course of disease. In laboratory medicine, there are many important considerations regarding brain derived neurotrophic factors. The quality control in all phases, preanalytical, analytical and post-analytical phases, for BDNF is necessary. Continuous developments in laboratory medicine lead to new advances in laboratory diagnosis for BDNF. The new diagnostic technologies such as applied Nano-Diagnostics for the BDNF diagnostic test are the future trend. The practitioner should recognize and update the data on laboratory diagnostic issues regarding BDNF.

References

- Notaras M, van den Buuse M. Brainderived neurotrophic factor (BDNF): novel insights into regulation and genetic variation. *Neuroscientist* 2019; 25: 434-54. https://doi.org/10.1177/107385841881014 2 PMid: 30387693
- Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. *Nature Reviews Neurology* 2009; 5(6): 311-22. https://doi.org/10.1038/nrneurol.2009.54 PMid: 19498435
- Iughetti L, Lucaccioni L, Fugetto F, Predieri B, Berardi A, Ferrari F. Brainderived neurotrophic factor and epilepsy: a systematic review. *Neuropeptides* 2018; **72**: 23-9. https://doi.org/10.1016/j.npep.2018.09.005 PMid: 30262417
- Phillips C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuro-plastic connection. *Neural Plasticity* 2017; 2017: 7260130. https://doi.org/10.1155/2017/7260130
 PMid: 28928987 PMCid: PMC5591905
- Di Carlo P, Punzi G, Ursini G. Brainderived neurotrophic factor and schizophrenia. *Psychiatric Genetics* 2019; 29: 200-10. https://doi.org/10.1097/YPG.0000000000 000237 PMid: 31465000 PMCid: PMC7386257

- 6. Giacobbo BL, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. *Molecular Neurobiology* 2019; 56(5): 3295-312. https://doi.org/10.1007/s12035-018-1283-6
 PMid: 30117106 PMCid: PMC6476855
- Binder DK, Scharfman HE. Brain-derived neurotrophic factor. *Growth Factors* 2004; 22(3): 123-31. https://doi.org/10.1080/089771904100017 23308
 PMid: 15518235 PMCid: PMC2504526
- Maisonpierre PC, Le Beau MM, Espinosa 8 R, Ip NY, Belluscio L, de la Monte SM, et Human and rat brain-derived al. neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 1991; 10(3): 558-68. https://doi.org/10.1016/08887543(91)9043 6-I
- Gaebel W, Zielasek J. Schizophrenia in 2020: Trends in diagnosis and therapy. *Psychiatry and Clinical Neurosciences* 2015; 69(11): 661 - 73. https://doi.org/10.1111/pcn.12322 PMid: 26011091
- Carpenter WT Jr, Buchanan RW. Schizophrenia. New England Journal of Medicine 1994; 330(10): 681-90. https://doi.org/10.1056/NEJM1994031033 01006 PMid: 8107719
- 11. Khan ZU, Martin-Montañez E, Muly EC. Schizophrenia: causes and treatments. *Current Pharmaceutical Design* 2013; 19(36): 6451-61. https://doi.org/10.2174/138161281131936 0006 PMid: 23432719
- Häfner H, an der Heiden W. Epidemiology of schizophrenia. *Canadian Journal of Psychiatry* 1998; 42: 139-51. https://doi.org/10.1177/070674379704200 204 PMid: 9067063

- Mohammadi A, Amooeian VG, Rashidi E. Dysfunction in brain-derived neurotrophic factor signalling pathway and susceptibility to schizophrenia, Parkinson's and Alzheimer's Diseases. *Current Gene* https://doi.org/10.2174/156652321866618 0302163029 PMid: 29512462
- 14. Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a metaanalysis. *Psychiatry Research* 2015; 226: 1-13. https://doi.org/10.1016/j.psychres.2014.12 .069
 PMid: 25681004
- 15. Rybakowski JK, Borkowska A, Skibinska M, Szczepankiewicz A, Kapelski P, Leszczynska-Rodziewicz Α, et al. Prefrontal cognition in schizophrenia and bipolar illness in relation to Val66Met polymorphism of the brain-derived neurotrophic factor gene. Psychiatry and Clinical Neurosciences 2006; 60: 70-6. https://doi.org/10.1111/j.14401819.2006.0 1462.x PMid: 16472361
- 16. Ho BC, Milev P, O'Leary DS, Librant A, Andreasen NC, Wassink TH. Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism patients in with schizophrenia and healthy volunteers. Archives of General Psychiatry 2006; 63: 731-40. https://doi.org/10.1001/archpsyc.63.7.731 PMid: 16818862 PMCid: PMC3065118
- 17. Hirschfeld RM. Differential diagnosis of bipolar disorder and major depressive disorder. *Journal of Affective Disorders* 2014; 169(Suppl 1) S12 S16. https://doi.org/10.1016/S01650327(14)700 04-7
- Chiriță AL, Gheorman V, Bondari D, Rogoveanu I. Current understanding of the neurobiology of major depressive disorder. *Romanian Journal of Morphology and Embryology* 2015; 56(2 Suppl): 651-8.

- Dubovsky SL. Mania. Continuum (Minneap Minn). Behavioral Neurology and Neuropsychiatry 2015; 21(3): 737-55. https://doi.org/10.1212/01.CON.00004666 63.28026.6f PMid: 26039851
- 20. Maletic V, C. Raison C. Integrated neurobiology of bipolar disorder. *Frontiers in Psychiatry* 2014; 5: 98. https://doi.org/10.3389/fpsyt.2014.00098 PMid: 25202283 PMCid: PMC4142322
- 21. Tondo L, Vázquez GH, Baldessarini RJ. Depression and mania in bipolar disorder. *Current Neuropharmacology* 2017; 15: 353-8. https://doi.org/10.2174/1570159X1466616 0606210811 PMid: 28503106 PMCid: PMC5405618
- 22. Munkholm K, Vinberg M, Kessing LV. Peripheral blood brain-derived neurotrophic factor in bipolar disorder: a comprehensive systematic review and meta-analysis. *Molecular Psychiatry* 2016; 21(2): 216-28. https://doi.org/10.1038/mp.2015.54 PMid: 26194180
- Kapczinski F, Frey BN, Kauer-Sant'Anna M, Grassi-Oliveira R. Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder. *Expert Review of Neurotherapeutics* 2008; 8: 1101-13. https://doi.org/10.1586/14737175.8.7.1101 PMid: 18590480
- 24. Baykara B, Koc D, Resmi H, Akan P, Tunca Z, Ozerdem A, et al. Brain-derived neurotrophic factor in bipolar disorder: Associations with age at onset and illness duration. Progress in Neuropsychopharmacology and Biological Psychiatry 13 August 2020; 110075. https://doi.org/10.1016/j.pnpbp.2020.1100 75 PMid: 22708610

PMid: 32798619

25. Pfaffenseller B, Kapczinski F, Gallitano AI, Klamt F. EGR3 Immediate early gene and the brain-derived neurotrophic factor in bipolar disorder. *Frontiers in Behavioral Neuroscience* 2018; **12**: 15. https://doi.org/10.3389/fnbeh.2018.00015 PMid: 29459824 PMCid: PMC5807664 26. Liu RT. Early life stressors and genetic influences on the development of bipolar disorder: the roles of childhood abuse and brain-derived neurotrophic factor. *Child Abuse and Neglect* 2010; **34**: 516-22. https://doi.org/10.1016/j.chiabu.2009.10.0 09

PMid: 20627389

27. Karamustafalioglu N, Genc A, Kalelioglu T, Tasdemir A, Umut G, Incir S, et al. Plasma BDNF level initially and post treatment in acute mania: comparison between ECT and atypical antipsychotic treatment and healthy controls. *Journal of Psycho-pharmacology* 2015; **29**: 898 - 902. https://doi.org/10.1177/026988111557816

PMid: 25827643

 Burghardt KJ, Pop-Busui R, Bly MJ, Grove TB, Taylor SF, Ellingrod VL. The influence of the brain-derived neurotrophic factor Val66Met genotype and HMG-CoA reductase inhibitors on insulin resistance in the schizophrenia and bipolar populations. *Clinical and Translational Science* 2012; 5: 486-90.

https://doi.org/10.1111/cts.12001 PMid: 23253673 PMCid: PMC4426971

- 29. Ratajczak HV. Theoretical aspects of autism: causes--a review. Journal of Immuno-toxicology 2011; 8: 68-79. https://doi.org/10.3109/1547691X.2010.54 5086
 PMid: 21299355
- Chaste P, Leboyer M. Autism risk factors: genes, environment and gene-environment interactions. *Dialogues in Clinical Neuroscience* 2012; 14(3): 281-92. https://doi.org/10.31887/DCNS.2012.14.3/ pchaste
 PMid: 23226953 PMCid: PMC3513682
- Lai MC, Lombardo MV, Baron-Cohen S, Autism. *Lancet* 201; **383**(4): 896-910. https://doi.org/10.1016/S01406736(13)615 39-1
- 32. Gegelashvili M. Autism and depression (Review). *Georgian Medical News* July 2019.
- Kasarpalkar JK, Kothari ST, Dave UP. Brain-derived neurotrophic factor in children with Autism Spectrum Disorder. *Annals of Neuroscience* 2014; 21: 129–33. https://doi.org/10.5214/ans.0972.7531.210 403 PMid: 25452672 PMCid: PMC4248479