Review

Cognitive impairment and functional outcomes in schizophrenia: a narrative review

S M Senanayake, N U Wanniarachchi

SL J Psychiatry 2023; 14(2): 6-14

This narrative review re-examines the background and evidence related to cognitive impairment and outcomes in schizophrenia. This area has gained much enthusiasm and research interest over the years, with the focus on recovery of patients with schizophrenia. Hence, knowledge sharing is imperative when incorporating evidence-based medicine into day today clinical practice.

Schizophrenia - introduction

Schizophrenia is possibly the most devastating disorder treated by psychiatrists (1). With a worldwide prevalence of approximately 1%, its economic cost has been estimated to be 65 billion USD per year (2) in (1).

Cognitive impairment is a core dimension of schizophrenia, (1,3) which has been demonstrated to be predictive of functional outcomes, (4,5) and to improve with interventions such as cognitive remediation (6-9), although not with the pharmacological agents currently available (10). Several pharmacological agents which remain in early-stage trials at the current time are reported to show promise in improving cognition (11).

Schizophrenia - description

The eleventh edition of the International Classification of Diseases (ICD-11) describes schizophrenia as being characterised by disturbances in multiple mental modalities which include thought, perception, self-experience, cognition, volition, affect and behaviour. The cognitive disturbances specified in the description are in the domains of *attention*, *verbal memory*, *and social cognition*. Psychomotor disturbance is described as variably present (12).

As the ICD-11 produced by the World Health Organization is the diagnostic guideline currently used in many if not most areas of the world, the increased prominence attributed to cognitive impairment in this description of Schizophrenia is significant. This is especially so when contrasted with the description of schizophrenia in the previous edition of the International Classification of Diseases (ICD-10), which mentions only that "certain cognitive deficits may evolve in the course of time" (13).

ICD 11 gives an increased prominence to cognitive symptoms of schizophrenia compared to ICD 10 based on cumulative evidence in this regard across the globe.

Schizophrenia – cognitive impairment in relation to diagnosis

Neither ICD-10 nor ICD-11 nor DSM-5 include cognitive impairment in the diagnostic requirement for schizophrenia (12-14).

The ICD-11 makes several important references to cognitive impairment. In the specifier for diagnostic threshold or 'boundary with normality', the ICD-11 states that multiple and persistent symptoms are typically present in association with cognitive impairment and difficulties with psychosocial difficulties in schizophrenia. In the specifier for course features, the ICD-11 states that cognitive symptoms tend to persist more than positive symptoms and are associated with functional impairment (12).

The DSM-5 specifies a wide array of cognitive impairments as associated features which are supportive of a diagnosis of schizophrenia. It lists decrements in neurocognitive domains such as attention, memory, language, and processing speed, and also mentions deficits in social cognition (14).

Cognitive impairment in schizophrenia – introduction

One of the earliest reported studies assessing disability associated with schizophrenia is a collaborative study conducted by the World Health Organisation (WHO) and published in 1980 (15). In 1996, a review article highlighted *verbal memory and vigilance* as being important for functioning while identifying that psychotic symptoms were comparatively less important (16). In the 2000s cognitive deficits in schizophrenia gained increased attention, (17) with several studies aiming to identify the specific cognitive deficits in

schizophrenia, (18,19) and these cognitive deficits soon being identified as potential targets of intervention, towards achieving improved functional outcomes (8,19).

Cognitive (neurocognitive) impairment in schizophrenia – description

A review of research data from 1980-2006 demonstrated that "the cognitive deficits demonstrated in schizophrenia are significant and characterised by generalized cognitive impairment" (3). Furthermore, it was noted that the reporting of cognitive deficits had remained stable over decades and was similar across the world despite cultural and linguistic differences (3), with only a 'significant minority' of patients with schizophrenia having normal neuropsychological functioning (20).

Although these deficits are widespread, they are unevenly distributed among the various domains of cognitive functioning. It is reported that "patients with schizophrenia scored significantly lower than controls across all cognitive domains" with patients demonstrating "larger impairments in processing speed and episodic memory" (3). In more detailed analyses it is described that "the magnitude of difference between patients and controls is greater for processing speed and aspects of sensory, verbal and working memory, than for attention, executive function, language, motor and spatial abilities, or general intelligence", and that "processing speed might be the single most sensitive cognitive indicator of schizophrenia", although the "broad-based nature of the deficit continues to receive support" (21).

A recent study conducted in southern Sri Lanka reported findings similar to those reported worldwide with cognitive impairments correlating positively with earlier onset of illness, advancing age and shorter duration of formal education (22).

Intelligence Quotients and schizophrenia

Lower premorbid Intelligence Quotient has been shown to have a strong association with an increased risk for schizophrenia (23).

Social cognition in schizophrenia

Social cognition is not usually listed amongst the conventional cognitive functions which are synonymous with neurocognition (24). Examples of social cognition include empathy, connectedness with others, and the ability to infer the thoughts of others and react emotionally to them. Deficits in social cognition are

present in schizophrenia and are identified as causative of significant impairments in day-to-day functioning (25). Deficits in social cognition are demonstrably present both prior to the onset of psychotic symptoms in schizophrenia, and among first degree relatives of patients with schizophrenia (26), in a pattern similar to that demonstrated for the neurocognitive deficits in schizophrenia (27).

Structural correlates of cognitive functioning in schizophrenia

Structural brain correlates of the cognitive dysfunction in schizophrenia are more recently being identified (28), with neurodevelopmental abnormalities believed to underlie both the onset of psychopathology and cognitive dysfunction (29).

Cognitive impairment in schizophrenia – onset

The cognitive decline in schizophrenia may precede the onset of psychosis by as much as a decade (30). Retrospective studies have demonstrated the neurocognitive deficits and deficits in social cognition in schizophrenia to be present in the premorbid phase and the prodrome as well as after the onset of psychotic symptoms (27). These deficits are also demonstrable among healthy relatives at high genetic risk of schizophrenia, suggesting these neurocognitive deficits and deficits in social cognition might be considered a trait marker for schizophrenia (27).

It is thought that cognitive deficits may have stabilized even prior to the first episode of psychosis, although this remains disputed (27). It remains unclear how much cognitive deficits progress after the onset of psychosis (30). One longitudinal study reports the deficit in processing speed as beginning in childhood and progressively worsening until the early teenage years, and verbal deficits as emerging in childhood but remaining static thereafter (31).

Another meta-analysis reports the now widely accepted view that mild cognitive deficits are present in the premorbid period, with a sharp decline in cognition 'at or near' the first episode of psychosis, with deficits remaining largely stable thereafter into the more chronic stages of the disease (32).

An earlier age of onset of psychosis is associated with higher levels of cognitive deficit (33). This may be due to the additive impact of hampered education and scholarship (27).

Impact of cognitive impairment in schizophrenia

The impact of neurocognition and social cognition and their impairments on clinical and functional outcomes have been the subject of much interest and research, especially as the unitary diagnosis of schizophrenia is associated with a heterogeneity of outcomes (5,21,34).

Impact of cognitive impairment in schizophrenia on clinical outcomes

Verbal memory is the neurocognitive function with the strongest demonstrated association with clinical outcome, with patients who do not achieve remission of schizophrenia demonstrating larger deficits in verbal memory than patients who do achieve remission (5).

The relative risk of dementia is significantly increased among patients with schizophrenia, in a manner that is not explainable by the established risk factors for dementia alone (35).

Impact of cognitive impairment in schizophrenia on functional outcomes

Deficits in both neurocognitive functioning and social cognition have a greater impact on functional outcomes than the clinical symptoms of schizophrenia (16) in (5).

It is worthy of note that verbal memory, which is the most impaired cognitive function in schizophrenia is also the strongest predictor of functional outcome (36) in (5).

Cognitive function is predictive of patients having the skills for independent living, (4) in (5) and of their ability to maintain social functioning and be functional members of their society (37) in (5).

It is evident that cognitive impairment is also negatively correlated with return to occupational functioning following the onset of schizophrenia, (38) in (5) and to later work success (5).

Schizophrenia – measuring outcomes: introduction

Following recognition of the central role of cognitive impairment as a determinant of functional outcomes (16), and functional outcomes being established as a key determinant of recovery (39), much attention was paid to assessing cognition (40), functional capacity, and real-world functioning in schizophrenia (41).

An accurate assessment of cognitive impairment is required to facilitate the selection of patients for appropriate interventions, such as cognitive remediation and psychosocial rehabilitation, and to assess for post-intervention improvement (4,5).

It is important also to distinguish between what a patient is capable of, which is 'functional capacity' or functional competence, and what they do, or real-world functioning (42). Assessments of functional capacity do not provide information on whether these actions are performed in real-life. This is because internal factors such as depression and lack of motivation, and external factors such as lack of resources or opportunity do not affect performance in the office or laboratory setting as they do in the real world (42).

A multi-centre study has demonstrated that even neurocognitive test performance is influenced by factors such as motivation and effort, suggesting they may need to be accounted for if more accurate measurements of cognitive impairment are to be made (43).

Functional capacity is typically assessed in office or laboratory-based simulations, during which observers assess patients engaging in simulated activities. Such measures are known as performance-based tests (42). Performance-based tests typically require time, trained observers, and special resources to simulate real-life situations (41,42). Performance-based assessments of functional capacity correlate highly with neurocognitive test results (42,44). However, tolerability (patient perception of pleasantness), and practicality (assessors' perceptions of convenience) are the variables which need to be considered (41).

Objective assessment of cognition is conducted via neurocognitive tests also known as neuropsychological tests of cognition. These are typically administered by trained staff and assess specific domains of cognitive functioning (41). "Interview-based clinician assessments of neurocognition" correspond poorly with neuropsychological tests of cognition (45), which are unreliable and hence best avoided.

Real-world functioning and outcomes are assessed by patient self-report and informant report which are obtained either by interview or questionnaire (41,44,46). Patient self-report has been found unreliable in the assessment of real-world functioning (47,48), with patients having higher cognitive abilities found to underestimate real-world outcomes (47) and patients with greater cognitive impairment overestimating their functioning (47).

In contrast with patient self-report, informant report has been found to have a much higher correlation with tests of functional capacity (44) in (42). Therefore, informant report is the preferred method for obtaining information on real-world functioning. Case managers' and caregivers' ratings of real-world functioning have been demonstrated to correspond highly with performance-based assessments of functional capacity (42,47), thus underlining the usefulness of informant reports. However, reliance on informant report is not without drawbacks such as

the possibility of there being no available informant with adequate recent knowledge of the patient (49).

'Validity' or the capacity of a measure to assess the variable it was designed to measure (50), 'test-retest reliability;' the ability of a measure to generate the same results if repeated after a brief lapse of time (51), and 'inter-rater reliability' or the ability of a measure to generate the same response from a subject despite evaluation by different assessors are properties expected of any psychological measure (51).

'Feasibility' or ease and speed of administration, 'repeatability' with minimal impact from practice effects, and 'sensitivity to change' are considered important qualities in outcome measures used in research and clinical trials (42,52), but are arguably of even greater significance in clinical settings where patients need to be selected by staff for interventions and later evaluated for improvement (42,52). Clinical staff who lack training in the administration of neuropsychological tests (44), may be disincentivised to allocate or prescribe therapies or medication for cognitive enhancement.

Schizophrenia-measuring outcomes: scales and measures Identifying accurate outcome measures is essential to the success of any clinical trial or intervention aiming to improve outcomes in schizophrenia (21). An accurate assessment of cognitive impairment is required to facilitate the selection of patients for appropriate interventions, such as cognitive remediation and psychosocial rehabilitation, and to assess for post-intervention improvement (3,4)

The Brief Assessment of Cognition in Schizophrenia (BACS) demonstrates validity, reliability, and sensitivity as a neurocognitive test in schizophrenia (53).

The Montreal Cognitive Assessment is an accurate measure of general cognitive abilities in patients with schizophrenia (54). It has been validated for screening patients with schizophrenia for cognitive impairment, demonstrating good correlation with the Brief Assessment of Cognition in Schizophrenia (BACS) in assessing cognitive impairment, and the Brief University of California San Diego Performance-Based Skills Assessment (UPSA-B) in assessing functional outcome (55). However, using a lower cut-off of 24 rather than 26 for this purpose has been suggested (54).

The Mini Mental State Examination is a cognitive assessment in widespread use worldwide over five decades (56). Despite good specificity, it lacks sensitivity in detecting mild cognitive impairment and identifying change in cognition (56) limiting its suitability for assessing cognition in schizophrenia (57).

The Repeatable Battery for Assessment of Neuropsychological Status (RBANS) has demonstrated concurrent validity and reliability in screening for cognitive impairment in schizophrenia (58-60). However, it lacks content validity for this purpose, as it does not assess executive functioning or working memory which are affected in schizophrenia (61). As a copyrighted neuropsychological test requiring 30-45 minutes and administer (62) in (61), it is not in widespread use although validated in Sinhala (63).

The Independent Living Skills Survey is a measure of real-world functioning, which is available for either self-report or informant report (64).

The Schizophrenia Cognition Rating Scale (SCoRS) and Clinical Global Impression of Cognition in Schizophrenia (CGI-CogS) are interview-based measures specifically designed to assess cognition and functioning in Schizophrenia (46). Both were used in the MATRICS research initiative (41,65).

The Cognitive Assessment Interview which was developed from SCoRS and CGI-CogS, is also an interview-based measure of cognition and functioning in schizophrenia. It has the added advantage of being brief in comparison with the parent measures but has lower correlation with assessments of functional capacity (24).

SCoRS is a broad assessment of cognition, assessing seven domains of social cognition and neurocognitive functioning with recognised impact on functional outcomes in schizophrenia (44). SCoRS has established validity in assessing cognitive performance relevant to real-life functioning, also known as ecological validity (42), among clinically stable patients (66). One of the key advantages of SCoRS is that it sensitively assesses cognitive performance relevant to real-world functioning despite being an interview-based measure (44). As an interview-based measure, it is easy to administer without the requirement of highly trained staff or special equipment (49).

The Schizophrenia Cognition Rating Scale obtains information from both patients and informants (persons who have the most experience of the patient in everyday situations) (44).

As such, this measure is one amongst a few which provide a means for incorporating the opinion of patients and their carers on the extent of cognitive impairment and functioning. (44). Although designed to assess the benefit of cognitive enhancers in clinical trials it was anticipated that this would be a useful test for clinicians to assess the level of cognitive impairment in patients for clinical purposes such as recommending cognitive enhancement therapies (44).

There has been recent interest in the use of virtual reality in the assessment of cognitive impairment in schizophrenia (67).

A systematic review of measures assessing cognition in severe mental illness, published in 2021 highlighted that there were no measures validated in populations in low-income countries, and only three validated in lower-middle-income countries (68).

Treating cognitive impairment in schizophrenia

Antipsychotic medication does not benefit cognitive impairments (27), and research into developing novel cognitive enhancers has been disappointing. Although cognitive impairment in Schizophrenia has long been identified as a prime target for novel drug treatments, none have succeeded in achieving licensing for use (46,69,70). However, alternative therapeutic methods such as cognitive remediation have demonstrated benefits in meta-analyses (27), with improvement demonstrable as long as ten years after intervention (7). Computerised cognitive training has shown promise and gained endorsement, however, (49) as have psychosocial treatments such as social skills training (71), and highly specialised interventions such as cognitive remediation, cognitive enhancement therapy and cognitive training (6,7,9,71-74).

Schizophrenia – outcomes and the concept of recovery

Although cognitive enhancers have not been identified, pharmacological interventions such as minimising the anticholinergic load (75,76) by means of selecting (newer) antipsychotics with less anticholinergic burden and using anti-muscarinic agents for extra-pyramidal side-effects sparingly, have been demonstrated to improve cognitive deficits in several studies (77-83).

The goal of schizophrenia management is 'recovery' which encompasses more than the clinical outcome of symptom remission, or functional outcome of vocational or educational role functioning. Recovery also incorporates quality of life as identified by satisfying interpersonal relationships, and low levels of stigma (84,85).

Although of obvious significance, the holistic outcome of recovery has proven difficult to quantify for the purposes of measurement and analysis, leading to difficulty in assessing the success of interventions promoting recovery (86).

A systematic review and meta-analysis in 2013 reports that only one in seven patients with schizophrenia

fulfilled the criteria for recovery (87), and that this proportion had not increased since much older reports from the mid-1990s (87).

N U Wanniarachchi, Consultant Psychiatrist, Base Hospital, Kahawatta, Sri Lanka

S M Senanayake, Department of Psychiatry, Faculty of Medicine, University of Colombo, Sri Lanka

Corresponding author: N U Wanniarachchi

E-mail: nimaliwanniarachchi80@gmail.com

References

- Andreasen N. The core dimensions of schizophrenia. In: Geddes JR, Andreasen NC, Goodwin GM, editors. New Oxford Textbook of Psychiatry. 3 ed. Oxford University Press; 2020. p. 1387-408.
- Murray CJ, Lopez AD. Burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: a summary. In: The Global Burden of Disease. World Health Organisation; 1996.
- 3. Schaefer J, Giangrande E, Weinberger DR, Dickinson D. The global cognitive impairment in schizophrenia: Consistent over decades and around the world. Schizophr Res. 2013; 150(1): 42-50.
- Heinrichs RW, Ammari N, Miles AA, Mcdermid Vaz S. Cognitive Performance and Functional Competence as Predictors of Community Independence in Schizophrenia. Schizophr Bull [Internet]. 2010 [cited 2022 Nov 1];36(2):381-7. Available from: https://academic.oup.com/ schizophreniabulletin/article/36/2/381/1896731
- Lepage M, Bodnar M, Bowie CR. Neurocognition: Clinical and Functional Outcomes in Schizophrenia. The Canadian Journal of Psychiatry [Internet]. 2014 [cited 2021 Dec 19];59(1):5-12. Available from: www.TheCJP.ca
- McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT. A meta-analysis of cognitive remediation in schizophrenia. American Journal of Psychiatry [Internet]. 2007 Dec 1 [cited 2022 Nov 2];164(12):1791-802. Available from: https://ajp.psychiatryonline.org/doi/10.1176/ appi.ajp.2007.07060906
- 7. Buonocore M, Spangaro M, Bechi M, Trezzani S, Terragni R, Martini F, et al. Cognitive remediation in schizophrenia: What happens after 10 years? Schizophr Res Cogn. 2022; 29.
- 8. Kern RS, Glynn SM, Horan WP, Marder SR. Psychosocial treatments to promote functional recovery in Schizophrenia. Schizophr Bull. 2009; 35(2): 347-61.
- Medalia A, Saperstein AM. Does cognitive remediation for schizophrenia improve functional outcomes? Curr Opin Psychiatry [Internet]. 2013 Mar [cited 2022 Apr

- 24];26(2):151-7. Available from: https://pubmed.ncbi.nlm.nih.gov/23318663/
- Horan WP, Catalano LT, Green MF. An Update on Treatment of Cognitive Impairment Associated with Schizophrenia. Curr Top Behav Neurosci [Internet]. 2023 [cited 2023 Nov 21];63:407-36. Available from: https://link.springer.com/chapter/10.1007/7854_2022_382
- 11. Javitt DC. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu Rev Pharmacol Toxicol. 2023; 63: 119-41.
- 12. ICD-11 for Mortality and Morbidity Statistics [Internet]. [cited 2022 Apr 14]. Available from: https://icd.who.int/browse11/1-m/en
- ICD-10 Version:2019 [Internet]. [cited 2022 Apr 19].
 Available from: https://icd.who.int/browse10/2019/en#/F20
- American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force. Schizophrenia 295.90 (F20.9). In: Diagnostic and statistical manual of mental disorders?: DSM-5. American Psychiatric Association; 2013. p. 99-105.
- Jablensky A, Schwarz R, Tomov T. WHO collaborative study on impairments and disabilities associated with schizophrenic disorders. Acta Psychiatr Scand [Internet]. 1980 Sep 1 [cited 2021 Nov 7];62(S285):152-63. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ j.1600-0447.1980.tb07687.x
- 16. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry [Internet]. 1996 [cited 2022 Feb 16];153(3):321-30. Available from: https://pubmed.ncbi.nlm.nih.gov/ 8610818/
- 17. O'carroll R. Cognitive impairment in schizophrenia. Advances in Psychiatric Treatment. 2000; 6(3): 161-8.
- 18. Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the "right stuff"? Schizophr Bull [Internet]. 2000 [cited 2022 Feb 16];26(1):119-36. Available from: https://pubmed.ncbi.nlm.nih.gov/10755673/
- 19. Gold JM. Cognitive deficits as treatment targets in schizophrenia. Schizophr Res. 2004 Dec 15;72(1):21-8.
- Reichenberg A, Harvey PD, Bowie CR, Mojtabai R, Rabinowitz J, Heaton RK, et al. Neuropsychological Function and Dysfunction in Schizophrenia and Psychotic Affective Disorders. Schizophr Bull [Internet]. 2009 [cited 2022 Nov 5];35(5):1022-9. Available from: https://academic.oup.com/schizophreniabulletin/article/35/5/ 1022/1910420
- 21. Harvey PD. Cognitive Impairment in Schizophrenia Characteristics, Assessment, and Treatment. 2013.
- 22. Goonathilake P, Ediriweera D, Ruban R, Isuru A. Prevalence and correlates of cognitive impairment in schizophrenia: a cross-sectional study from a teaching hospital southern Sri Lanka. BMC Psychiatry 2022 22:1

- [Internet]. 2022 Nov 17 [cited 2022 Dec 7];22(1):1-8. Available from: https://link.springer.com/articles/10.1186/s12888-022-04368-2
- 23. Khandaker GM, Barnett JH, White IR, Jones PB. A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophr Res. 2011; 132(2-3): 220-7.
- 24. Mucci A, Giordano GM, Galderisi S, Nordentoft M, Glenthøj L, Medalia A, et al. Treatment of Cognitive Impairment in Schizophrenia. In: European Psychiatry [Internet]. Cambridge University Press; 2022 [cited 2022 Nov 2]. p. S48-9. Available from: https://www.cambridge.org/core/journals/european-psychiatry/article/treatment-of-cognitive-impairment-in-schizophrenia/2AA97D350CA54930786C 1501B 10958E6
- 25. Green MF, Horan WP, Lee J. Social cognition in schizophrenia. Nat Rev Neurosci [Internet]. 2015 Oct 16 [cited 2022 Apr 24];16(10):620-31. Available from: https://www.nature.com/articles/nrn4005
- 26. Barbato M, Liu L, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, et al. Theory of mind, emotion recognition and social perception in individuals at clinical high risk for psychosis: Findings from the NAPLS-2 cohort. Schizophr Res Cogn [Internet]. 2015 Sep 1 [cited 2022 Apr 24];2(3):133-9. Available from: http://dx.doi.org/10.1016/j.scog.2015.04.004
- Lecardeur L, Meunier-Cussac S, Dollfus S. Cognitive deficits in first episode psychosis patients and people at risk for psychosis: from diagnosis to treatment. Encephale [Internet]. 2013 Mar 23 [cited 2022 Jan 17];39:S64-71. Available from: https://pubmed.ncbi.nlm.nih.gov/ 23528322/
- 28. Khalil M, Hollander P, Raucher-Chéné D, Lepage M, Lavigne KM. Structural brain correlates of cognitive function in schizophrenia: A meta-analysis. Neurosci Biobehav Rev. 2022; 132: 37-49.
- 29. Cannon TD. How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis. Trends Cogn Sci. 2015; 19(12): 744-56.
- 30. Kahn RS, Keefe RSE. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry [Internet]. 2013 Oct 1 [cited 2022 Jan 17];70(10):1107-12. Available from: https://pubmed.ncbi.nlm.nih.gov/23925787/
- 31. Meier MH, Caspi A, Reichenberg A, Keefe RSE, Fisher H, Harrington H, et al. Neuropsychological Decline in Schizophrenia from the Premorbid to Post-Onset Period: Evidence from a Population-Representative Longitudinal Study. American Journal of Psychiatry. 2014 Jan;171(1):91-101.
- Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone S V, Seidman LJ. Neurocognition in First-Episode Schizophrenia: A Meta-Analytic Review. Neuropsychology [Internet]. 2009 [cited 2022 Oct 31]; 23(1):315-36. Available from: http://dx.doi.org/10.1037/ a0014708.supp
- 33. Rajji TK, Ismail Z, Mulsant BH. Age at onset and cognition in schizophrenia: meta-analysis. Br J Psychiatry [Internet].

- 2009 Oct [cited 2022 Jan 17];195(4):286-93. Available from: https://pubmed.ncbi.nlm.nih.gov/19794194/
- 34. McGrath J. Dissecting the Heterogeneity of Schizophrenia Outcomes. Schizophr Bull [Internet]. 2008 Mar 1 [cited 2022 Nov 6];34(2):247-8. Available from: https://academic.oup.com/schizophreniabulletin/article/34/2/247/1924806
- Ribe AR, Laursen TM, Charles M, Katon W, Fenger-Grøn M, Davydow D, et al. Long-term risk of dementia in persons with schizophrenia: A danish population-based cohort study. JAMA Psychiatry. 2015; 72(11): 1095-101.
- 36. Toulopoulouand T, Murray RM. Expert Review of Neurotherapeutics Verbal memory deficit in patients with schizophrenia: an important future target for treatment. Expert Rev Neurother [Internet]. 2004 [cited 2022 Nov 1];4(1):43-52. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=iern20
- Bowie CR, Reichenberg A, Patterson TL, Heaton RK, Harvey PD. Article Determinants of Real-World Functional Performance in Schizophrenia Subjects: Correlations With Cognition, Functional Capacity, and Symptoms. American Journal of Psychiatry. 2006;163(3): 418-25.
- 38. Nuechterlein KH, Subotnik KL, Green MF, Ventura J, Asarnow RF, Gitlin MJ, et al. Neurocognitive Predictors of Work Outcome in Recent-Onset Schizophrenia. Schizophr Bull [Internet]. 2011 Sep 1 [cited 2022 Nov 1];37(suppl_2):S33-40. Available from: https://academic.oup.com/schizophreniabulletin/article/37/suppl_2/S33/1874928
- Liberman RP, Kopelowicz A. Recovery from schizophrenia: a challenge for the 21st century. http:// dx.doi.org/101080/0954026021000016897 [Internet]. 2009 Nov [cited 2022 Nov 6];14(4):245-55. Available from: https://www.tandfonline.com/doi/abs/10.1080/ 0954026021000016897
- 40. Green MF, Nuechterlein KH. Should Schizophrenia Be Treated as a Neurocognitive Disorder? Schizophr Bull [Internet]. 1999 Jan 1 [cited 2022 Nov 5];25(2):309-19. Available from: https://academic.oup.com/schizophreniabulletin/article/25/2/309/1919077
- Green MF, Nuechterlein KH, Kern RS, Baade LE, Fenton WS, Gold JM, et al. Functional co-primary measures for clinical trials in schizophrenia: Results from the MATRICS Psychometric and Standardization Study. American Journal of Psychiatry. 2008;165(2): 221-8.
- Harvey PD, Velligan DI, Bellack AS. Performance-Based Measures of Functional Skills: Usefulness in Clinical Treatment Studies. Schizophr Bull [Internet]. 2007 Sep 1 [cited 2022 Nov 13];33(5):1138-48. Available from: https://academic.oup.com/schizophreniabulletin/article/33/5/ 1138/1896741
- 43. Fervaha G, Zakzanis KK, Foussias G, Graff-Guerrero A, Agid O, Remington G. Motivational deficits and cognitive test performance in schizophrenia. JAMA Psychiatry [Internet]. 2014 Sep 1 [cited 2021 Sep 29];71(9):1058-65. Available from: https://pubmed.ncbi.nlm.nih.gov/25075930/

- 44. Keefe RSE, Poe M, Walker TM, Kang JW, Harvey PD. The schizophrenia cognition rating scale: An interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. American Journal of Psychiatry. 2006 Mar;163(3):426-32.
- 45. Moritz S, Ferahli S, Naber D. Memory and attention performance in psychiatric patients: Lack of correspondence between clinician-rated and patient-rated functioning with neuropsychological test results. Journal of the International Neuropsychological Society [Internet]. 2004 Jul [cited 2022 Nov 9];10(4):623-33. Available from: https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/memory-and-attention-performance-in-psychiatric-patients-lack-of-correspondence-between-clinicianrated-and-patientrated-functioning-with-neuropsychological-test-results/F41D0526C9077A02994F0AEE64D855EE
- 46. Reise SP, Ventura J, Keefe RSE, Baade LE, Gold JM, Green MF, et al. Bifactor and Item Response Theory Analyses of Interviewer Report Scales of Cognitive Impairment in Schizophrenia. Psychol Assess [Internet]. 2011 [cited 2022 Feb 9];23(1):245-61. Available from: www.apa.org/pubs/journals/PAS
- 47. Bowie CR, Twamley EW, Anderson H, Halpern B, Patterson TL, Harvey PD. Self-assessment of functional status in schizophrenia. J Psychiatr Res. 2007; 41(12): 1012-8.
- 48. McKibbin C, Patterson TL, Jeste D V. Assessing disability in older patients with schizophrenia: Results from the WHODAS-II. Journal of Nervous and Mental Disease [Internet]. 2004 Jun [cited 2022 Nov 13];192(6):405-13. Available from: https://journals.lww.com/jonmd/Fulltext/2004/06000/Assessing_Disability_in_Older_Patients_With.2.aspx
- 49. Harvey PD, Khan A, Atkins A, Walker TM, Keefe RSE. Comprehensive review of the research employing the schizophrenia cognition rating scale (SCoRS). Schizophr Res. 2019; 210: 30-8.
- 50. Validity Statistics.com: Data Science, Analytics and Statistics Courses [Internet]. [cited 2022 Aug 30]. Available from: https://www.statistics.com/glossary/validity/
- 51. Research Reliability Research-Methodology [Internet]. [cited 2022 Nov 15]. Available from: https://research-methodology.net/research-methodology/reliability-validity-and-repeatability/research-reliability/
- 52. Keefe RSE, Davis VG, Spagnola NB, Hilt D, Dgetluck N, Ruse S, et al. Reliability, Validity and Treatment Sensitivity of the Schizophrenia Cognition Rating Scale. European Neuropsychopharmacology [Internet]. 2015 Feb 1;25(2):176-84. Available from: www.clinicaltrials.gov,
- 53. Keefe RSE, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004; 68(2-3): 283-97.
- 54. Rosca EC, Cornea A, Simu M. Montreal Cognitive Assessment for evaluating the cognitive impairment in

- patients with schizophrenia: A systematic review. Gen Hosp Psychiatry. 2020; 65: 64-73.
- 55. Yang Z, Abdul Rashid NA, Quek YF, Lam M, See YM, Maniam Y, et al. Montreal Cognitive Assessment as a screening instrument for cognitive impairments in schizophrenia. Schizophr Res. 2018; 199: 58-63.
- 56. Iancu I, Olmer A. The minimental state examination--an up-to-date review. Harefuah = Journal published by Israeli Medical Association in Hebrew, with abstracts in English [Internet]. 2006 Sep 1 [cited 2022 Nov 10];145(9):687-90, 701. Available from: https://europepmc.org/article/med/17078433
- 57. Rademeyer M, Joubert P. A comparison between the minimental state examination and the montreal cognitive assessment test in schizophrenia. South African Journal of Psychiatry. 2016; 22(1).
- 58. Wilk CM, Gold JM, Bartko JJ, Dickerson F, Fenton WS, Knable M, et al. Test-retest stability of the Repeatable Battery for the Assessment of Neuropsychological Status in schizophrenia. American Journal of Psychiatry [Internet]. 2002 May 1 [cited 2022 Nov 11];159(5):838-44. Available from: https://ajp.psychiatryonline.org/doi/ 10.1176/appi.ajp.159.5.838
- 59. Hobart MP, Goldberg R, Bartko JJ, Gold JM. Repeatable battery for the assessment of neuropsychological status as a screening test in schizophrenia, II: Convergent/discriminant validity and diagnostic group comparisons. American Journal of Psychiatry [Internet]. 1999 Dec 1 [cited 2022 Nov 11];156(12):1951-7. Available from: https://ajp.psychiatryonline.org/doi/10.1176/ajp.156.12.1951
- 60. Gold JM, Queern C, Iannone VN, Buchanan RW. Repeatable battery for the assessment of neuropsychological status as a screening test in schizophrenia, I: Sensitivity, reliability, and validity. American Journal of Psychiatry [Internet]. 1999 Dec 1 [cited 2022 Nov 11];156(12):1944-50. Available from: https://ajp.psychiatryonline.org/doi/10.1176/ajp.156.12.1944
- 61. Kraus MS, Keefe RSE. Cognition as an outcome measure in schizophrenia. The British Journal of Psychiatry [Internet]. 2007 Aug [cited 2022 Nov 11];191(S50):s46-51. Available from: https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/cognition-as-an-outcome-measure-in-schizophrenia/DFD5F37958619B0EC4F00FC39F08AC45
- Randolph C, Tierney MC, Mohr E, Chase TN. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. J Clin Exp Neuropsychol. 1998; 20(3): 310-9.
- 63. Suraweera CU, Anandakumar D, Dahanayake D, Subendran M, Perera UT, Hanwella R, et al. Validation of the Sinhala version of the Repeatable Battery for Assessment of Neuropsychological Status (RBANS). Ceylon Medical Journal. 2016; 61(4): 167.
- 64. Wallace CJ, Liberman RP, Tauber R, Wallace J. The Independent Living Skills Survey: A Comprehensive Measure of the Community Functioning of Severely and

- Persistently Mentally III Individuals. Schizophr Bull [Internet]. 2000 Jan 1 [cited 2022 Nov 6];26(3):631-58. Available from: https://academic.oup.com/schizophreniabulletin/article/26/3/631/1912470
- 65. Marder SR, Fenton W. Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophr Res. 2004; 72(1): 5-9.
- 66. Vita A, Deste G, Barlati S, De Peri L, Giambra A, Poli R, et al. Interview-based assessment of cognition in schizophrenia: Applicability of the Schizophrenia Cognition Rating Scale (SCoRS) in different phases of illness and settings of care. Schizophr Res. 2013; 146(1-3): 217-23.
- 67. Tyburski E, Mak M, Sokotowski A, Starkowska A, Karabanowicz E, Kerestey M, et al. Executive dysfunctions in schizophrenia: A critical review of traditional, ecological and virtual reality assessments. J Clin Med. 2021; 10(13).
- 68. Haile YG, Habatmu K, Derese A, Gouse H, Lawrie SM, Cella M, et al. Assessing cognition in people with severe mental disorders in low- and middle-income countries: a systematic review of assessment measures. Soc Psychiatry Psychiatr Epidemiol [Internet]. 2021 Jun 18 [cited 2022 Jan 17]; Available from: http://www.ncbi.nlm.nih.gov/ pubmed/34145463
- 69. Hyman SE, Fenton WS. Medicine: What are the right targets for psychopharmacology? Science (1979) [Internet]. 2003 Jan 17 [cited 2022 Nov 1];299(5605):350-1. Available from: https://www.science.org/doi/10.1126/science.1077141
- Keefe RSE. Should cognitive impairment be included in the diagnostic criteria for schizophrenia? In: World Psychiatry [Internet]. World Psychiatric Association; 2008 [cited 2022 Nov 14]. p. 22-8. Available from: /pmc/articles/ PMC2327232/
- 71. Schutt RK, Xi H, Mueser KT, Killam MA, Delman J, Eack SM, et al. Cognitive Enhancement Therapy vs social skills training in schizophrenia: a cluster randomized comparative effectiveness evaluation. BMC Psychiatry. 2022; 22(1).
- 72. Genevsky A, Garrett CT, Alexander PP, Vinogradov S. Cognitive training in schizophrenia: a neuroscience-based approach. Dialogues Clin Neurosci [Internet]. 2010 Sep 30 [cited 2022 Nov 11];12(3):416-21. Available from: https://www.tandfonline.com/doi/abs/10.31887/DCNS.2010.12.3/agenevsky
- 73. Medalia A, Choi J. Cognitive Remediation in Schizophrenia. Neuropsychology Review 2009 19:3 [Internet]. 2009 May 15 [cited 2022 Nov 2];19(3):353-64. Available from: https://link.springer.com/article/10.1007/s11065-009-9097-y
- 74. Matsuda Y, Morimoto T, Furukawa S, Sato S, Hatsuse N, Iwata K, et al. Feasibility and effectiveness of a cognitive remediation programme with original computerised cognitive training and group intervention for schizophrenia: a multicentre randomised trial. Neuropsychol Rehabil

- [Internet]. 2018 Apr 3 [cited 2022 Nov 11];28(3):387-97. Available from: https://www.tandfonline.com/doi/abs/10.1080/09602011.2016.1181555
- 75. Vinogradov S, Fisher M, Warm H, Holland C, Kirshner MA, Pollock BG. The cognitive cost of anticholinergic burden: Decreased response to cognitive training in schizophrenia. American Journal of Psychiatry [Internet]. 2009 Sep 1 [cited 2022 Nov 14];166(9):1055-62. Available from: https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2009.09010017
- 76. Minzenberg MJ, Poole JH, Benton C, Vinogradov S. Assocation of Anticholinergic Load with Impairment of Complex Attention and Memory in Schizophrenia. American Journal of Psychiatry [Internet]. 2004 Jan 1 [cited 2022 Nov 14];161(1):116-24. Available from: https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.161.1.116
- 77. Ballesteros A, Sánchez-Torres AM, López-Ilundain JM, Cabrera B, Lobo A, González-Pinto AM, et al. Is cognitive impairment associated with antipsychotic dose and anticholinergic equivalent loads in first-episode psychosis? Psychol Med [Internet]. 2018 Oct 1 [cited 2022 Nov 14];48(13):2247-56. Available from: https://www.cambridge.org/core/journals/psychological-medicine/article/abs/is-cognitive-impairment-associated-with-antipsychotic-dose-and-anticholinergic-equivalent-loads-in-firstepisode-psychosis/1DF469 DDEB ABD8C0B0 1E5F0F70FDCF06
- 78. Harvey PD, Keefe RSE. Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. American Journal of Psychiatry [Internet]. 2001 Feb 1 [cited 2022 Nov 12];158(2):176-84. Available from: https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.158.2.176
- Mishara AL, Goldberg TE. A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book. Biol Psychiatry. 2004; 55(10): 1013-22.
- 80. Ogino S, Miyamoto S, Miyake N, Yamaguchi N. Benefits and limits of anticholinergic use in schizophrenia: Focusing

- on its effect on cognitive function. Psychiatry Clin Neurosci [Internet]. 2014 Jan 1 [cited 2022 Nov 6];68(1):37-49. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/pcn.12088
- 81. Goff DC, Hill M, Barch D. The treatment of cognitive impairment in schizophrenia. Pharmacol Biochem Behav [Internet]. 2011 Aug [cited 2022 Nov 2];99(2):245. Available from: /pmc/articles/PMC3114283/
- Nielsen RE, Levander S, Leucht S. Second-generation antipsychotic effect on cognition in patients with schizophrenia-a meta-analysis of randomized clinical trials. Acta Psychiatr Scand [Internet]. 2015 Mar [cited 2022 Apr 24];131(3):185-96. Available from: https:// www.researchgate.net/publication/270961922
- 83. Blackman RK, Dickinson D, Eisenberg DP, Gregory MD, Apud JA, Berman KF. Antipsychotic medication-mediated cognitive change in schizophrenia and polygenic score for cognitive ability. Schizophr Res Cogn. 2022 Mar 1;27.
- 84. Warner R. Recovery from schizophrenia and the recovery model. Curr Opin Psychiatry [Internet]. 2009 Jul [cited 2022 Nov 1];22(4):374-80. Available from: https://journals.lww.com/co-psychiatry/Fulltext/2009/07000/Recovery_from_schizophrenia_and_the_recovery_model.8.aspx
- 85. Liberman RP, Kopelowicz A. Recovery from schizophrenia: A concept in search of research. Psychiatric Services [Internet]. 2005 Jun 1 [cited 2022 Nov 1];56(6):735-42. Available from: https://ps. psychiatryonline.org/doi/10.1176/appi.ps.56.6.735
- 86. Andreasen NC, Carpenter WT, Kane JM, Lasser RA, Marder SR, Weinberger DR. Remission in schizophrenia: Proposed criteria and rationale for consensus. American Journal of Psychiatry [Internet]. 2005 Mar 1 [cited 2022 Nov 7];162(3):441-9. Available from: https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.162.3.441
- Jääskeläinen E, Juola P, Hirvonen N, McGrath JJ, Saha S, Isohanni M, et al. A Systematic Review and Meta-Analysis of Recovery in Schizophrenia. Schizophr Bull [Internet]. 2013 Nov 1 [cited 2022 Nov 6];39(6):1296-306. Available from: https://academic.oup.com/schizophreniabulletin/ article/39/6/1296/1884290