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Abstract
Gymnasts use a special movement pattern for particular long swing movements to gain optimum elastic energy

of parallel bars to complete long swing movements artistically. Therefore it is essential to study body dynamics
as well as the dynamic properties of exercise apparatus to minimize the execution errors. In the present study,
performance of long swing movement under the parallel bars by national level gymnast of China (mass 50.4 kg)
were evaluated. The time history of middle points of wooden bars and all joint angles were measured using a
system of ten high speed cameras (100 Hz). The ViconT40 digitizing software was used to find all coordinates of
reflective markers (14 mm) which were attached on parallel bar-gymnast system. Based on the overall readings,
a 3D mathematical model for the parallel bars apparatus was developed using four damped spring-mass model
(Kx = 28601 N.m−1, KY = 10830 and KZ = 19101 N.m−1) with linear displacement-force characteristics. A
gymnast (50.4 kg) applied maximum horizontal force (Fx=584 N) to perform ‘long swing double tucked saltos’
to upper arm support on the parallel bars. In this time, the particular vertical force (Fz) and arm angle (α) with
X-axis are 488 N and 73o 3’ respectively. This 3D model can demonstrate dynamic properties of the parallel bars
interacting with any long swing movement for any gymnast.
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Introduction

The performance on long swing elements on parallel
bars is a critical aspect in the Men’s Artistic Gymnastics
(MAG). This event often increases the difficulty value
by players in competitions. Therefore, players pay more
attention to the body coordination during the entire
long swing movements on wooden parallel bars. When
the player reaches the vertical position under the bars,
player gains maximum amount of kinetic energy. Hence
flexible bars bend and store some of player’s energy in
response to his actions (in Figure 1). The player gets
some of stored elastic energy just before releasing the
bars/grips. This energy is most effective to complete
long swing elements on the bars artistically. Though
most players use common techniques to learn long swing
elements, they have to use special body coordination in
response to elastic energy of the bars, because paral-
lel bars’ movements clearly interact with joint torques
of gymnast’s body resulting linear and angular momen-
tums. In addition, the tops of the metal posts also in-
teract with long swing movements. Therefore, gymnasts
need to consider not only movements of wooden par-
allel bars but also how tops of metal posts movements
interact with the long swing elements to enhance their
particular performance.

The elastic properties of parallel bars apparatus play
a dominant role in designing artistic gymnastic elements
in world class championships and Olympic Games. Play-
ers are always searching for the best places of parallel
bars to initiate their high difficulty elements on bars.
The parallel bars apparatus consists of two bars that
are held parallel to, and elevated above, the ground by

a metal supporting framework. Usually these wooden
parallel bars are composed of wood with outer coat-
ing of wood [FIG, 2009]. Therefore, players use strain of
parallel bars and metal posts to generate precise force
application for routings on the bars. A player will de-
sign his routings based on four different element groups
such as swinging skills in a support position, a hanging,
an upper arm position and ends with a dismount from
either the bars or the side of the wooden parallel bars
[FIG, 2017]. Judges mainly evaluate performance of ex-
ercises considering of ‘difficulty values’ and ‘execution
errors’. If the player is not able to identify the strain
of the bars to initiate his high difficult elements on the
bars, more execution errors will be occurred through his
routings.

Figure 1: Graphics sequence of an elite gymnast per-
forming with important phases (1 to 8) of ‘forward giant
swing backward double salto tucked to upper arm hang’

Artistic gymnastic movements which start with long
swing under the parallel bars are highly difficult move-
ments compared to other movements of parallel bars
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Figure 2: Model for dynamic movement of Parallel bars
with three spring-dampers and two point masses mA

and mB where K1, K2 and K3 are spring constants and
C1, C2 and C3 are corresponding viscosity coefficients
of masses. Mc is attached to mass mB (at the middle
point of a wooden bar) using length l and massless wire.
MC oscillates on YZ plane surface with θ angular dis-
placement at time t. O is an initial position of a top
of metal posts and it represents origin of coordinates.
F is always moving on sagittal plane with mA and AF
parallel to OY axis. DE = 230 cm, VD = VE and D is
moveable point on YZ-plane. F can move on the sagittal
plane of the parallel bars. LM represents a wooden bar
at t = t in the dynamic situation.

apparatus. Because of the variety of evaluations which
were introduced by FIG based on long swing move-
ments [FIG, 2017] gymnast has to utilise the strain
of the parallel bars in the correct manner. For this
aspect, gymnasts use a special movement pattern for
particular long swing movements to gain elastic en-
ergy of parallel bars to complete long swing move-
ments artistically. The gymnast essentially focused on
not only the body dynamic but also the dynamic prop-
erties of exercise equipment/apparatus which interact
with their movement to minimize the execution er-
rors [Yamasaki et al., 2008]. And also, expert gymnasts
state that a slight difference of the apparatus prop-
erty can affect their performance particularly for ad-
vanced techniques, even if the change is within the norm.
Some detailed biomechanical model is necessary to as-
sess the various factors influencing performance. As a
solution for this problem, biomechanical models can
provide important results which are based on perfor-
mance [Hiley & Yeadon, 2005, Hiley & Yeadon, 2007].
A 2D frontal plane modal for the parallel bars appa-
ratus was developed assuming that the dynamic move-
ments of the tops of the metal posts are negligible
[Linge et al., 2006].

Under this study, we have designed a 3D parallel bars

Figure 3: Camera set-up (ViconT40) for data collection
viewed from above

model to observe the correct dynamic properties of par-
allel bars which are engaged in long swing movements
and it is compared all observed dynamic properties of
parallel bars with apparatus norms introduced by Inter-
national Gymnastic Federation [FIG, 2009, FIG, 2016].
To create effective force application to perform high dif-
ficulty elements under the bars, players and coaches usu-
ally observe dynamic strain of wooden parallel bars and
four metal pots. In this study, we have calculated dy-
namic force on bars which is interacting with long swing
elements.

Figure 4: Solid and dashed lines represent acceleration
and displacement of mB in y direction respectively.

Figure 5: Acceleration (solid line) and displacement of
mB in z direction

Most Olympic players perform highly executed el-
ements on parallel bars without any execution error.
That indicates that they know how to get the maximum
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Figure 6: Solid and dashed lines represent angular ac-
celeration and angular displacement of Mc from point
B on yz-plane, respectively.

Figure 7: Angular acceleration (solid line) and angular
displacement of Mc from point B on xz-plane.

Figure 8: Dynamic force T3 and its model force T3M

Figure 9: Dynamic force T2 and its model force T2M

of elastic energy to complete elements on parallel bars.
Therefore, the study of ’how elastic energy of bars sup-
port gymnasts to perform correctly executed elements
on parallel bars in artistic gymnastic?’ will help to en-
hance the players’ performance. Though artistic gym-
nastic elements have been performed by gymnasts tak-
ing advantage of elastic energy of parallel bars, they are
unable to identify optimum time at which the maximum
elastic energy is transferred to a particular movement
of gymnastic element. Therefore, most gymnastic play-
ers face several difficulties (release phase, momentary
phase and injury) to read correct techniques of gym-
nastic elements. In preparatory period, coachers inform
their players to “push” the bars or “pull” the bars, but
coaches and players cannot predict the exact value of
force and its direction and the time at which it should
be done. Hence, gymnast has to get more preparations
to perform correctly executed high difficulty elements on
parallel bars. To solve this problem, we have designed a
3D mathematical model for parallel bars in a dynamic
situation. Hence players and coaches can identify the
precise force application relevant to the artistic gym-
nastic element on parallel bars.

Methods

A 3D mathematical model was designed using four
massless spring dampers and two point masses to ob-
serve the dynamic properties of wooden bars. This
model was hypothesized for parallel bars. Height of the
parallel bars from the mat is 175 cm. The Kene’s pro-
cedure [Levinson & Kane, 1985] was used to derive the
system’s dynamical equations. In the first part of this
study, a pendulum was attached to the middle point of
a wooden bar and the oscillations on frontal, sagittal
and transverse planes were observed. In the second part
of the research, a national level gymnast of China per-
formed four repetitions of a long swing movement on
the middle of parallel bars. Hence, kinematic and ki-
netic values were calculated using Matlab R2014b soft-
ware and estimated the parameters of spring dampers
of mathematical model. Finally, the pattern of dynamic
force variation of the middle points of the parallel bars
due to the particular long swing movement was calcu-
lated.

Mathematical Model of Parallel Bars

The 3D mathematical model of parallel bars is
mainly designed for long swing elements (as in Fig-
ure 1). The movements of tops of four metal posts and
wooden parallel bars for long swing elements are still
not experimentally verified to that how much they in-
fluence the performance. The 2D model that indicated
the motion of the metal posts in the x-direction (see
Figure 2) is very small (< ±1cm) compared to much
larger gymnast body movements in the sagittal plane
[Linge et al., 2006]. We have seen that the tops of metal
posts motion in x-direction is not considerably small
specially for long swing elements.
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Table 1: Results of Parameter Identification of Ky and Cy

Subject(M) [kg] mA[kg] mB [kg] Ky[N.m−1] Cy[N.s.m−1] RMS[N]

50 1.02 5.001 10830 8.975 87.35

Therefore, the middle points of the wooden parallel
bars and tops of metal posts movements in three direc-
tions were considered to design 3D model for parallel
bars’ apparatus. The high bar dynamics in the horizon-
tal and vertical directions were represented by linear
spring model [Michael & Maurice, 2007]. Four massless
spring-dampers and two point masses (A and B in Fig-
ure 2) were used to represent parallel bars’ dynamic
movements from any direction relevant to the long swing
elements.

The Kane’s method [Levinson & Kane, 1985] was
used to derive (Appendix A) following dynamic equa-
tions 1 and 2 for above arrangement in Figure 2. T1

and T2 are spring-damper forces which are representing
the dynamic forces in y and z directions respectively.

Figure 10: Variation of dynamic force (Fx) on middle
point A of a wooden bar for artistic gymnastic element
in Figure 1

T2 = (mA +mB +MC)ÿ +MC l[cos(θ)θ̈ − sin(θ)θ̇2]
(1)

T3 = (mB +MC)(g + z̈)−MC l[sin(θ)θ̈ + cos(θ)θ̇2]
(2)

Similarly, the dynamic equation 3 was derived con-
sidering oscillations of MC on XZ-plane. The equation
3 represents the horizontal movements of middle point
of wooden bars.

T1 =
1

2
{(m+mB +M)ẍ+ML[cos(φ)φ̈− sin(φ)φ̇2]}

(3)

Model equations: Vertical (z direction) and horizon-
tal (x and y directions) spring-damper forces are mod-
elled as

T1M = Kxx+ Cxẋ+ Fx, (4)

T2M = Kyy + Cy ẏ + Fy (5)

and

T3M = Kzz + Cz ż + Fz (6)

Fx, Fy and Fz are the constant values in each model
of the spring dampers. Where Kx, Ky and Kz are the
stiffness constants and Cx, Cy and Cz are the constant
damping parameters.

Figure 11: A gymnast (50.4 kg) applied maximum hor-
izontal force (Fx=584 N) to perform an artistic gymnas-
tic element as in Figure 1 and vertical force (Fz) is 488
N. Arm angle (α) with X-axis is 73o 3’ on XZ-plane.

Data Collection and Data Processing

Reflective markers (14 mm) and ten high speed cam-
era set up (ViconT40, 100 Hz) were used to observe the
time history of the attached markers on parallel bars
(in Figure 3) and subjects. The coordinates of the nec-
essary markers were calculated using ViconT40 digitiz-
ing software. A 31 kg pendulum was attached to the
middle point of a wooden bar using a thin, non-elastic
cable. The oscillations on frontal, sagittal and transvers
planes were observed. This experiment was repeated for
a 50 kg mass pendulum in the same manner. Consid-
ering lateral oscillations of pendulum (Appendix ), dy-
namic equations 1 and 2 were formulated. Four reflective
markers were attached around the equator of pendulum
to observe the time history of its center of mass. In the
second part of the research, a national level gymnast
of China (50.4 kg) performed four repetitions of a long
swing movement: forward giant swing backward double
salto tucked to upper arm hang, under four different
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Table 2: Results of Parameter Identification of Kz and Cz

Subject(M) [kg] mA[kg] mB [kg] Kz[N.m−1] Cz[N.s.m−1] RMS[N]

50 1.00 5.00 19101 10.9 204.9

Table 3: Results of Parameter Identification of Kx and Cx

Subject(M) [kg] mA[kg] mB [kg] Kx[N.m−1] Cx[N.s.m−1] RMS[N]

50 1.00 5.00 28601 3.9496 0.00019

conditions on the middle of parallel bars. Time histo-
ries of all joints of player in dynamic movements were
observed using attached markers.

Data Analysis

Parameter Estimations

Parameters mA, mB , Ki, and Ci (wherei = {x, y, z})
were estimated using least squares curve fitting (Math-
lab14b software) of the formulated spring-damper forces
in equations 1, 2 and 3 with their model linear spring-
damper forces in equation 4, 5 and 6. Static elastic coef-
ficients of wooden bars were considered for initial values
of Ky and Kz to start the estimations1. The accelera-
tion of gravity is taken to be g = 9.81 m.s−2. Parallel
bar height has been kept as 175 cm from mat.

Model Validation

For validation of parallel bars model, experiment was
repeated for each 31 kg and 50 kg pendulums. Hence,
estimated values represent similar elastic properties of
bars as shown in Table 1, 2 and 3. Also, this experiment
was repeated in the same manner for another height of
parallel bars (185 cm). In this time, we observed Kx,
Ky and Kz as 27633 N.m−1, 10198 N.m−1 and 19512
N.m−1, respectively.

Kinematics of Model

Figure. 4, 5 and 6 show components of accelerations
of mA, mB and MC in dynamic equations 1 and 2. Fig-
ure 7 shows angular acceleration of mass mA, mB and
MC on XZ-plane. Basic calculation steps have been in-
troduced in Appendix .

The Figure 8 and Figure 9 show spring damper
forces (dashed lines) and their model values (solid lines).
Height of the parallel bars from the mat is 175 cm.

Results and Discussion

The norms of the International Gymnastic Fed-
eration demand vertical midpoint stiffness are to be
within the range of 19,000-27,400 N.m−1 [FIG, 1996,
FIG, 2016, Linge et al., 2006]. In this study, it found the
optimum value for vertical midpoint stiffness (Kz) in

1International Gymnastic Federation. (2016) FIG Apparatus
Norms, Standard Specification for Parallel bars (IV-MAG 5)

the dynamic situation using 50 kg pendulum. We got it
in vertical direction as 19,101 N.m−1. The 3D Model of
parallel bars estimated other stiffness values for the x di-
rection (parallel to the initial position of a wooden bar)
and the y direction as 28,606 N.m−1 and 10,830 N.m−1,
respectively. Though the 2D model was designed assum-
ing that the metal posts’ movements in the x direction
are negligible, we observed that the stiffness values for
the x direction (28,606 N.m−1) considerably influenced
the long swing movements on parallel bars (see Figure
10). Present study shows special body position in the
movement pattern which is near to the second place of
sequence in Figure 1 (see Figure 11), is very critical, be-
cause the mass 50 kg gymnast can pull the parallel bars
in the x-direction to make around 2.2 cm displacement
of top of the posts (-2.3 cm < x < +2.3 cm) for three
repetitions of the element in Figure 1. In this time, gym-
nast applied a 584 N force to pull a wooden bar. Hence,
gymnast can pull the bars at the bottom of the paral-
lel bars to generate maximum vertical displacement of
the middle point of the bars to store maximum amount
of elastic energy in wooden bars. Generally, gymnasts
know that part of elastic energy will help to lift them
above the bars. Therefore, gymnasts do more prepara-
tion in long period to gain more energy from the bars.
For a solution of this matter, gymnast can design their
movement pattern (sequence 1 to 8 in Figure 1) con-
sidering the behavior of the new parallel bars model in
Figure 2. International Gymnastic Federation (FIG) has
introduced and recommended 175 cm standard height of
parallel bars from the mat for FIG recommended artistic
gymnastic competitions from 2009 to 2016. New Men’s
Artistic Gymnastics (MAG) code of points in 2017 in-
dicates that the new height of the parallel bars is as
185 cm from the mat. This 10 cm increment of height
of parallel bars helps to gain more elastic energy from
the bars and metal posts. This directly influences the
performance of element. In this study, values of spring
constants Kx and Ky of 3D model reduced significantly
for 185 cm height of parallel bars from the mat.

Conclusion

The 3D parallel bars model can demonstrate how
gymnasts can use dynamic force to complete a ‘for-
ward giant swing backward double salto tucked to upper
arm hanging on bars with arm support’ movement us-
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ing all three dynamic stiffness values. This 3D model
can demonstrate dynamic properties of any long swing
movement for any gymnast.
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Appendix A

The Kene’s procedure [Levinson & Kane, 1985] was
used to derive the system’s flowing dynamical equations
1 and

OA = x a1 + ya2 ,

OB = x a1 + y a2 – z a3 and

OC = x a1 + [y+l sin(θ)] a2 – [z+l cos(θ)] a3

Velocities:
vmA = ẋa1 + ẏa2
vmB = ẋa1 + ẏa2 − ża3
vMC = ȧ1 + [ẏ + lcos(θ)θ̇]a2 − [ż − lsin(θ)θ̇]a3

Partial velocities:

vmA
1 =

∂vmA

∂ẋ
= a1 vmA

2 =
∂vmA

∂ẏ
= a2

vmA
3 =

∂vmA

∂ż
= a3 vmB

1 =
∂vmB

∂ẋ
= a1

vmB
2 =

∂vmB

∂ẏ
= a2 vmB

3 =
∂vmB

∂ż
= a3

vMC
1 =

∂vMC

∂ẋ
= a1 vMC

2 =
∂vMC

∂ẏ
= a2

vMC
3 =

∂vMC

∂ż
= a3

Resultant forces:
R1 = RmA

= −T2a2 − (T3 +mAg)a3
R2 = RmB

= Fsin(θ)a2 + [T3 −mBg − Fcos(θ)]a3
R3 = RMC

= −Fsin(θ)a2 + [−MCg + Fcos(θ)]a3

Generalized active forces:
Fr =

∑2
i (vpi

r ·Ri)

F1 = vmA
1 ·R1 + vmB

1 ·R2 + vMC
1 ·R3

F1 = 0
Similarly,
F2 = vmA

2 ·R1 + vmB
2 ·R2 + vMC

2 ·R3

F2 = −T2
F3 = vmA

3 ·R1 + vmB
3 ·R2 + vMC

3 ·R3

F3 = −T3 +mBg +Mg

Generalized inertia forces:
F ∗
1 = vp1

1 ·R∗
1 + vp2

1 ·R∗
2 + vp3

1 ·R∗
3

R∗
1 = mA(ẍa1 + ÿa2)

R∗
2 = mA(ẍa2 + ÿa2 − z̈a3)

R∗
3 = MC{ẍa1+(ÿ+lcos(θ)θ̈−lsin(θ)θ̇2)a2−(z̈+lsin(θ)

θ̈ − lcos(θ)θ̇2)a3}
F ∗
1 = (mA +mB +MC)ẍ

F ∗
2 = vp1

2 ·R∗
1 + vp2

2 ·R∗
2 + vp3

2 ·R∗
3

F ∗
2 = (mA +mB)ÿ +MC [ÿ + lcos(θ)θ̈ − lsin(θ)θ̇2]

F ∗
3 = vp1

3 ·R∗
1 + vp2

3 ·R∗
2 + vp3

3 ·R∗
3

F ∗
3 = 0 +mB z̈ +Mc[z̈ + lsin(θ)θ̈ − lcos(θ)θ̇2]

Dynamic equations:
F1 + F ∗

1 = 0
ẍ = 0
F2 + F ∗

2 = 0
T2 = (mA +mB +MC)ÿ +MC l[cos(θ)θ̈ − sin(θ)θ̇2]

(1)
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F3 + F ∗
3 = 0

T3 = (mB +MC)(g + z̈)−MC l[sin(θ)θ̈ + cos(θ)θ̇2]

(2)

Appendix B

Following calculations were done by considering pen-
dulum movements in YZ-plane. Smooth curve fitting
gives z as a function of time t in dynamic move-
ment with minimum RMS value 0.0071. z can fit as
z = A e−btsin(ωt+φ) +C where A = 0.00645,b = 0.01,
ω = 5.4496, φ = -0.823 and C = 0.0228. Therefore,
second derivative of z in terms of t(az) can derive as
sfshfd

z̈ = (b2ω2)(z − C)− 2Abωe−btcos(ωt+ φ).

Similarly, y can fit as y = A e−btsin(ωt + φ) + C
where A=0.025901, b=0.01991, ω=2.70672, φ=2.2403,
C=0.00021 and RMS value 0.0371. Therefore, second
derivative of y in terms of t(aY ) can derive as ÿ =
(b2ω2)(y−C)− 2Abωe−btcos(ωt+φ). Smooth curve fit-
ting of ẍ = 0.00386e( − 0.1871t)sin(2.7296t − 6.28) −
0.04294 and φ̈ = 0.3868 sin(2.752t − 3.1492) + 0.0105
were done by optimizing parameters of 50 kg pendu-
lum oscillations in XZ-plane. RMS values of them are
1.77×10-3 for ẍ and 1.81×-4 for φ̈.
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