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ABSTRACT
In numerical weather prediction models, point thunderstorm forecasts tend to have little predictive value
beyond a few hours. Thunderstorms are difficult to predict due largely to their typically small size and
correspondingly limited intrinsic predictability. We present an algorithm that predicts the probability of
thunderstorm occurrence by blending multiple ensemble predictions. It combines several post-processing
steps: spatial neighbourhood smoothing, dressing of probability density functions, adjusting sensitivity to
model output, ensemble weighting, and calibration of the output probabilities. These operators are tuned
using a machine learning technique that optimizes forecast value measured by event detection and false alarm
rates. An evaluation during summer 2018 over western Europe demonstrates that the method can be
deployed using about a month of historical data. Post-processed thunderstorm probabilities are substantially
better than raw ensemble output. Forecast ranges from 9hours to 4 days are studied using four ensembles: a
three-member lagged ensemble, a 12-member non-lagged limited area ensemble, and two global ensembles
including the recently implemented ECMWF thunderstorm diagnostic. The ensembles are combined in order
to produce forecasts at all ranges. In most tested configurations, the combination of two ensembles
outperforms single-ensemble output. The performance of the combination is degraded if one of the ensembles
used is much worse than the other. These results provide measures of thunderstorm predictability in terms of
effective resolution, diurnal variability and maximum forecast horizon.

Keywords: thunderstorm, numerical weather prediction, ensemble prediction, probabilistic weather forecasts,
surrogate model

1. Introduction

Despite the sophistication of current operational numer-
ical weather prediction systems, thunderstorms remain
relatively unpredictable at fine scales beyond a few hours
(Clark et al., 2009). Most modern numerical atmospheric
models can simulate key physical features of deep con-
vective systems that produce thunderstorms, either by
implicitly modelling subgrid convection in large scale
models, or by explicitly resolving 3D convective clouds in
non-hydrostatic models at kilometric resolutions. A dis-
cussion of the merits of both approaches is provided in
Weisman et al. (2008). Beside the limited realism of
numerical models, thunderstorm prediction is hampered
by the usually poor predictability of deep convective
clouds (Walser et al., 2004): rapid error growth in the
simulation of convective systems can lead to large uncer-
tainties in their location, timing and intensity.

Thunderstorm predictability has been shown to depend
on the meteorological context, for instance ‘air mass’ (i.e.
weakly forced) convection tends to be less predictable
than synoptically forced events (Keil et al., 2014). Sobash
et al. (2011) explored storm risk ensemble predictions
using spatial smoothing to account for location errors.
Several authors have proposed lightning risk diagnostics
for numerical model output, but the published results
have so far been restricted to relatively large spatial and
temporal scales due to the high forecast uncertainty (e.g.
Casati and Wilson, 2007; Schmeits et al., 2008; Yair
et al., 2010; Collins and Tissot, 2015; Gijben et al., 2017;
Simon et al., 2018).

Ensemble prediction can help users interpret highly
uncertain weather forecasts (Richardson, 2000; Zhu et al.,
2002). Ensembles simulate the real-time propagation of
uncertainties in the prediction process: pseudo-random
error structures called perturbations are injected into the
numerical weather prediction systems. Perturbations*Corresponding author. e-mail: francois.bouttier@meteo.fr
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include some representation of uncertainties in the initial
conditions (e.g. Descamps and Talagrand, 2007) and in
the model design (see review in Leutbecher et al., 2017).
Using a perturbation sample, a set of forecasts called
ensemble members is computed in real time to simulate
the probability distribution of uncertainties in the forecast
products. The size of current operational ensembles (typ-
ically 10–50 members) is a compromise between model
realism and statistical accuracy under the constraint of
affordable computing cost. This size is arguably much
smaller than the ensemble size needed to properly sample
the space spanned by forecast errors (Leutbecher, 2018).
In some applications, the ensemble size can be increased
by including older predictions into the product generation
(Lu et al., 2007; Osinski and Bouttier, 2018).

In single-model ensembles, the implementation of per-
turbation schemes can be constrained by the architecture
of the numerical models and data assimilations used. A
possible workaround is to mix multiple physics packages,
multiple models or multiple ensembles in the member
generation (e.g. Ziehmann, 2000; Clark et al., 2008; Park
et al., 2008; Hagedorn et al., 2012). These approaches
have been shown to provide benefits, although they could
possibly be superseded one day by single-model ensem-
bles thanks to ongoing research to improve perturb-
ation schemes.

Ensembles are limited by our ability to represent error
sources in the initial conditions and model design,
because the perturbation setup is always constrained by
the architecture of the numerical models and data assimi-
lations used. This issue can be somewhat alleviated by
mixing multiple physics packages, multiple models or
multiple ensembles in the member generation (e.g.
Ziehmann, 2000; Clark et al., 2008; Park et al., 2008;
Hagedorn et al., 2012).

An important application of ensemble prediction is
point probabilistic forecasts, i.e. real time estimation of
the likelihood of future meteorological events, at prede-
fined locations in space and time. These forecasts can be
verified a posteriori using a variety of statistical measures
such as reliability and resolution (Jolliffe and Stephenson,
2011). Ultimately, the usefulness of probabilistic forecasts
depends on the user. Here, we will focus on binary fore-
casts of a particular meteorological event: thunderstorm
occurrence. Its quality will be measured using the fre-
quency of non-detections and false alarms, as summarized
by the ROC diagram (relative operating characteristic,
Mason and Graham, 1999) averaged over many point
forecasts. Other, more user-specific scores could be used,
such as the potential economic value (Richardson, 2000).

Various ensemble post-processing techniques have been
proposed to improve probabilistic forecasts using histor-
ical data: dressing (Br€ocker and Smith, 2008), Bayesian

model averaging (Raftery et al., 2005; Berrocal et al.,
2007), ensemble model output statistics (EMOS, Gneiting
et al., 2005), random forest quantiles (Taillardat et al.,
2016), among others. Simon et al. (2018) presented a stat-
istical thunderstorm forecasting technique based on a
generalized additive model (GAM) algorithm. These tech-
niques tend to require large homogeneous learning data-
sets, which may be difficult to obtain for rare events. In
most weather centres, model upgrades occur frequently
(at least annually), in which case the learning datasets
have to be updated using potentially expensive reforecast
techniques (Hamill et al., 2006, 2008). This can be prob-
lematic in a production setting that uses model output
from several weather centres, each upgrading their own
systems on independent schedules.

This paper presents an original technique for point
probabilistic thunderstorm forecasts,. It deals with the
above issues by combining multiple ensembles with a sim-
ple calibration technique. Our goal is to check if the end
user value of ensembles can be improved by calibrating
their output, using techniques that require little learning
data. We will combine the following post-processing
operators: each is relatively well known, but they have to
our knowledge not yet been integrated as a sin-
gle algorithm:
� a neighbourhood operator that allows for some spa-

tial tolerance in the use of model-generated thunder-
storms, following the ideas of Theis et al. (2005),
Berrocal et al. (2007) and Schwartz and
Sobash (2017);

� a kernel dressing in order to smooth the ensemble
probability distribution function (PDF) in parameter
space (Berrocal et al., 2007; Br€ocker and
Smith, 2008);

� a calibration of the model diagnostic used to define
the occurrence of thunderstorms: we use a much sim-
plified version of existing calibration techniques (e.g.
Gneiting et al., 2005; Ben Bouall�egue, 2013; Simon
et al., 2018), which can be understood as a bias cor-
rection of the modelled thunderstorm intensity;

� an optimal weighting of the ensembles that are com-
bined to produce the thunderstorm forecasts, which
brings model diversity into the e190924thunprob-
revised.pdfnd products (see e.g. Hagedorn et al.,
2012; Beck et al., 2016).

As explained below, these operators involve tuning
parameters that will be optimized in terms of forecast
error statistics (i.e. thunderstorm non-detection and false
alarms rates), while requiring that forecast probabilities
be reasonably well calibrated. We will demonstrate the
performance of the results on several combinations of
ensemble prediction systems that cover a wide range of
forecast horizons, from a few hours to several days. The
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paper is organised as follows: the observations and
ensemble forecasts are presented in Section 2. The param-
eter tuning procedure is explained in Section 3, and its
variability is explored in Section 4. The performance of
the optimized forecasts is studied in Section 5, before the
discussion and concluding remarks in Section 6.

2. Observation and forecast data

2.1. Thunderstorm observations

In this paper, we regard thunderstorm occurrence as a
binary field, without consideration of event intensity.
Different users may be sensitive to different aspects of
thunderstorm activity, such as heavy accumulation, hail,
gusts, cloud-to-ground lightning strikes, etc. Thus, there
are several possible ways of defining thunderstorm obser-
vations. In this work we use lightning sensors and radar
reflectivities to define thunderstorms observations,
because these measurements are readily available over
our domain of interest, in Western Europe. The lightning
data is provided by the M�et�eorage company, based on
LS700X Vaisala sensors, with some filtering to eliminate
non-meteorological signals. After data processing, the
reported detection rate in this area is of the order of 90%
for cloud-to-ground strikes, and 50% for intracloud
strikes (P�edeboy and Schulz, 2014). The radar data is
provided by the M�et�eo-France PANTHERE network of
ground-based polarimetric radars, which is designed to
provide good coverage over mainland France and

Corsica. Depending on their development stage, thunder-
storm clouds can affect much larger zones than their elec-
trically active areas; conversely, thunderstorms can have
significant lightning activity but little precipitation. Some
mostly produce intracloud flashes that are imperfectly
detected by the lightning sensors. We combine lightning
and radar data as explained below, in order to minimize
the impact of these complexities on the verification. In
regions without these observing systems, satellite based
data could be used, such as cloud-top diagnostics
(Karagiannidis et al., 2019) or optical lightning sensors
(Goodman et al., 2013).

We are interested in predicting thunderstorm impacts
at the hourly scale, with a resolution of a few kilometres:
a thunderstorm will be deemed to occur if a lightning
strike is observed within 10 km and 30min of the obser-
vation, or the maximum radar reflectivity in this neigh-
bourhood is greater than 35dBZ (this threshold is
commonly used for radar thunderstorm detection; see Li
et al. (2012) and references therein). This criterion is
applied at all full hours and on each point of a regular
latitude-longitude grid of 20 km mesh, in order to gener-
ate a set of pseudo-observations. Forecast verification
will be performed on the domain represented in Fig. 1.
There are 1748 pseudo-observations at each hour i.e.
about 1.3 million data points per month. The period
studied here is June to August 2018, during which thun-
derstorm activity was observed at 2% of the data points.
An example of thunderstorm pseudo-observation cover-
age is presented in Fig. 1.

Fig. 1. Left panel: Lightning flashes from the M�et�eorage network (9 August 2018, 00UTC), the colours indicate the number of strokes
per flash. Right panel: Pseudo-observations of thunderstorms (light bullets: non-occurrence, dark bullets: occurrence).
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2.2. Numerical model forecasts

We investigate the predictive value of four ensemble pre-
diction systems, selected for a typical user that requires
forecasts over Europe in the early morning (around
04UTC). Their timings are summarized in Fig. 2.

The lagged Arome ensemble (named AROLAG here)
is a pseudo-ensemble built by taking the three most
recent, deterministic Arome-France forecasts of the real-
time operational M�et�eo-France production. The Arome-
France model is depicted in Seity et al. (2011), with an
horizontal resolution of 1.3 km in 2018, over a slightly
larger geographical domain than depicted in Fig. 1.

Each day, an AROLAG ensemble started at 00UTC
on day D combines the Arome-France forecast started
from the analyses at 00, 18 and 12UTC on D, D-1 and
D-1 respectively. The forecast range of AROLAG is lim-
ited to 36 h by the oldest Arome-France run used.
� the Arome-France-EPS ensemble (named

AromeEPS) is a 12-member ensemble based on per-
turbations of the Arome-France model at a reso-
lution of 2.5 km in 2018. It is documented in
Bouttier et al. (2012), Raynaud and Bouttier (2016),
and Bouttier et al. (2016). The Arome-EPS system is
updated every six hours, the forecasts considered
here are based on the D-1 analysis at 21UTC, with a
maximum forecast range of 51 h (i.e. 48 h with
respect to 00UTC).

� the Arp�ege ensemble (named PEARP) is a 35-mem-
ber ensemble based on perturbations of the global
Arp�ege model. It is documented in Descamps et al.
(2015). Its resolution was 10 km

� over Europe in 2018. The PEARP forecasts consid-
ered here are based on the D-1 analysis at 18UTC,

with a maximum forecast range of 108 h i.e. 102 h
with respect to 00UTC (the PEARP run based on
00UTC is too short to deliver forecasts beyond the
range of the Arome systems).

� the ECMWF IFS ensemble (named IFSens) is a 51-
member ensemble based on perturbations of the IFS
model. A comprehensive documentation of the
ECMWF models is maintained at www.ecmwf.int;
the IFSens resolution was 18km in 2018. We only
use the 50 IFSens perturbed members based on the
00UTC analysis, up to the 99 h range.

We consider three derived ensemble systems, called
ensemble blends, each defined by the union of two of the
above ensembles. Blend members are labelled as if they
all started from 00UTC. Each blend is defined as follows:

� the ‘AromeEPSþAROLAG’ blend combines the
12þ 3 ¼ 15 members of both systems. It can be used
over ranges 3–36 h.

� the ‘AromeEPSþPEARP’ blend combines
12þ 35¼ 47 members. It can be used over
ranges 3–48 h.

� the ‘PEARPþ IFSens’ blend combines 35þ 50¼ 85
members. We will study it over ranges 9–93 h.

The timings of the three ensembles are summarized in
Fig. 2 and Table 1; the tuning windows displayed in Fig.
2 will be explained in Section 3.

2.3. Verification method

Probability scores rely on the comparison of forecasts
and observations of a binary variable, the thunderstorm
occurrence. Thunderstorm observations are defined using

Fig. 2. Timings of the four ensembles considered in the paper, relative to the same 00UTC production base. The thick horizontal
arrows indicate the forecasts runs (deterministic and ensembles); the dashed horizontal segments indicate forecast ranges that are
computed but not used (some forecasts may also extend further into the future than represented here). Grey boxes and arrows indicate
the ensembles and tuning windows used in each ensemble blend. The model grid resolution is given next to each ensemble name.
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lightning and radar data as explained in Section 2.1.
Thunderstorm forecasts are defined as the probability p
that a scalar thunderstorm activity diagnostic, x, exceeds
a predefined threshold u: at observation point j, the fore-
cast probability is denoted p(j) ¼ P(x(j) > u). Classically,
in ensemble prediction, the forecast PDF P is defined by
counting the number of members i that exceed the thresh-
old at this point:

pðjÞ ¼ cardfxiðjÞ>ugi (1)

This is equivalent to defining the PDF as a sum of
Dirac distributions located at the n ensemble member val-
ues (assumed equally likely):

P ¼ 1=n
X
i

d½xiðjÞ� (2)

so that

p ¼
ðu
�1

PðxÞdx (3)

In Section 3, we will use a more general definition of
P, but the forecast probability will remain a function of
the thunderstorm member fields predicted by the ensem-
ble members xi(j).

Variable x is defined as an empirical diagnostic
because current numerical models do not realistically
simulate lightning activity or maximum reflectivities in
thunderstorm cells. Instead, they represent the effects of
deep convection in a more or less implicit way, depending
on the resolution and physical parameterizations used in
each model. Thunderstorm activity can be diagnosed
using functions of the model variables. Studies on the
realism of thunderstorms in the Arome and IFS models
used here can be found in Brousseau et al. (2016) and
Lopez (2016), respectively. PEARP and IFS lack the
necessary horizontal resolution to realistically simulate
deep convective cells: in these models, thunderstorms will
be diagnosed using parameterizations of subgrid convec-
tion. We have chosen the following predictors of thunder-
storm activity:
� in the Arome-based systems (AROLAG and

AromeEPS), x is the maximum simulated radar
reflectivity in each column, which is an empirical
function of the model hydrometeors. Reflectivity is
expressed in mm/h. A study on the predictive value

of Arome maximum reflectivity is provided in
Osinski and Bouttier (2018).

� in the PEARP system, x is a CAPE (convective available
potential energy) diagnostic, in Standard Units normal-
ized by 100. This CAPE computation is tied to the
Arp�ege model parametrisations of subgrid convection,
which depend on the PEARP member as explained in
Descamps et al. (2015). By design, large values of the
PEARP CAPE diagnostic indicate that the model has
indeed triggered deep precipitating convection.

� in the IFS system, x is the ‘instantaneous total light-
ning density’ diagnostic described in Lopez (2016), in
Standard Units normalized by 100.

The precise normalizations used do not matter, because
they will be modified by the u threshold re-tuning in the
statistical procedure explained in Section 3. Their relative
values matter because we will use a common re-tuning in
each ensemble blend, so it is important that the above
normalizations approximately lead to thunderstorm fore-
casts that cover similar geographical areas. Indeed, a
superficial check has shown that the observed thunder-
storm frequencies are similar to the forecast frequencies
of reflectivity greater than 10mm/h in Arome (approxi-
mately 35dBZ), CAPE greater than 1000SI in PEARP,
and lightning density greater than 100SI in the IFS mem-
bers. In other words, forecasting thunderstorms when
x> 10 regardless of the numerical model used leads to
approximately consistent forecast frequencies: u¼ 10 is
our first guess for the threshold u used in Eq. (3).
Forecast biases being model-dependent, it would seem
better to tune a different u for each model. Throughout
this paper, u is the same for the ensembles used in each
blend, in order to limit the number of tunable parame-
ters. The validity of this choice will be examined in
Section 4 that looks at the u values that would be
obtained if they were separately tuned for each ensemble.

The quality of each forecasting system will be assessed
using scores of predicted thunderstorm probabilities at
each observation point. Unless otherwise mentioned, the
scores are averaged monthly over all points at three
hourly frequency, using forecasts started at 00UTC on
each day. The period considered here (June to August
2018) had significant thunderstorm activity over more
than half of the days, in both observations and forecasts.
The statistical procedure used in this study would be
more difficult to apply over areas or seasons with weaker
thunderstorm activity, because the scores work by count-
ing thunderstorm prediction errors: a large enough num-
ber of meteorologically independent observed and
forecast thunderstorms is needed in order to obtain
robust estimates of thunderstorm detection and false
alarm rates. Thunderstorm events involve meteorological
structures (e.g. upper-air thalwegs) that typically extend

Table 1. Forecast ranges used for the parameter tuning.

Ensemble name Tuning ranges (h)

AromeEPSþAROLAG 12–30 every 6 h
AromeEPSþPEARP 24–42 every 6 h
PEARPþ IFSens 42–60 every 6 h
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over one day and the whole geographical domain consid-
ered here. Thus, the effective sample size used to assess
each forecasting system is more or less the number of
days with significant thunderstorm activity within the
considered three-month period – about 50 in our study.
In a less thunderstorm-prone season or area (e.g. winter
in western Europe, or the dry season in subtropics), it
may be necessary to gather much more than three months
of historical data to obtain a similar sample size. If a
small sample size is used, there is a risk that score aver-
ages are not representative of the actual quality of the
forecasting system, because overfitting the sample data
may prevent them from being relevant for other dates.

Bootstrap significance testing of daily score differences
has been used to check the validity of the conclusions.
We assume that the domain-averaged score on each day
is an independent datum i.e. we neglect the serial correl-
ation between scores computed on different dates.

3. Parameter optimization method

As will be demonstrated in the next section, the forecasts
defined by applying Eq. (1) at each point have little pre-
dictive value. We will improve them by applying five
ensemble post-processing steps: a neighbourhood method,
a probability dressing step, an ensemble weighting, a
threshold adjustment, and a reliability calibration. For
clarity, we start by mathematically defining each step sep-
arately, the complete post-processing will then be defined
by their combination.

3.1. Ensemble post-processing operators

The neighbourhood operator implements a tolerance on
thunderstorm location. A member is assumed to predict
thunderstorms at point j if it simulates a thunderstorm
anywhere in a 2D neighbourhood of j. For instance,
Osinski and Bouttier (2018) applied random shifts to the
precipitation fields; Theis et al. (2005) considered the dis-
tribution of precipitation in a space-time neighbourhood.
Schwartz and Sobash (2017) compared various neigh-
bourhood methods and explained the differences between
neighbourhood post-processing and neighbourhood verifi-
cation. The goal here is to apply neighbourhood post-
processing for the production of point forecasts; there
will be no spatial tolerance in the score computation,
because we are interested in the perception of forecast
quality by non-expert users that only judge forecasts by
what happens at their location (defined by a point in
space and time, like our verifying observations).
Mathematically, the neighbourhood post-processing
works by replacing the forecast thunderstorm diagnostic
of member i at point j, xi(j), by

ðNr � xiÞ ðjÞ ¼ max
Dðk, jÞ<r

½xiðkÞ� (4)

where Nr is the neighbourhood post-processing operator,
D is the horizontal distance on the sphere and r is a tun-
able neighbourhood radius. In other words, field xi is
replaced at each point by its maximum in a disk of radius
r. Each forecast system configuration uses a single radius
at all locations and forecast ranges. The max function is
used because it is computationally cheap and it has no
tunable parameter; in a future study, it could be interest-
ing to test more sophisticated neighbourhood operators,
such as a spatial quantile, a time tolerance or a non-cir-
cular neighbourhood to account for geographical hetero-
geneities. In terms of the Schwartz and Sobash (2017)
terminology, our neighbourhood post-processing belongs
to the class of ’neighbourhood ensemble probability’
(NEP) methods, with the key difference that we use a
maximum operator instead of a spatial averaging: this
choice will be justified below by its benefits on the scores,
even though we will still interpret the post-processing out-
put as point (i.e. not areal) probabilities.

The dressing operator is an empirical modification of
the PDF at each forecast point: instead of considering a
discrete set of ensemble members, we define the probabil-
ities as a sum of rectangular function (named kernels) that
encompass each member value. It is equivalent to smooth-
ing the probabilities in parameter space: for instance, if a
member predicts a value of x¼ 9.99, the probability that
x exceeds 10 should intuitively be interpreted as non-zero.
Kernel smoothing is used in statistics to build non-discrete
probability functions that are more general than the para-
metric functions often used in e.g. EMOS ensemble cali-
bration (e.g. Gneiting et al., 2005, Scheuerer, 2014). The
kernel width drives the amount of smoothness and disper-
sion of the PDFs. Thunderstorm activity x is a positive
quantity that is often equal to zero, so we define the ker-
nel width as a multiplicative function of the ensemble
value itself. Our dressing does not change the probability
that x is zero. It is mainly used to extend the upper ‘tails’
of the probability functions beyond the maximum that is
simulated by the raw ensemble. Dressing also has a
smoothing effect on the PDFs. Mathematically, dressing
works by replacing Eq. (2) with

P ¼ 1=n
X
i

KdðxiðjÞÞ (5)

where the rectangular kernel function Kd ¼ 1 in the inter-
val [1/(1 þ d), 1 þ d] and zero elsewhere. The tunable
parameter is d, which controls the kernel width. d meas-
ures the relative position of the kernel edges with respect
to xi(j), so that e.g. a kernel with d¼ 0.5¼ 50% gives
non-zero weight to values up to 50% larger than xi(j).
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The ensemble weighting operator is only used when
combining two ensembles a and b: if their members are
xa and xb of respective sizes na and nb, the PDF defined
by Eq. (2) becomes

P ¼ w=na
X
i

d½xaiðjÞ� þ ð1�wÞ=nb
X
i

d½xbiðjÞ� (6)

which is a linear mix of the probabilities predicted by
each ensemble. The tunable parameter is the relative
weight w.

The reliability calibration operator is a remapping of
output probabilities inside the [0,1] interval, so that their
reliability diagram is moved closer to the diagonal
(Jolliffe and Stephenson, 2011). Our approach can be
regarded as a simplified version of the Flowerdew (2014)
procedure, because we only calibrate for a single param-
eter threshold. The calibration operator works by replac-
ing the output probabilities p with

p̂ ¼ CsðpÞ ¼ sp

ð1þ ðs3 � 1Þp3ÞÞ1=3
(7)

where 0<s< 1 is a tuning parameter. The denominator
ensures that p̂ is a smooth increasing function that
remains in the interval [0, 1]. In the limit of small p, C

s
is

equivalent to the linear correction p̂ ¼ s p. We shall see
that forecast thunderstorm probabilities are nearly always
small, so that in practice one can regard C

s
as a linear

rescaling of p to make it reliable, s being the slope of
the correction.

The basic impact of the neighbourhood, dressing and
adjustment of threshold u are illustrated in Fig. 3, on the
AromeEPS ensemble. Thunderstorm probability forecasts

from the raw ensemble are very poor, and much
improved by application of the neighbourhood tolerance
with a conservative radius of 20 km. The forecasts can be
further improved by adding dressing or by modifying
threshold u. These operations mostly impact the upper
part of the ROC curve, i.e. they change the quality of the
lowest non-zero probabilities. Their effects can interact
with each other, so that manually finding optimal values
for the parameters set (r, d, w, u) is not trivial. In the fol-
lowing section we present a method to tune these parame-
ters automatically.

3.2. Tuning of the post-processing

The complete post-processing procedure is the sequence
of the above operators in the following order: at each
output point,
� the member values are defined using the neighbour-

hood operator Nr on each ensemble member field x
(Eq. (4))

� the PDF of x is constructed from the member values
using dressing kernel Kd (Eq. (5))

� if two ensembles are being used, their PDFs are com-
bined using weight w (Eq. (6))

� the forecast thunderstorm probability is the integral
of the resulting PDF below threshold u (Eq. (3))

� the probabilities are calibrated by applying function
Cs (Eq. (7)).

The operations are local to each post-processing point,
except the neighbourhood operators. There are five tun-
able parameters: the radius r, dressing kernel width d,

Fig. 3. ROC diagrams of the AromeEPS ensemble thunderstorm forecasts, without any post-processing (‘raw ensemble’), with the
20km neighbourhood operator (‘neigh’), with neighbourhood and dressing operators (‘neighþdress’, with d¼ 1), and with the
neighbourhood operator with a re-tuned threshold u (‘neighþ thres’, made with u¼ 8, instead of 10 in the other curves). The diagrams
are computed over June, July and August 2018 (i.e. 92 days), on forecast ranges from 12 to 42h. The apparent differences between the
ROC areas are significant at the 95% level. The respective ROC areas are 0.54, 0.72, 0.77, 0.74, and the ROC area with the combined
neighbourhood, dressing operators and retuned threshold (curve not shown) is 0.78.

PROBABILISTIC THUNDERSTORM FORECASTING 7



relative weight w, threshold u, and calibration slope s.
Noting that x is positive, the complete post-processing
equation can be written

pr, d,w, u, s ¼ Cs

ðu
0

�
w
na

X
i

ðKd �Nr � xaiÞðjÞÞ

þ ð1�wÞ
nb

X
i

ðKd �Nr � xbiÞðjÞ
�
ðxÞdx (8)

The adjustable parameters will be tuned over some
training periods, in order to minimize the forecast errors
while preserving the reliability of the end product. Many
metrics have been proposed to measure the performance
of probabilistic forecasts of a binary variable (Jolliffe and
Stephenson, 2011); here, we choose to maximize ROCA,
the area under the ROC curve. It is an increasing func-
tion of the POD (probability of detection) and a decreas-
ing function of the FAR (false alarm rate); ROCA ¼ 0.5
for a set of random forecasts (i.e. without any predictive
value), and to 1 for a perfect forecasting system (with
perfect detection and no false alarms). The area is com-
puted numerically using the above definition of the fore-
cast PDF at all verification points. In order to reduce the
numerical costs, ROCA is only computed over a subset
of forecast ranges, called the tuning window, as defined
by Table 1.

The reliability of the thunderstorm probability fore-
casts is measured using the quadratic distance between
the reliability curve (Jolliffe and Stephenson, 2011) and

the diagonal. Thus, the optimal calibration slope s can be
estimated by fitting a linear regression to the reliability
curve. ROCA is insensitive to s because the Cs operator
is just a relabelling of the forecast probabilities. Thus,
although changes to (r, d, w, u) affect the reliability,
changing s does not change the shape of the ROC curve,
and we can decouple the ROCA optimization from the
reliability calibration:
� first, the four parameters (r, d, w, u) are tuned to

maximize ROCA,
� then, s is tuned to optimize the reliability using a lin-

ear regression.
This organization of the computations can be applied

to performance measures that are different from ROCA,
provided they only depend on the ROC and FAR statis-
tics. Chapter 3 of Jolliffe and Stephenson (2011) list vari-
ous alternatives such as the Heidke or Peirce skill scores,
the critical success index, etc. The potential economic
value score (or PEV, Richardson, 2000) can be used to
optimize the forecast probabilities for users that have spe-
cific costs associated to non-detections and false alarms.

The optimization of objective function ROCA(r, d, w,
u) is not trivial, because it does not always have a unique
maximum; in our implementation it was not even con-
tinuous because of threshold processes in the numerical
compression of forecast fields. Nevertheless we shall see
that the problem is tractable in the sense that an accept-
able optimization is achievable by smoothing out the
smaller details of the objective function. First, we use the

Fig. 4. 1D transects of the ROCA(r, d, w, u) surrogate function around the optimum, for the AromeEPSþAROLAG ensemble mix,
over June 2018. The curves have been horizontally rescaled so that the optimum is at zero, values below (resp. above) the optimum have
been linearly rescaled from their minimum (resp. maximum) search value to �1 (resp. þ1).
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fact that the optimization domain is bounded by physical
constraints:
� radius r is positive, and less than a few hundred kilo-

metres (otherwise the geographical structure of the
thunderstorm forecasts would be blurred out);

� dressing parameter d and threshold u are positive,
and constrained to be less than 100% for d and 30
for u, in order to prevent the numerical optimization
from wandering too far away from the physical
quantities predicted by the numerical models;

� weight w belongs to interval [0,1] by design.
An approximate optimization is then performed using

a surrogate function approximation as described in the
Appendix. The behaviour of the optimization is illus-
trated in Fig. 4, which is representative of the ensemble
blends and training periods considered in this study. The
figure shows that the optimum of the surrogate function
belongs to the interior of the search domain, and that
there is a clear optimum in terms of parameters r, u, and
d. The unicity of the optimum w is less clear: near the
ROCA optimum, there is little sensitivity to variations of

w, and the surrogate function exhibits wiggles that are
artefacts of the interpolating algorithm. It indicates that
our procedure cannot numerically optimize the ROCA
with a better precision than a few %, due to limitations
of the optimization technique used. In the following sec-
tion, we will measure the numerical uncertainty on each
tuning parameter, using the interval over which the surro-
gate function does not decrease by less than 2%.

In this section, we have described the method for pro-
ducing the thunderstorm forecasts, which involves an
automatic parameter tuning step. In the next section, the
behaviour of the tunings will be studied, before moving
on to the performance of the thunderstorm fore-
casts themselves.

4. Variability of the optimized parameters

The parameter tuning procedure has been applied to the
three ensembles blends, independently over three calendar
months: June, July and August 2018. In order to save
computing time, the ROCA score has only been

Fig. 5. Optimized values of the parameters (r, d, w, u) i.e. (radius, dressing, weight, threshold) for three ensemble blends, over 3
independent periods (June, July and August 2018). The blue bars show the values that optimize the ROCA area, the black vertical bars
show the uncertainty interval that is implied by the optimization procedure.
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computed over a small set of forecast ranges, as indicated
in Table 1. The resulting parameter values are shown in
Fig. 5, with uncertainty bars. The parameters are rather
stable, with all optimum values contained inside other
month’s values, except for PEARPþ IFSens in July. In
all other cases, each individual parameter trained over
one month can be applied to the other ones without
degrading the ROCA by more than 2% (one could show
that this remains true when applying a four-parameter set
on a month that differs from the one over which it has
been optimized, because the function ROCA(r, d, w, u) is
rather flat around its optimum). It means that the tuning
procedure can be applied in real time, provided at least
one month of training data is used. Trials with shorter
training periods (not shown) exhibited noisier results.

According to Fig. 5, the parameters are not very sensi-
tive to the ensemble configuration used: the only excep-
tions are the dressing parameter for PEARPþ IFSens in
June and August, and the weight parameter for
AromeEPSþPEARP. This lack of sensitivity is interest-
ing given the differences between the Arome, PEARP and
IFS systems. The optimal spatial tolerance radius r is of
the order of 55 km, which can be interpreted as the
approximate average resolution at which thunderstorms
are predictable at the used ranges (although the exact pre-
dictable scale may vary as a function of time and space),
since according to our metric, including finer scales in the
post-processed product does not improve the average
forecast score. Similarly, the 40% optimum for dressing
parameter d suggests that it is the typical relative error in
the prediction of thunderstorm intensity near the thunder-
storm detection threshold.

According to the optimization of threshold parameter
u, numerical model output is typically associated with
electrical activity when its rain rate exceeds 6mm/h, or
when the PEARP CAPE or IFSens lightning diagnostic
exceeds 600. These values are mostly relevant for weak
thunderstorms, because the parameter optimization is
performed over a large population of thunderstorm
events, weak or not, and weak thunderstorms are much
more frequent that heavy ones. The algorithm favours
using weak predicted values of precipitation or CAPE,
because the ensembles tend to under-predict thunder-
storms (e.g. because of a too small ensemble size, or a
lack of ensemble spread): we are dealing with relatively
rare events, so it is ‘easier’ for the tuning to increase
ROCA by increasing the POD than by reducing the
FAR, which is already small before the optimization.
This effect can be seen in Fig. 3: the ROC curves, except
for the connections to the trivial (0, 0) and (1, 1) points,
are compressed towards the left part of the diagram,
because the FAR tends to be much smaller than the
POD statistic (by definition, the FAR is normalized by

the number of times the event was not observed, which is
much larger than the number of times it was observed).
In a nutshell, the choice of ROCA as a measure of per-
formance implies that the focus of the optimization is on
improving the forecast of the lowest probabilities, due to
the rarity of the event.

Ensemble weights follow the convention that the
second ensemble in each blend name has more relative
weight if w is higher: when e.g. AromeEPSþAROLAG
has an optimal weight of 66%, it means that the set of
three AROLAG members has twice the weight of the 12
AromeEPS members. In this case each AROLAG mem-
ber receives (60/3)/(40/12) ¼ 6 times the weight of each
AromeEPS member. Noting that the AROLAG model
resolution is 1.3 km versus 2.5 km in AromeEPS, we con-
clude that the higher resolution members produce better
forecasts, but they are not necessarily computationally
cost-effective, since an AROLAG member costs over six
times more than an AromeEPS member (this result
should not be over-interpreted, though, because the error
bars on the weights are quite large).

The interpretation of ensembles weights as measures of
relative quality leads to the conclusion that (1) AROLAG
is better than AromeEPS, (2) AromeEPS is better than
PEARP and (3) IFSens is better than PEARP. The
ensembles with the lower weights should not yet be
regarded as useless, because in most configurations tested
here, the combination of two ensembles performs signifi-
cantly better than each of them, as shown by the fact
that the optimal weights are always between 25 and 75%.
This is consistent with previous studies on multi-ensem-
bles such as Hagedorn et al. (2012): after calibration, the
combination of multiple ensembles is usually better than
single-ensemble systems. In our study, the ROCA value
may not have a well-defined optimum, but it clearly
drops for weights close to 0 or 100% (Fig. 4). As will be
shown in the next section, the drop happens because the
implied decrease in effective ensemble size hinders the
ROC diagram from precisely sampling very low and very
high probability events. One concludes that blending mul-
tiple ensembles improves the forecasts, but the weights
used for the blending do not need to be precisely opti-
mized. The performance of individual ensembles vs.
ensemble blends will be further investigated in the
next section.

As explained in section 3, the reliability calibration is
performed after the optimization of (r, d, w, u) because it
does not change the ROCA score. The effect of this cali-
bration is shown in Fig. 6, using as an example the opti-
mum (r, d, w, u) settings for one month. The raw
thunderstorm forecasts have poor reliability, which can
be mostly corrected using our simple calibration: the cor-
rected reliability diagram is nearly on the diagonal, except
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for the highest probability events (which do not matter
much in practice, because they are rare). Further reliabil-
ity improvements could be achieved using better calibra-
tion methods, but they have not been pursued in this
work because our focus here is on improving the
ROC statistics.

Figure 6 shows the typical behaviour of the reliability
calibration: the raw probabilities were overconfident (i.e.
flatter than the diagonal), with a slope of s¼ 0.165.
Applying function Cs (see Eq. (7)) reduces the forecast
probabilities so that they nearly lie along the diagonal.
An important consequence is a loss of sharpness, i.e. a
narrowing of the forecast probabilities that are issued:
after calibration, thunderstorm probabilities will rarely
exceed 35%. Limitations of current numerical forecasting
systems prevent them from making more confident fore-
casts. Higher forecast probabilities could probably be
issued in more specific conditions e.g. at very short
ranges using nowcasting tools, or in areas where thunder-
storm events are particularly predictable. For instance,
the Rel�ampago del Catatumbo in Venezuela, or Hector
the Convector in Australia are known to be very predict-
able in some seasons, because local weather and geo-
graphical features trigger quasi-periodic intense
convection. The calibration coefficients for all blends and
months considered in this work are shown in Table 2.
From one month to the other, the calibration coefficient

of each system changes by 5–20%, which is an indication
of the calibration accuracy one can expect in a real-time
production setting.

Figure 7 shows the impact of the post-processing on
the same case as shown in Fig. 2: the raw Arome-EPS
thunderstorm probabilities are computed by counting at
each point the number of members that predicted thun-
derstorms. It leads to a very detailed probability map,
with probabilities below 10% except in small areas next
to the Bordeaux city (indicated on the maps), where they
locally exceed 20%. Unfortunately, there was no thunder-
storm there: storms occurred about 50 km to the SW and
NE, where the predicted values are very small: in this
region, a naive point forecast user would conclude that
the prediction was mostly wrong. The three blends, on
the other hand, rightly assigned probabilities greater than
10% over a wider area. The AromeEPSþAROLAG
blend provides the most detailed map, with two zones of
thunderstorm probabilities greater than 20%, and proba-
bilities that rapidly drop to zero away from the thunder-
storm-prone areas. The AromeEPSþPEARP and
PEARPþ IFSens blends are much smoother because
there is less informative detail in the PEARP and IFSens
ensembles. The AromeEPSþPEARP probabilities are
everywhere lower than 20%, because although the raw
PEARP ensemble predicts high probabilities over vast
areas (not shown), they are much reduced by the

Table 2. Coefficients s of the reliability calibration, diagnosed for each blend over 3 different months.

Blend name AromeEPSþAROLAG AromeEPSþPEARP PEARPþ IFSens

June 2018 0.165 0.208 0.314
July 2018 0.147 0.156 0.325
August 2018 0.160 0.147 0.249

Fig. 6. Reliability diagrams for the AromeEPSþAROLAG blend where (r, d, w, u) have been optimized over June 2018. The curves
are displayed before and after applying the reliability calibration procedure. The numbers indicate the sample size used to compute each
point (K means 1000).
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calibration because they imply many false alarms. The
PEARPþ IFSens blend produces higher probabilities on
a better defined region thanks to the IFSens system, at
the expense of missing the northernmost part of the thun-
derstorms (using Fig. 2 as ground truth). In this event,
the thunderstorms cells travelled in a SW flux; the maps
suggest that the forecasts were better at predicting their
trajectories than the timing of their motion, so the fore-
casts would probably have been improved if we had used
a time-neighbourhood post-processing operator, to bring
additional blurring in the SW-NE direction.

5. Comparison between single- and multi-
ensemble tunings

In this section we investigate two questions regarding
multi-ensemble forecasts: should the parameter tunings (r,
d, u) be model-specific? How are single- and multi-ensem-
ble tunings related?

The first question can partly be addressed by checking
if the tunings would be different in single-ensemble sys-
tems. The algorithm used is the same as for the blends,
except that the Latin hypercube sampling is done in a 3D
space, instead of 4D, since parameter w is only used for
multi-ensembles. Figure 8 shows the optimal parameters
for the AROLAG, AromeEPS, PEARP and IFSens sys-
tems over the month of June 2018. The AromeEPS and
PEARP values shown have been optimized over ranges
12–30 h and 42–60 h, respectively, which are the ones
used in the AromeEPSþAROLAG and
PEARPþ IFSens blends. These ranges are slightly incon-
sistent with the ones used for the AromeEPSþPEARP

blend (24–42 h range), but the corresponding parameters
are not displayed because they produce very simi-
lar tunings.

There are significant differences between the ensembles.
The differences between AROLAG and AromeEPS are
as large as with the other ensembles, although they use
very similar forecast models. It shows that the neighbour-
hood radius, dressing and threshold do not only depend
on physical properties of the thunderstorm diagnostic
used; they are impacted by statistical properties of the
ensembles such as spread and ensemble size. Parameters
(r, d, u) can account for missing spread in the ensembles:
r is a measure of spatial tolerance, so it can be expected
to be smaller for ensembles (such as PEARP) that have
larger spatial spread. Parameters d and u are measures of
intensity tolerance, so they are related to intensity spread
in the ensembles. They can also act as amplitude bias cor-
rections on the ensemble output: the ROC area being sen-
sitive to low forecast probabilities, an ensemble that
under forecast thunderstorms (in the sense that its diag-
nostic x tends to have low values when thunderstorms
are observed) can be improved, either by increasing d to
widen the upper tail of the ensemble PDF, or by lowering
threshold u to increase the frequency of thunderstorm
predictions in the members.

A comparison between Figs. 5 and 8 shows that there
is not a simple relationship between the single-ensemble
and the blended ensemble parameter values. In particular,
the blended ensemble values are not necessarily inside the
interval of the contributing ensemble values. A possible
explanation is that the tunings can be affected by the dis-
persion between ensembles, which is in general different

Fig. 7. Thunderstorm probability forecasts based on 8 August 2018, 00UTC and valid 24h later, forecast by (from left to right) the
raw Arome-EPS ensemble, the calibrated AromeEPSþAROLAG, AromeEPSþPEARP and PEARPþ IFSens blends. The black disk
indicates the city of Bordeaux.
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from the dispersion of each ensemble. For instance,
blending two under-dispersive ensembles may produce an
over-dispersive blend if their members behave very differ-
ently from the other ensemble.

The parameter optimization used here optimizes the
blends without taking into account the specific properties
of the contributing ensembles. Better results could per-
haps have been obtained by allowing more degrees of
freedom in the optimization. For instance, the amplitude
bias correction of field x uses a single parameter u: it
would make sense to tune a different correction for each
contributing ensemble, because the three diagnostics used
to define x (Arome precipitation rate, PEARP CAPE and
IFS lightning diagnostic) have different physical mean-
ings. Thus, our algorithm should only be regarded as a
baseline configuration that could be improved by increas-
ing its complexity.

6. Do ensemble blends outperform
single ensembles?

We now investigate how ensemble blending improves
over the use of single ensembles. It has been shown in
Section 4 that the optimized value of weight w is strictly
between 0 and 100%. By construction of the optimization
algorithm, it means that a blended ensemble is always
better than its contributing ensembles, in terms of the
chosen performance metric. If a contributor was better
than the blend that uses it, the optimization algorithms
should have set w to 0% or 100%. Still, there may be

reasons why a blend may not actually outperform its con-
tributors in practice:
� the optimization might converge to an intermediate

value of w, even when 0% or 100% perform best,
because of errors in the computation of the surrogate
function, for instance if there are not enough sample
points, or the interpolation algorithm has produced a
surrogate with a maximum that is very different
from the true ROC area maximum;

� the parameters optimized at the specified forecast
ranges used may not be optimal for other ranges;

� the parameters optimized for a given month may not
be optimal for another month.

These issues are related to the overfitting problem in
statistics (also called variance in the machine learning lit-
erature). In order to mitigate them, the following results
will all be based on out-of-sample verification scores:
whenever the optimized (r, d, w, u) parameters are used,
we will use optimizations performed over a different
month than the one over which the score is computed.
Thus, the scores shown are representative of the perform-
ance than would have been obtained in a real
time setting.

Figure 9 compares probabilistic scores of each ensem-
ble blend with their respective contributing ensembles.
Each has been post-processed and tuned independently.
The ROC area and the PEV (potential economic value)
diagram are shown over an interval of forecast ranges
(much wider than the ranges used for the tuning). ROC
and PEV emphasize different aspects of forecast error

Fig. 8. Values of tuning parameters (r, d, u) i.e. (radius, dressing, threshold), independently optimized for each ensemble used in the
blends. The optimization is done over June 2018. The graphical conventions are as in Fig. 5.
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because we are dealing with relatively rare events: the
ROC area is sensitive to the performance of the smallest
non-zero forecast probabilities, whereas PEV graphically
emphasizes the highest forecast probabilities, which show
up as the ‘tail’ on the right of the PEV diagrams.

In Fig. 9, the AromeEPSþAROLAG scores (top row)
indicate that there are only small differences between the
blend and its post-processed contributors (AromeEPS
and AROLAG). The blend is very close to the AROLAG
pseudo-ensemble, with few statistically significant ROCA

Fig. 9. ROC areas and potential economic values of the forecast thunderstorm probabilities, for the three ensemble blends (one per
row) and their contributing ensembles. The plots are averaged over 92days. The potential economic value diagrams (right column) are
averaged over the same forecast ranges as the ROC areas (left). Bullets are plotted on the ROCA curves when the contributor score is
statistically significant from the blend score.
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differences. AROLAG, a three-member poor man’s
ensemble, looks nearly as good (if not better, although
the score differences have little statistical significance) as
the numerically more expensive AromeEPS 12-member
ensemble. The PEV curve reveals that the blending clearly
outperforms AromeEPS for users with cost-loss ratio
between 0.1 and 0.25. For higher cost-loss ratios, none of
the systems has any forecast value.

The AromeEPSþPEARP blend (second row of Fig. 9)
shows that PEARP degrades the forecast blend, since
AromeEPS alone produces better ROCA and PEV scores.
The differences are statistically significant. PEARPþ
IFSens significantly outperforms both PEARP and
IFSens, except from a few forecast ranges. The improve-
ment is clear for all cost-loss ratios. There is a (semi-
)diurnal cycle in the ROC area scores, which suggests
that the tuning of weight w might benefit from being
optimized separately for each time of the day.
Remembering that the ranges are counted from 00UTC,
the ROCA curves suggest that thunderstorm forecast per-
formance is minimal in the early morning (near ranges
30, 54 and 78 h), and relatively higher in the afternoon.
This cycle may be due to variations in physical properties
of the convection during the day, but it could also be a
side effect of our optimizing a single set of parameters (r,
d, w, u) for all ranges: during summer, thunderstorm
activity has a peak in the afternoon, so it is possible that
the parameter tuning is biased towards afternoon thun-
derstorms, and thus not optimal for the rest of the day.

The lower left panel of Fig. 9 (i.e. ROC area for the
PEARPþ IFSens blend) shows a decreasing trend of the
score as a function of range. Using the commonly quoted
value of ROCA ¼ 0.6 as a limit below which a forecast is
no longer regarded as usable in practice, a visual linear
fit to the ROC area curves suggests that the average
thunderstorm predictability horizon is about 5 to 6 days

over Western Europe, an estimate that is consistent with
the work of Simon et al. (2018).

We have shown that multi-ensemble blends usually
outperform single ensembles, but not always. At specific
ranges, and for some classes of users (e.g. with specific
cost-loss ratios), single ensembles can be better. The situ-
ation can arise when mixing two ensembles with very dif-
ferent forecast performance (such as AromeEPS and
PEARP): the worse one can degrade some aspects of the
blend, despite the tuning of parameter w that is supposed
to weight the ensembles according to their relative per-
formance. In this case, using multi-ensembles cannot jus-
tified by our scores, but it may be desirable for other
reasons, such as the resilience of the forecasting system
against a missing contributing ensemble, or the forecast
continuity across a wide set of ranges.

Figure 10 shows the ROC area scores of the three
multi-ensemble blends, compared over all considered
forecast ranges. It demonstrates the complementarity
between the high-resolution Arome-based blends that
provide the best forecasts at short ranges, and the global
PEARP and IFSens systems that cover longer ranges.
The Arome-EPSþPEARP blend fails to provide fore-
casts of intermediate quality, probably because the
Arome and Arp�ege models used are too different to be
blended using our simple technique: Fig. 8a showed that
PEARP had the smallest optimal radius r of all systems.
The spatial neighbourhood operator has been found to
be the most important component of the ensemble post-
processing, and it may not be possible to find a single
radius that performs well for both AromeEPS and
PEARP. To correct this issue, one could perhaps use a
better PEARP thunderstorm diagnostic (e.g. along the
lines of the Lopez (2016)), or directly blend AromeEPS
with IFSens.

The reliability of the multi-ensemble blends has been
checked as follows, after out-of-sample calibration: over

Fig. 10. ROC areas of the three blends, over their respective forecast ranges, averaged over 92days.
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the three-month period, the average fraction of points
with observed thunderstorms was 2.2%, and the average
forecast probability of thunderstorm occurrence was 3.1%
in AromeEPSþAROLAG, 2.6% in AromeEPSþ
PEARP, and 2.9% PEARPþ IFSens at forecast ranges
between 9 and 30 hours. These numbers mean that the
calibration works well on the optimized blends, because
the output probabilities are quite reliable.

7. Summary, discussion and conclusions

We have presented a new ensemble post-processing tech-
nique that combines different aspects of probabilistic
forecasting: spatial tolerance using a neighbourhood
operator, smoothing of the forecast density functions
using a dressing operator, weighting between several
ensembles, and adjustment of the threshold that diagno-
ses a binary event of interest (thunderstorm occurrence)
from the NWP (numerical weather prediction) model out-
put. These operators are controlled using only four tun-
ing parameters that can be optimized on a rather short
(about 1month) training period, which makes the
approach suitable for real-time application in operational
meteorological institutes. The optimization is done by
maximizing the ROC area, which is a measure of the end
user value of probabilistic forecasts in terms of false
alarm and detection rates. The optimization technique
uses Latin hypercube sampling and a surrogate model
algorithm, with a diagnostic of tolerance intervals around
the estimated optimum parameter values. Output proba-
bilities can be calibrated using an a posteriori rescaling,
although more elaborate calibrations could be used.

The post-processing technique has been tested on thun-
derstorm forecasts. Only thunderstorm occurrence is
predicted, not its intensity. The corresponding pseudo-
observations have been generated from lightning and
radar measurements. Three multi-ensemble systems,
called ‘blends’, have been post-processed during 92 days
of summer 2018, over mainland France. The dataset
includes a wide variety of forecast ranges (from 9 to 93 h)
and model resolutions (from 1.3 to 25 km horizontal
mesh), using four operational ensembles: a poor man’s
ensemble of lagged deterministic forecasts, a high-reso-
lution limited area ensemble (AromeEPS), and two global
ensembles (PEARP and IFSens).

The optimization of the post-processing parameters, as
well as the calibration, appear to have enough statistical
robustness for real-time operational applications. The
robustness comes at the expense of neglecting variations
between models, ensemble systems, and forecast times.
Our diagnostics have shown that these variations may
have significant implications. The optimized, blended
superensembles have reasonable thunderstorm forecasting

abilities, although they could probably be improved by
including more tuning parameters to better account for
the neglected parameter variability. These modifications
to the post-processing system would require more compu-
tational resources and larger training datasets.

We recommend to further improve the proposed algo-
rithm by making the (u, w, d) parameters dependent on
the model type used (e.g. Arome, Arp�ege or IFS models),
and by including some dependency with respect to diur-
nal time, which seems to be important. It would also be
interesting for the tunings to depend on forecast range
and on geographical location (preliminary testing has
shown that our algorithm leads to different tunings if it is
restricted to the Mediterranean area). The neighbourhood
operator was limited to the space dimension in this study:
it should be complemented by some time tolerance, in
particular for models with an imperfect diurnal cycle of
summer convection. Other model predictors of thunder-
storm occurrence should be tested, in particular the
PEARP CAPE diagnostic used here could be improved,
because CAPE is only loosely related to the actual trig-
gering of thunderstorms in numerical models.

Over regions and periods with less thunderstorm activ-
ity than in this paper, the automatic parameter tuning
would be more difficult, because a minimum number of
thunderstorm events is needed to achieve statistical stabil-
ity: in an operational setting, the learning algorithm
would need to be carefully warmed up at the beginning
of each convective season, in particular if the NWP sys-
tems used have changed since the previous season. In
production settings where reforecasts are not available,
one could adjust the size of the learning dataset so that it
always contains enough observed and forecast thunder-
storm events to achieve statistical robustness. In some
parts of the globe, the availability of ground-based light-
ning and radar data may be problematic, in which case
thunderstorm products derived from satellite observations
should be useful alternatives.

We have shown that the statistical post-processing has
a large impact on the performance of the post-processed
multi-ensembles. Probabilistic forecasts based on direct
ensemble output (without any post-processing) usually
benefit from higher model resolution and larger ensemble
size, but as we have seen, this is not always true after
post-processing: in some conditions, a poor man’s ensem-
ble or a low-resolution global model can outperform
more expensive NWP systems. The probabilistic forecast
quality and the benefit of multi-ensembles also depends
on the user cost-loss ratio – that is, on the relative cost
that is attached to false alarms and to missed events. In a
nutshell, multi-ensembles do not necessarily beat single-
ensemble systems in all respects, but with a suitable post-
processing they can be an attractive way of combining

16 F. BOUTTIER AND H. MARCHAL



output from multiple systems, for specific user needs, and
on a broad range of forecast horizons.

It would be useful to extend the approach used here to
forecast violent thunderstorms. This would require a
complexification of the observation definition (taking
into account important meteorological variables such as
gusts, hail and rain accumulation) and of the model diag-
nostics used. The rarity, and often low predictability, of
these events will require larger training datasets, possibly
including nowcasting products in the blending. This will
be the topic of future work.
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Appendix: Technical description of the
parameter optimization

The optimization is performed in the four-dimensional
space of input parameters (r, d, w, u), except when a single
ensemble is being used, in which case the space reduces to
(r, d, u). The objective function is the ROCA score (i.e. the
area under the ROC curve), averaged over each considered
month and forecast ranges: for each vector of input
parameters, the thunderstorm probabilities are computed
over the training period, and the ROCA score is derived
from this verification against lightning/radar observations.

The input parameter space is sampled using a Latin
hypercube centred maximin strategy (Deutsch and
Deutsch, 2012), implemented in Python language by the
pyDOE package (documentation and code available at
https://pythonhosted.org/pyDOE/index.html). We used a
sample of size 100, beyond which little improvement was
found. The user-specified search interval of each
parameter is transformed using an exponential mapping,
so that smaller parameter values are more densely
sampled than larger ones.

The ROCA value is then computed at each sample
point. This is the most computationally expensive part:

training over one calendar month takes from 6 to 30 h of
single-core computing on a modern desktop PC,
depending on the ensemble size. With some
parallelization, this time could easily be divided by a
factor 1000.

Next, the ROCA points are interpolated by a smooth
four-dimensional function, called surrogate function,
using a Gaussian regression process algorithm. The scikit-
learn machine learning package was used (https://scikit-
learn.org/0.17/modules/gaussian_process.html). The
surrogate function approximates the dependency of
ROCA on the input parameters, and it is much cheaper
to evaluate.

Finally, a numerical optimizer (BFGS, from the
Python scipy library) is used to locate the maximum of
the surrogate function. The optimization is restarted from
each of the 100 ROCA sample points in order to increase
the likelihood that the absolute maximum will be
reached. In all tested configurations, the ROCA optimum
was found to be significantly better than all sample
points, and it belonged to the interior of the search
domain. In other words, the result was not sensitive to
the chosen parameter boundaries.
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