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ABSTRACT
We discuss a novel three-tier hierarchical approach to the validation of an end-to-end seasonal climate forecast system.
We present a malaria transmission simulation model (MTSM) driven with output from the DEMETER multi-model
seasonal climate predictions, to produce probabilistic hindcasts of malaria prevalence. These prevalence hindcasts are
second-tier validated against estimates from the MTSM driven with ERA-40 gridded analyses. The DEMETER–MTSM
prevalence hindcasts are shown to be (tier-2) skilful for the one-month lead seasonal predictions as well as for the period
covering the seasonal malaria peak with a 4–6 month forecast window for the event prevalence above the median.
Interestingly, the tier-2 Brier skill score for the forecast window of the hindcasts starting in February, for the event
prevalence above the median, is higher than for either the tier-1 precipitation or temperature forecasts, which were the
MTSM driving variables.

1. Introduction

As exemplified in the seasonal prediction project DEMETER,
probabilistic multi-model ensemble-based seasonal climate pre-
dictions have shown clear skill and reliability in a number of
regions of the world for a number of meteorological variables
(Palmer et al., 2004; Hagedorn et al., 2005). The level of skill
in the tropics in particular has led to serious efforts to begin
integrating quantitative application models to the climate pre-
diction ensembles. In this paper we describe the integration of a
malaria transmission simulation model (MTSM) in the DEME-
TER multi-model ensemble, to provide probabilistic predic-
tions of simulated malaria prevalence scenarios. Based on the
DEMETER hindcast data set, probabilistic hindcasts of simu-
lated malaria prevalence scenarios for regions of tropical Africa
have been produced.

In addition to the multidisciplinary approach to seasonal fore-
casting, in this paper we develop a novel conceptual framework
for the forecast quality assessment of seasonal climate fore-
casts. The work described in Palmer et al. (2004) and Hagedorn
et al. (2005) refers to the verification of individual meteoro-
logical fields, such as temperature and precipitation from the
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DEMETER hindcasts, using the corresponding meteorological
fields from the global ERA-40 gridded meteorological reanaly-
sis data as a reference data set. In this paper, we refer to this as
tier-1 validation.

With the integration of a malaria model into the DEMETER
ensemble system, we could also validate the resulting proba-
bilistic forecasts of malaria prevalence against recorded malaria
transmission data and other appropriate clinical data sets. We
refer to this as tier-3 validation (Fig. 1). For end-user variables
to be skilful in a tier-3 validation it is necessary not only that
the seasonal forecasts and application models are skilful, but
also that the downscaling methodologies (Yarnal et al., 2001),
which take gridded climate forecast data on scales of hundreds
of kilometres to more local scales, are accurate. Moreover, in
a case such as that dealt with in this paper, for reliable tier-3
validation, it is necessary that adequate malaria clinical data of
sufficiently high quality actually exist. Unfortunately, for most
parts of Africa this is not the case.

From a scientific point of view, there is a vast gulf between
tier-1 and tier-3 forecast quality assessment, and it is necessary
to develop a more hierarchical approach in which the different
elements of the full tier-3 validation can be isolated. In this paper,
we introduce the notion of an intermediate tier-2 validation. In
tier-2 validation, the essential reference data are meteorological
(as in tier-1), but the data are integrated into the application
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Fig 1. Schematic representation of the three-tier validation system.
Rectangular boxes represent sources of data, while ovals indicate the
different types of validation. A comparison of coupled model hindcasts
with the corresponding observed/reanalysed variables is carried out in a
tier-1 validation. In the example described in the paper, both
observed/reanalysis and hindcast data are used in MTSM experiments
(large arrows) to obtain simulated prevalence data. Simulated
prevalence obtained with coupled model hindcasts can be compared
with the MTSM output obtained using observed/reanalysis data (tier-2
validation) or with clinical cases (tier-3 validation).

model to produce an estimate of the application variable used
in the tier-3 validation. For tier-2 validation to be meaningful,
we require the end-user application model to be representative
of the processes for that application field, e.g. crop yield or
malaria (and hence to have undergone independent off-line val-
idation); however, tier-2 does not validate the application model
per se. By using a tier-2 validation, we will be validating the
DEMETER output against ERA-40 gridded reanalysis, but in
a situation where meteorological temperature and precipitation
fields from both DEMETER output and ERA-40 have been inte-
grated and synthesized to produce a single malaria-relevant field.
As in a tier-3 validation, the tier-2 forecast quality assessment
evaluates the skill of the predictions not as individual variables,
but integrated through the end-user or application model, which
is considered as a multivariate non-linear transfer function. Given
that ERA-40 is a global field, the problem of regions with inad-
equate validation data (as in tier-3) is not an issue. The concept
of a three-tier validation of an integrated probabilistic system is
novel. As a consequence, the results reported in this paper rep-
resent the first attempt of a tier-2 validation using an application
model integrated in a probabilistic seasonal forecast system.

Although malaria is present in many parts of the tropical
world, the focus of our study is Africa, which has the greatest
burden from the disease. Malaria is estimated to kill between
700 000 and 2 700 000 annually with over 75% of the victims be-
ing African children (see http://www.mim.su.se/ english/news/
newsrelease 080201.html; also see http://www.nature.com/
nature/outlook/malaria/ and http://www.nature.com/nature/focus/
malaria/). Including the annual number of acute cases probably
in excess of 300 million, it is easy to start to understand the
impact of this disease. In Africa, the temperature and rainfall
regimes produce a spectrum of malaria transmission. This
leads to areas with stable malaria transmission where disease

rates are similar from year to year, and the non-pregnant adult
population is largely immune to severe disease, through to areas
of unstable malaria transmission where the disease is rare but
epidemics may occur affecting all age groups. In unstable areas,
epidemics are often the consequence of climate anomalies,
which increase vector breeding and survivorship and parasite
development rates. Poveda et al. (2004) show how malaria in
Colombia is associated with the annual climatic cycle and how
the anomalous climatic conditions during El Niño Southern
Oscillation events lead to an increase in transmission. Snow
et al. (1999) show the connection between climate and malaria
in Africa. Further, Hay et al. (2002) show that, in complex
topographic regions with a large amount of spatial–temporal
variability, making a connection between existing monthly
averaged climate data and clinical data can be difficult to
achieve. The region used for the model runs in this paper does
not have such complex topography. Malaria is caused by the
Plasmodium spp. parasite that is passed between humans by
species of Anopheles spp. mosquitoes, the vector. The disease
only occurs in areas where environmental conditions are
suitable for both the parasite and vector, and these conditions
are sustained for a number of months. The temperature drives
the development of the parasite within the vector and it also
drives the developmental life cycle of the vector. For both
developmental cycles, there are lower-temperature thresholds
and, within certain upper bounds, higher temperatures lead
to greater rates of development. Precipitation is important in
providing breeding sites for mosquitoes and for increasing the
humidity of the air, which increases the survivorship of the
vectors.

Why apply seasonal forecasts to the field of malaria trans-
mission prediction? Health planners would greatly benefit from
prior knowledge of areas at risk of climate-related epidemics
in the forthcoming season, and skilful seasonal climate fore-
casts may provide early warning to allow interventions to be in
place before the start of the epidemic (Thomson et al., 2000). The
malaria community has shown considerable interest in the use of
seasonal climate forecasts for the development of malaria early
warning systems (MEWS; World Health Organization 2001), as
a direct consequence of numerous reports indicating that malaria
incidence (including epidemics) in certain parts of the world
can be shown to be correlated with sea surface temperatures
(SSTs; Kovats et al., 2003). As seasonal climate forecasts are
often most skilful for conditions when there are strong SST
anomalies (Stockdale et al., 1998), it follows that seasonal cli-
mate forecasts could provide health planners with early warning
of climate anomalies which predispose certain areas to malaria
epidemics. Therefore, there is currently a need to develop a se-
ries of methodologies, including that contained in this paper, for
the assessment of the actual value of seasonal climate forecasts
and the development of useful products for the epidemiological
community. This paper introduces the first stage to developing
such a system as part of a MEWS.
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The importance of models describing malaria transmission,
taking into account the interannual variability and combined ef-
fect of both rainfall and temperature, has been highlighted by
Zhou et al. (2004) in their work on malaria epidemics in the
East African highlands. Statistical models can be developed to
relate parameters, such as seasonal rainfall or degree–day to-
tals, to seasonal crop yields or seasonal total malaria cases. The
value of both applications can be limited as it is not only the
seasonal total that controls the yield or cases but also the distri-
bution of the meteorological parameters throughout the season.
A dynamic approach running with probabilistic seasonal fore-
casts offers the possibility of capturing some of the variability
through the season, such as the prediction of anomalous rainfall
onset and cessation.

The paper is organized as follows. In Section 2 we outline the
structure of the malaria model, data sets and data conditioning
used, the process by which the malaria data sets were produced,
the methods used to assess the forecast quality, and the forecast
windows and categories that are used in these assessments. In
Section 3 we describe the results for both the ERA-40 malaria
prevalence, used as reference, and the multi-model hindcasts, fol-
lowed by the description of detailed forecast assessments of the
probabilistic forecasts of precipitation, temperature and malaria
prevalence. In Sections 4 and 5, we present a discussion and the
main conclusions, where we assess the possible reasons and im-
plication of our findings and suggest where these findings may
lead in the future.

2. Methods and data

2.1. Description of the malaria model

A detailed description of the MTSM used in this study is given in
Hoshen and Morse (2004). The principles of malaria modelling
can be found in Anderson and May (1991), Dietz (1988) and
MacDonald (1957). A brief description of the model structure
and its dynamics are given in this section. The malaria model
used in this study is split into three sections covering (i) the
larvae stage of the mosquito, (ii) the uninfected, infected and
infectious stages of the adult mosquitoes and (iii) the human
host also in uninfected, infected and infectious stages. The three
sections of the model are briefly discussed in turn. The reader is
referred to Hoshen and Morse (2004) for more specific details
about the model and its performance.

The larvae stage is included in few models and therefore most
have a near constant mosquito population. The reason for the
lack of larvae stages is the paucity of empirical data relating this
stage to climatic controls. The evidence of temperature-driven
larvae development from Jepson et al. (1948) was used to deduce
a larvae development rate, and a proxy breeding site availability
is simulated through a precipitation-driven multiplication factor.

The adult mosquito stage follows in most models the same
general governing values that relate to the two important ther-

mally driven cycles. These cycles are the egg-laying cycle of
the adult mosquito, which is in turn connected to adult mosquito
survivorship and, secondly, the within vector development of
the parasite. This section of the model has three states of the
adult mosquito: uninfected, infected and infectious. Detinova
(1962) showed that the gonotrophic (egg production) cycle takes
37 degree days above a threshold of 7.7◦C in humid condi-
tions. At typical tropical temperatures, this is about three, whole
rounded up, days. The cycle is initiated by a blood meal and fin-
ishes with the laying of the eggs. If, during this blood meal, the
mosquito bites an infectious human and ingests the malaria par-
asite, a second cycle is initiated within the vector, which is also
driven by the daily temperature. This cycle is called the sporo-
gonic cycle, which is the development of the parasite within
the vector, and takes 111 degree days above the threshold of
18◦C (Detinova, 1962); thus, at typical tropical temperatures
about 12 d to complete. Therefore, it takes about four to five
gonotrophic cycles to complete one sporogonic cycle, this ratio
being dependent on temperature. When the daily temperature is
close to the sporogonic threshold, the ratio increases to greater
than 20. As a mosquito is prone to predation when taking its
blood meal, literature values suggest a per gonotrophic cycle
survivorship of 50%. Of a cohort of mosquitoes emerging si-
multaneously from the larvae stage, less than 1% would survive
seven gonotrophic cycles. For malaria to be effectively transmit-
ted to the human hosts, there needs to be a significant pool of
infectious mosquitoes, and this is only going to occur when the
sporogonic cycle is completed in a small number of gonotrophic
cycles.

Once an infectious mosquito bites a human and parasites are
injected, the parasites go through further stages of their life cy-
cle development within the human host. It then takes about two
weeks before the human host becomes infectious and is able to
transmit the parasite when bitten by an uninfected mosquito. This
stage is weather-independent. It is suggested that immunity may
play a role in transmission of malaria in areas of stable transmis-
sion, as immune adults have fewer gametocytes, the sexual stage
of the parasite cycle, that are ingested by a mosquito during a
blood meal. There is however discussion of how this quantifi-
ably affects transmission in the field and that other factors may
affect the chance of transmission (see, for example, Taylor and
Read, 1997; Piper et al., 1999; Collins et al., 2004). Therefore,
the model simulations in this paper are used for epidemic sim-
ulation and not for simulation in stable areas. In areas prone to
epidemics, there is no immunity and therefore this effect does
not need to be included in this model.

At any daily time-step within the malaria model, information
is available for both the vector and host population, giving the
proportions of those populations that are uninfected, infected
and infectious. The model does not contain any host mortality
but does have a natural clear-up rate of infectious hosts at 3%
per day. This leads to about a 90% probability of an infected host
being clear of the disease after 80 d.
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2.2. Climatological data

The DEMETER project (see http://www.ecmwf.int/research/
demeter/) has been funded under the European Union (EU)
Vth Framework to assess the skill and potential economic value
of multi-model ensemble seasonal forecasts. The DEMETER
multi-model prediction system comprises seven global coupled
ocean–atmosphere models (for details, see Palmer et al., 2004).
The DEMETER hindcasts were started four times a year from 1
February, 1 May, 1 August and 1 November. The hindcasts were
integrated for 180 d and comprise an ensemble of nine mem-
bers. Hindcasts have been produced over the period 1958–2001,
although the period common to the seven models is 1980–2001.
The seven models and nine ensemble members per model give a
total of 63 hindcasts for each start date. The performance of the
DEMETER system has been evaluated from this comprehensive
set of hindcasts (Palmer et al., 2004; Hagedorn et al., 2005).

The ERA-40 reanalysis project (Uppala et al., 2004) was also
funded under the EU Vth Framework to produce gridded global
reanalyses for the period 1957–2002. Reanalysis is a global fore-
cast model product and represents the initial conditions used in
global model runs. It is obtained from a combination of obser-
vations from all available sources (e.g. meteorological stations,
radiosondes, aircraft, ship measurements and satellite radiances)
with short-range predictions carried out with the same atmo-
spheric model. Unlike operational analysis that has to be com-
peted by a cut-off time to allow the operational model products to
be delivered on time, reanalyses have the luxury of being able to
conduct comprehensive quality assurance on observational data
and include more observations than is possible for an operational
run. ERA-40 is the first of the second generation global reanalysis
products building on previous work, especially ERA-15, which
was produced in the 1990s. In DEMETER, it was used for all of
the forecast models as the source of their initial fields. For the
application modelling groups, it was used as a reference forecast
to which the DEMETER hindcast application model runs were
compared.

The data for this paper are taken from four grid points in
southern Africa. The grid points are at 2.5◦ resolution along lat-
itudes of 17.5◦S, from 22.5◦E, which is on the eastern edge of
Angola, to 30◦E, which is in Zimbabwe. The data have been
run through the model at the 2.5◦ resolution and no downscaling
was undertaken. The results are based on 15 yr of daily data from
bias-corrected hindcasts for the period 1987–2001. The corre-
sponding ERA-40 data end in April 2002. The fields used are
daily accumulated precipitation and 2-m maximum temperature.
Data from ERA-40 and the 63 hindcasts were used to drive the
MTSM runs. The temperature has an offset of −5◦C to represent
the daily mean temperature.

Seasonal hindcasts generated using coupled models are prone
to large biases. In order to remove biases from daily predictions
of temperature and precipitation, an estimate of the seasonal cy-
cle at each grid point was obtained by averaging daily data. This

estimate was smoothed out by retaining the three first harmonics
in a Fourier decomposition of the time series. The same method
was used to estimate the seasonal cycle with the ERA-40 data.
The bias was defined as the difference between the model and
the ERA-40 seasonal cycles and this bias is removed from the
hindcasts.

2.3. Production of malaria transmission hindcasts

The hindcasts are produced as 180-d long integrations starting
on 1 February, 1 May, 1 August and 1 November. The MTSM
is initialized with the previous 2 yr of ERA data for each of the
start dates. The 180-d hindcasts, along with the ERA-40 data
from the equivalent time period, are run as separate integrations
making 64 simulations in total for each start date. Therefore,
some 3840 malaria model runs per grid point for the time period
were investigated in this paper. Outputs from the MSTM are
stored at a daily time-step through the 180-d integration. For the
analysis in this paper, the output values were accumulated over
90-d blocks within the integration, producing an average through
the two to four month and four to six month forecast windows.

The main outputs from the MTSM are incidence, which is the
number of new cases of infection in a period, and prevalence,
which is the total number of cases at any one point in time. Preva-
lence may be calculated by the integral of daily incidence minus
the daily number of cases that clear up. In this paper we concen-
trate on simulated prevalence. Although the term prevalence is
used, it represents a simulated prevalence and cannot be taken as
a direct prediction of actual clinical cases. The three-month sea-
sonal prevalence averages from the malaria model when driven
by the ERA-40 forecast, which in a tier-2 validation framework
is taken to be reality, and the 63 DEMETER hindcast ensemble
members were run through standard forecast quality analysis
routines (see Section 2.4) to produce a series of standardized
validation plots.

2.4. Assessment of forecast quality

Forecast quality assessment is an essential component of the
forecast formulation process (Jolliffe and Stephenson, 2003).
Forecast quality is a complex concept described through a num-
ber of different attributes that provide useful information about
the performance of a forecasting system. Thus, no single mea-
sure is sufficient for judging and comparing forecast quality.
Forecast quality has been evaluated in this paper using mea-
sures of bias, reliability and accuracy. The data are presented
as box-and-whisker plots, Brier skill scores and relative operat-
ing characteristic (ROC) skill scores. The box-and-whisker plots
represent the three terciles of the hindcast ensemble probability
distribution function (PDF), the box is the middle tercile and the
whiskers the upper and lower terciles with the ensemble mean
value as a solid circle and ERA-40 reference forecast value as
a hollow diamond (as in Figs 5 and 6, discussed below). The
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Brier score is a scoring measure that estimates the quality of
probabilistic forecasts for dichotomous events. It is defined as

BS = 1/N
N∑

i=1

(pi − oi )
2,

where the summation is over all cases and/or grid points, pi rep-
resents the probability of predicting a dichotomous event (of the
type yes/no) and oi is the corresponding observed probability,
which usually is taken as 1 if the event occurs and 0 otherwise.
The relative quality of this score is measured against a trivial ref-
erence forecast, which in this case has been the climatological
frequency of the event. The relative change of the Brier score
against this reference is known as the Brier skill score. Posi-
tive values of the skill score imply an increase of the forecast
quality against a climatological forecast. The ROC skill score
indicates the performance of dichotomous predictions in terms
of hit and false alarm rate stratified by the verification. The hit
rate is the relative number of times an event was forecast when
it occurred, while the false alarm rate is the relative number of
times the event was forecast and it did not occur. Ideally, the hit
rate will always exceed the false alarm rate (Richardson, 2001).
Therefore, in the case of the ROC skill score, any positive value
indicates a skilful system. A system with no skill (made by either
random or constant forecasts) will show a skill score of zero. In
order to give a measure of the usefulness of the forecasts in some
objective way, a simple decision model whose inputs are the hit
and false alarm rate can be used. This simple conceptual model
allows the estimate of the potential value of a set of forecasts.
Consider a potential user who can take some specific precau-
tionary action depending on the probability of the event. The
action incurs a cost, C, regardless of whether the event occurs or
not. However, if the event occurs and no action has been taken,
a loss L is incurred. The expense associated with each combi-
nation of action/inaction and occurrence/non-occurrence can be
expressed as a function of the cost–loss ratio C/L (Richardson,
2000). If only climatological information is available, two basic
options remain: either always or never take precautionary action.
The cost–loss model estimates the reduction in expenses beyond
what could be achieved using climatological information alone.
Further details can be found in Wilks (1995), Doblas-Reyes et al.
(2005), Thornes and Stephenson (2001), Jolliffe and Stephenson
(2003), Doblas-Reyes et al. (2003) and Mason (2004).

2.5. Forecast windows and forecast categories

Three forecast windows, which represent the average forecast
over a three-month window, were chosen to coincide with stages
in the annual malaria cycle found in the averaged MTSM runs
for this region. Two forecast windows from the February start
date of forecast months 2 to 4 (referred to as Feb 2–4, MAM)
and months 4 to 6 (referred to as Feb 4–6, MJJ) were chosen to
represent forecasts at the start and peak of the model simulated
malaria season. The third forecast window was the 4 to 6 month

window from the November start date (referred to as Nov 4–6,
FMA) to coincide with a longer forecast window running across
the start of the rise in malaria prevalence. As the rainy season
starts in October to November, for precipitation only, additional
forecast windows were evaluated. These forecasts are the 2 to
4 month forecast from the November start date (referred to as
Nov 2–4, DJF) and the 4 to 6 month forecast from the August
start date (referred to as Aug 4–6, NDJ) to investigate if the
rainfall ‘onset’ has a skilful forecast.

Depending on the forecast assessment undertaken, data are
either examined across the 15 yr of model output for each of
the grid points or the values are computed for all years and grid
points. The former is the case for the box-and-whisker plots
and the latter is the case for the Brier skill scores and ROC
skill scores. Brier and ROC skill scores are calculated for the
three forecast windows and for three forecast event categories:
(i) the prediction of an anomaly within the lower tercile event,
(ii) the prediction of an anomaly above the median and (iii) the
prediction of an anomaly within the upper tercile event. The
upper tercile indicates the ability to forecast events in the upper
third of the observations; the lower being the same for the lower
third and above the median the ability of the system to forecast
events in the upper half of the hindcasts. These categories are the
standard ones used in the DEMETER verification system and are
commonly used in other forecasting systems. In addition, these
categories are of relevance for a MEWS. Individual applications
may develop tailored appropriate event categories.

3. Results

3.1. ERA-40 climate and malaria model average
performance

The mean seasonal cycles have a fair correspondence albeit a
little lagged (see below) with respect to the modelled malaria
transmission seasons from the Mapping Malaria Risk in Africa
(MARA) project (http://www.mara.org.za/). This prevents the
results being used in a tier-3 validation scheme. However, as
we are only attempting a tier-2 validation in this paper, there
is no requirement for the simulation in this modelling system to
correspond exactly with those observed or, in the case of MARA,
modelled seasonal transmissions patterns for the objectives of
this paper to be accomplished.

The MTSM prevalence and ERA-40 precipitation and temper-
ature average seasonal cycles are discussed below. The ERA-40
data show a bimodal temperature regime (Fig. 2) with a sec-
ondary peak in April and the highest temperatures in October.
All the sites follow the same seasonal temperature pattern, pre-
serving the rank order throughout the year. The temperature for
the coolest grid point is consistently between 3◦C and 4◦C lower
than the warmest grid point, with temperatures decreasing from
west to east across the four grid points. All of the grid points
have a minimum temperature in July. This minimum at one grid
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Fig 2. ERA-40 monthly average temperature for 15 yr from 1987 to
2002, where SA1, SA2, SA3 and SA4 are the grid points 17.5◦S
22.5◦E, 17.5◦S 25.0◦E, 17.5◦S 27.5◦E and 17.5◦S 30.0◦E, respectively.

point is below the 18◦C threshold for the sporogonic cycle and
the annual minima at the other grid points are close to this thresh-
old. The ERA-40 precipitation (Fig. 3) has a unimodal distribu-
tion for all four grid points. The rainy season starts just as the
temperature peaks, and as the precipitation increases, the tem-
peratures fall. The precipitation peaks in February and ceases
in June. The ERA-40 precipitation data at each grid point have
different seasonal peak values and seasonal totals. Once the rains
fully commence, the mosquito population, initially uninfected,
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Fig 3. ERA-40 monthly average precipitation for 15 yr from 1987 to
2002, where SA1, SA2, SA3 and SA4 are the grid points 17.5◦S
22.5◦E, 17.5◦S 25.0◦E, 17.5◦S 27.5◦E and 17.5◦S 30.0◦E, respectively.

starts to increase rapidly through January and reaching its peak
in March with no new mosquitoes emerging after May. This
limit is due to the cessation of precipitation; as the model has no
land surface or hydrological features, there is no possibility of
year-round breeding sites. The inclusion of a more realistic land
surface and the requirements of downscaling the hindcast data to
more appropriate scales is a topic currently in development. The
emergence of the infectious mosquitoes lags behind the emer-
gence of the uninfected mosquitoes due to the biological process
outlined in Section 2.1 with the peak occurring between April
and May depending on the grid point, which may already indi-
cate the impact of differences in temperature between the grid
points. Therefore, it is no surprise that the host prevalence peaks
in May (Fig. 4), the prevalence curve starting to rise in February
and returning to its pre-season low levels in September, reflect-
ing in part the natural clear-up rate in the human host. The peak
prevalence is different in each grid point, as is the total number
of cases over the season. This is a reflection of the differences in
the temperature and precipitation amplitude across the four grid
points.

3.2. Precipitation forecast quality

Box-and-whisker plots (not shown) for the periods Nov 2–4
(DJF), Feb 2–4 (MAM), Aug 4–6 (NDJ), Nov 4–6 (FMA) and
Feb 4–6 (MJJ) show, in most years across the four grid points,
that the ERA-40 value is captured within the hindcast PDF. This
is a desirable feature because it indicates that the hindcast val-
ues belong to the same population as the reference values. The
ensemble spread is the largest for Nov 2–4 (DJF), but this is
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Fig 4. MTSM monthly mean proportional prevalence for 15 yr from
1987 to 2002 using model runs driven by ERA-40 temperature and
precipitation, where SA1, SA2, SA3 and SA4 are the grid points 17.5◦S
22.5◦E, 17.5◦S 25.0◦E, 17.5◦S 27.5◦E and 17.5◦S 30.0◦E, respectively.
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Table 1. Brier skill scores (BSS) and ROC skill scores (ROCSS) for the forecast windows Nov 4–6, Feb 2–4
and Feb 4–6 for precipitation, temperature and MTSM prevalence, where LT is the lower tercile event, AM is the
above-the-median event and UT is the upper tercile event

BSS ROCSS
Nov 4–6 Feb 2–4 Feb 4–6 Nov 4–6 Feb 2–4 Feb 4–6

(FMA) (MAM) (MJJ) (FMA) (MAM) (MJJ)

Precipitation
UT −0.052 −0.020 −0.049 −0.202 0.078 −0.062
AM −0.005 −0.009 −0.039 0.071 0.087 0.048
LT −0.038 −0.094 −0.012 −0.077 −0.126 0.193

Temperature
UT 0.256 0.230 0.314 0.694 0.538 0.861
AM 0.231 0.148 0.210 0.616 0.399 0.603
LT 0.176 0.080 0.104 0.556 0.316 0.479

Prevalence
UT −0.067 0.046 0.178 −0.065 0.537 0.501
AM −0.034 0.461 0.289 0.008 0.773 0.642
LT 0.017 0.396 0.167 0.174 0.720 0.501

also the forecast window with the highest precipitation values.
Interestingly, the ensemble spread on the three longer-range fore-
cast windows in general is not larger than for the 2 to 4 month
forecasts, apart from the occasional year in the Aug 4–6 (NDJ)
forecast window. The Feb 4–6 (MJJ) period, which covers the
start of the dry season, shows no anomalous ensemble members,
i.e. no grossly late cessation of the rainy season showing up in
any of the ensemble members.

Brier skill scores (see Table 1) for the multi-model show that
there is no skill for Feb 2–4 (MAM), Nov 4–6 (FMA) and Feb
4–6 (MJJ) for all forecast categories. Skill can be gained through
ensemble refinement, but the skill remains very low. Here, the
term ensemble refinement means the process of improving the
predictions by removing the worst performing individual model.
This can be repeated to see the impact of the removal of the
lowest skilled two or three models within the ensemble. This least
skilful model is not easily identified due to the small sample and
can change between forecast categories within the same forecast
window. Furthermore, the removal of the least skilful model
needs to be done in cross-validation mode and this shows that
the selection of such a model is not always a robust decision,
mainly due to the small sample size. These difficulties illustrate
the advantages of using a simple multi-model approach in which
all the models are given the same weight in the multi-model
ensemble, as shown by Hagedorn et al. (2005). The additional
precipitation forecast windows are not included in Table 1. For
Nov 2–4 (DJF), the multi-model has skill in all categories but it
is very low for the lower tercile. Ensemble refinement increases
the skill in all categories. The Aug 4–6 (NDJ) multi-model has
large negative scores, i.e. the forecast is less skilful than using
climatology and does not gain skill through ensemble refinement.

This forecast window has the worst performance out of the five
that were examined. These last two forecast windows represent,
in part, the forecast of the onset of the rainy season with two
different lead times.

ROC skill scores (Table 1) are positive in the above-the-
median category but are negative for the majority of forecast
windows in the other two categories. Negative scores (i.e. worse
than climatology) are found for half of these forecast windows.
However, through ensemble refinement they can all become pos-
itive. For the Nov 2–4 (DJF) forecast (not shown), there are pos-
itive scores in each category with the best score of almost 0.4
for the above the median category. For the Aug 4–6 (NDJ) fore-
cast (not shown), the multi-model ROC skill score is either zero
or negative in all categories but ensemble refinement can lead to
slightly positive scores for the lower and upper tercile categories.

The precipitation predictions are poor overall when compared
with the other two variables under review in this paper. The ROC
scores tend to be better than the Brier skill scores, which points
to a problem with the reliability of the predictions. There is also
evidence that there is low skill at the start of the rainy season.

3.3. Temperature

The forecast windows Feb 2–4 (MAM), Nov 4–6 (FMA) and Feb
4–6 (MJJ) allow the investigation of the temperature hindcasts
through the seasonal mosquito cycle of January to May, and its
control within vector parasite development, through the use of
the MTSM. The MJJ hindcast captures the coolest part of the year
when the temperature becomes marginal for the development of
the parasite within the mosquito, at some of the grid points during
June and July. Box-and-whisker plots show for all the forecast
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Fig 5. Temperature as a box-and-whisker plot for the four grid points for the Feb 2–4 (MAM) forecast window, showing the ERA value (hollow
diamond) and ensemble mean (solid circle) where the range of the box is the middle tercile and the upper and lower whiskers the upper and lower
terciles of the ensemble distribution, respectively.

windows the capture of the ERA-40 temperature by the hindcast
PDF for all years and all grid points. The ensemble spread is
of a similar magnitude for the Feb 2–4 (MAM) and Nov 4–6
(FMA) hindcast windows. The box-and-whisker plot for Feb 2–
4 (MAM) is shown as an example in Fig. 5. However, the spread is
larger for the Feb 4–6 (MJJ) data, particularly for two grid points
that have lower average temperatures. To investigate the tercile
asymmetry an additional hindcast, the May 2–4 (JJA) forecast,
was examined. This forecast does not show the asymmetry in
the tercile spread for these grid points. Therefore, this increase
in the range of the lower tercile may be due to the extended
Feb 4–6 (MJJ) forecast window.

Brier skill scores (Table 1) are positive for all forecast cat-
egories and all forecast windows. The skill has higher values,
surprisingly, for the 4–6 month forecasts than the 2–4 month
forecast. The highest Brier skill scores for all of the forecast
windows are found in the upper tercile category for each start
date. In this region of Africa, temperature as well as precipita-
tion has control of the development of malaria so the ability of
the DEMETER system to produce skilful forecasts for the upper
tercile is particularly encouraging. The higher skill score found

in the upper tercile category is repeated for the ROC skill scores
(Table 1) with a ROC skill score of 0.86 in the upper tercile for
the Feb 4–6 forecast.

3.4. Prevalence

A box-and-whisker plot for the four grid points from the Feb 2–
4 (MAM) forecast window is shown in Fig. 6. It can be seen
that, as in the case of precipitation and temperature, the ERA-40
reference forecast is captured by the DEMETER hindcast driven
PDF for almost all of the years at each of the four grid points.
The spread of the hindcast members varies from grid point to
grid point, with the largest spread generally found mainly in the
lower tercile. The largest spread is mostly seen for two of the grid
points (17.5◦S 27.5◦E and 17.5◦S 30.0◦E) and is probably due to
the lower average temperature (the temperature box-and-whisker
plot for the same forecast window is shown in Fig. 5). For these
grid points, some of the ensemble members have temperatures
that range below the 18◦C threshold for the development of the
malaria parasite. Besides, most of the lower tercile values have a
temperature during the critical stages of the parasite development
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Fig 6. Prevalence from the MTSM as a box-and-whisker plot for the four grid points for the Feb 2–4 (MAM) forecast window, showing the ERA
value (hollow diamond) and ensemble mean (solid circle) where the range of the box is the middle tercile and the upper and lower whiskers the
upper and lower terciles of the ensemble distribution, respectively.

close to 18◦C, which would lead to very slow development rates.
Similar plots are seen for the other forecast windows in as far
as the ERA-40 run is almost always captured by the hindcast
PDF. The largest spread is seen on the Feb 4–6 (MJJ) plots (not
shown).

For the Feb 2–4 (MAM) forecast window, the multi-model
Brier skill score was positive (Table 1) with the highest score
gained in the above the median category. The skill is retained,
perhaps surprisingly, for the longer lead time Feb 4–6 (MJJ)
forecast window. The multi-model DEMETER system is skilful
in all prediction categories with the greatest skill in the above-
the-median category. However, the Nov 4–6 (FMA) has little, if
any, skill.

ROC skill scores for the Feb 2–4 (MAM) and Feb 4–6 (MJJ)
forecasts (Table 1) show that the skill scores are positive in all
three categories, with the above-the-median event gaining the
highest scores for both forecast windows. This shows that there
would be potential to make a forecast with four-month lead time.
The scores are higher in the 2–4 month window compared to
the 4–6 month window, suggesting a positive impact of the ini-
tial conditions. In the Nov 4–6 (FMA) forecast window, the

DEMETER multi-model system has a positive skill only for
the lower tercile event. The upper tercile event, ideally, should
have the maximum forecast skill for potential use as part of a
MEWS, but here it has no skill. However, for many uses, in-
cluding malaria early warning, a reliable and skilful forecast of
a non-event is also important for planning purposes. The good
agreement found between the ROC and Brier score results indi-
cates that the prevalence predictions are reliable, in spite of the
lack of reliability of the precipitation predictions.

Cost–loss ratio curves for the prevalence forecasts across the
three tercile categories have been examined for the Feb 2–4
(MAM) and Feb 4–6 (MJJ) events. These forecast windows were
chosen as they have positive skill scores as discussed above. Zhu
et al. (2002) and Palmer (2002) discuss the use of this type of
diagnostic for assessing potential economic value within a fore-
casting system. With this diagnostic, the actual economic value
of the simulated malaria prevalence forecast within an ensemble
prediction system is not assessed, but the potential value of such a
system. This would also apply to a tier-3 validation framework.
As such, the multi-model result has a positive potential eco-
nomic value for a range of cost–loss ratios for the three forecast
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Fig 7. Potential economic value curve for a range of cost–loss ratios
for the MTSM for the upper tercile event category for the Feb 2–4
(MAM) and Feb 4–6 (MJJ) forecast windows.

categories for both forecast windows. In both forecast windows,
the greatest potential economic value was found in the above-
the-median category with potential economic value across the
full range of cost–loss ratios. The upper tercile event (Fig. 7) has
lower potential economic values (at peak) than the other forecast
categories (not shown) but the result is still positive. It can be
seen that there is little value beyond a cost–loss ratio of about
0.6. Actual cost–loss ratios will depend on the application and
the area of its operation. Although this paper does not address an
actual situation, it is generally accepted that prevention schemes
are much less expensive than curing the disease and even
more cost effective if associated economic losses are taken into
account.

4. Discussion

The importance of the user community for the application of cli-
mate forecasts (Pfaff et al., 1999; Archer, 2003) for probabilis-
tic seasonal forecasts (Hartmann et al., 2003; Zhu et al., 2002;
Palmer, 2002) is recognized. The literature is limited on prob-
abilistic application forecasts that apply some form of seasonal
scale forecasts (Franz et al., 2003; Potgieter et al., 2003) with few
reports of probabilistic application models embedded within an
ensemble prediction system (e.g. Cantelaube and Terres, 2005;
Marletto et al., 2005).

For a seasonal climate forecasting system to be successfully
used for malaria prediction in Africa, it should be expected to
forecast the seasonal cycles of both precipitation and tempera-
ture. It is particularly important to get the timing of the rainy
season, both the start and end, well forecast. The rains start well
before the onset of the malaria season, and an anomalous exten-
sion of the rainy season is likely to prolong the season of malaria
transmission, increasing the risk of epidemic. However, in areas
where for parts of the year the temperature is close or marginal

to the threshold for the transmission of malaria, such as the area
analysed in this paper, a skilful seasonal forecast of temperature
becomes even more important.

As the grid points come from a region that has a distinct cool
period following the rains, it is worth reviewing the performance
of the forecasting system first as a tier-1 approach for the mete-
orological variables. However, given the non-linear interaction
between precipitation and temperature, a tier-2 approach is re-
quired for the MTSM prevalence. The area studied in this paper
is on the verge of the extratropical band, where seasonal pre-
cipitation predictability tends to be lower than in tropical areas,
and when dealing with summer precipitation, it must be remem-
bered that it is mainly convective in origin, which makes it more
difficult to forecast. Temperature was skilfully forecast for all
the forecast windows, for the seasons, associated with the ther-
mally driven parts of the disease cycle, thus from the rainfall
onset to after the cessation of the rains. Interestingly, the up-
per tercile category gained the highest level of forecast skill.
Prevalence was skilfully predicted for both the Feb 2–4 and
Feb 4–6 forecast windows, with the highest skill found in the
above-the-median category. These two windows represent the
rise of malaria prevalence in the MTSM and the peak of the
prevalence in the MTSM. However, the prevalence forecast has
no skill for Nov 4–6 (FMA), which would be the long-range
forecast for the start of the season, while the temperature for the
same forecast window is skilfully forecast. This indicates that,
depending on the season, precipitation may play a more impor-
tant role in prevalence prediction than temperature. However, the
initial conditions may have a significant impact on the forecast
and this needs further investigation in the future.

It is difficult to deconvolute the reasons for the model’s ability
to work over one 4–6 month forecast window and not another
(e.g. Feb 4–6 and Nov 4–6). It is important to remember the
non-linear nature of the MSTM and the possible role of ini-
tial conditions. Further, the biological development in the model
lags behind the precipitation cycle and the precipitation from the
preceding two or three months probably has a larger impact on
the peak malaria prevalence than the concurrent precipitation.
This is obviously a question for further examination. A further
question that needs to be addressed is the ability to make skilful
MTSM prevalence predictions, even though there was no skill
in the precipitation forecasts. This may be due to the marginal
temperatures for malaria transmission seen in the ERA-40 data
for some of the grid points used in this paper and the ability
of the forecasting system to skilfully predict upper tercile tem-
perature for a range of forecast windows. It is possible that the
MTSM model is oversensitive to temperature and undersensi-
tive to precipitation. Further, the greater level of skill in certain
forecast window categories found for the prevalence when com-
pared with either of the driving variables is an interesting and
important finding and will have important implications for the
comprehensive validation of seasonal forecasting systems. In
addition, it illustrates the relevance of a tier-2 verification of a
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forecast system. A comprehensive forecast quality assessment
requires an end-to-end approach to the forecasting problem and
enlightens aspects of the forecasting system that are not obvious
from a tier-1 perspective.

The results presented in this paper cannot be assumed to be
universal, as different results may be found in different African
regions or other parts of the world, or, obviously, other applica-
tion models. Importantly, from the results in this paper there is
no claim that there is a skilful forecast of actual malaria preva-
lence for this part of Africa, but rather that, should a more re-
alistic MTSM be developed, there would be the possibility of
issuing useful early warning of malaria epidemics. Both the
malaria model and its integration within the DEMETER sea-
sonal forecasting system are at the research and development
stage.

5. Conclusions

The notion of a three-tier hierarchical approach for the valida-
tion of seasonal climate forecasts has been developed. The results
discussed in this paper focus on tier-2 validation based on a re-
alistic dynamic malaria model forced by global reanalysis data.
The challenges of producing a realistic dynamic malaria model,
which can be driven by seasonal forecasts, are substantial. The
malaria model developed for the task needs to respond to a set of
meteorological drivers changing through the season in a manner
consistent with the known transmission dynamics and epidemi-
ology of the disease. The MTSM is a first step in the direction
towards this perfect malaria model and provides many insights
to working in a probabilistic forecasting system. The seasonal
forecasts of both precipitation and temperature that drive the ap-
plication model needs to be skilful (i.e. more informative than
climatology). The forecasts need to capture the onsets and cessa-
tion of seasonal cycles, particularly precipitation. The forecasts
need to capture the interannual variability of these cycles, and at-
tempt to capture gross features of the intrannual variability. The
results presented in this paper are at 2.5◦ resolution, and thus
the underlying land surface and its complexities are not clearly
represented. The MSTM could be run in the future at higher
spatial resolutions and modified to take the underlying land sur-
face into account. In such a framework, the issue highlighted
by Zhou et al. (2004), that not only did the climate variability
strongly influence the malaria transmission but land use, topog-
raphy and local microclimate all play a role, would have to be
taken into account. This is not part of this study due to the low
spatial resolution of the seasonal hindcast data.

These results show that there is potential for the skilful predic-
tion of MTSM prevalence when driven by probabilistic seasonal
forecasts with 2 to 4 and 4 to 6 month lead times through the start
and peak of the simulated prevalence curve. The future ability to
make predictions at these long lead times would have a substan-
tial impact of planning activities and would allow the focusing
of disease prevention activities. The above-the-median category

has the greatest MTSM prevalence skill, and this represents a po-
tentially useful forecast of conditions of above average malaria
risk. The cost–loss curves for the upper tercile category indicate
potential economic value over a wide range of cost–loss ratios.

A malaria model with further development and testing against
actual epidemic transmission data sets, coupled to an ever-
improving seasonal weather forecasting system, could eventu-
ally contribute to an operational seasonal malaria forecast that
would be used as part of a MEWS, but it would be a tool to
be used in conjunction with observational evidence and local
knowledge. Furthermore, such a model would allow for a tier-3
validation.

Realistically, a ‘perfect’ seasonal forecast system will not be
fully realized. Instead, future application models should assess
the current ‘skill-in-hand’ for the forecasting system into which
they are integrating their application model using either a tier-
2 or tier-3 approach. Where possible, the application models
should take maximum advantage of variables that are skilfully
forecast for the region and forecast windows of interest. The fore-
cast skill requirements of the application groups will help set the
forecast targets for the meteorological seasonal forecast mod-
elling community. It is likely that the most successful integrated
modelling systems will emerge where there is a close working
relationship between both seasonal forecasting and application
groups, as has been attempted in the EU-funded DEMETER
project and is to be continued in the EU-funded ENSEMBLES
project (www.ensembles-eu.org).
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