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ABSTRACT
The accuracy and computational efficiency of the recently proposed local ensemble Kalman filter (LEKF) data assim-
ilation scheme is investigated on a state-of-the-art operational numerical weather prediction model using simulated
observations. The model selected for this purpose is the T62 horizontal- and 28-level vertical-resolution version of the
Global Forecast System (GFS) of the National Center for Environmental Prediction. The performance of the data assim-
ilation system is assessed for different configurations of the LEKF scheme. It is shown that a modest size (40-member)
ensemble is sufficient to track the evolution of the atmospheric state with high accuracy. For this ensemble size, the
computational time per analysis is less than 9 min on a cluster of PCs. The analyses are extremely accurate in the
mid-latitude storm track regions. The largest analysis errors, which are typically much smaller than the observational
errors, occur where parametrized physical processes play important roles. Because these are also the regions where
model errors are expected to be the largest, limitations of a real-data implementation of the ensemble-based Kalman
filter may be easily mistaken for model errors. In light of these results, the importance of testing the ensemble-based
Kalman filter data assimilation systems on simulated observations is stressed.

1. Introduction

The time has come when ensemble-based Kalman filter data
assimilation schemes can be considered for implementation on
operational weather forecast systems in the foreseeable future.
For the first time, an ensemble Kalman filter has been reported
to break even with a sophisticated operational 3D-Var system
(Houtekamer et al., 2005), to outperform the National Centers
for Environmental Prediction (NCEP) 3D-Var in reconstructing
the state of the mid-troposphere from surface pressure observa-
tions (Whitaker et al., 2004), and to be efficient in assimilating
simulated and real Doppler-radar observations of convective sys-
tems (Snyder and Zhang, 2003; Dowell et al., 2004; Zhang et al.,
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2004). The main goal of the present paper is to demonstrate the
potential of one particular ensemble-based Kalman filter scheme;
we explain the implementation of the local ensemble Kalman
filter (LEKF), introduced in Ott et al. (2002, 2004), using the
Global Forecast System (GFS) of the NCEP.

The LEKF scheme is an ensemble square-root filter (e.g.
Tippett et al., 2002). In an ensemble square-root filter, one first
obtains an estimate of the most likely state of the atmosphere
and an analysis error covariance matrix that describes the un-
certainty in the best estimate. Then, an ensemble of analyses is
generated centered on the most likely state and representative
of the uncertainty reflected by the analysis error covariance ma-
trix. A distinguishing feature of the LEKF is that it solves the
Kalman filter equations locally in model grid space; other square-
root filters solve the Kalman filter equation locally in observa-
tion space (Anderson, 2001; Bishop et al., 2001; Whitaker and
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Hamill, 2002). More precisely, the LEKF obtains the analysis
at the different grid points independently, using all observations
that are thought to improve the analysis at the individual grid
points. In this scheme, the same observation is used to obtain the
analysis at multiple grid points. By contrast, sequential schemes
assimilate the observations one by one (or by small groups when
the errors between the observations are correlated), iteratively
updating the state estimate at those grid points where the accu-
racy of the analysis is thought be positively affected by a given
observation (or group of observations).

In Ott et al. (2004) we speculated that solving the Kalman
filter equations locally in grid space may be computationally ad-
vantageous and, at the same time, may not noticeably degrade
the accuracy of the assimilation. The local analyses can be pro-
cessed in parallel, involve relatively small matrices, and treat all
data simultaneously. The numerical experiments presented here
are designed to test the accuracy and computational efficiency
of the LEKF on an operational model.

In what follows, we first provide a short summary of the LEKF
algorithm (Section 2), and then we explain the implementation of
the scheme on the NCEP GFS (Section 3). This implementation
is tested under the ‘perfect model scenario’, i.e. by assuming that
a model run provides a perfect representation of the true evolution
of the atmosphere, making possible the generation of simulated
observations (with known error statistics) and the exact compu-
tation of the analysis errors (Section 4). Experiments are carried
out for ensembles of different size and for varying observational
data coverage (Section 5). The accuracy of the analysis scheme
is measured by the root-mean-square (rms) distance between the
true states and the analyses. The computational efficiency is mea-
sured by the wall-clock time needed to complete the analysis.
The results of this experiment indicate the potential operational
feasibility of the LEKF scheme (Section 6).

2. Local ensemble Kalman filter

A detailed description and mathematical justification of the dif-
ferent components of the LEKF scheme can be found in Ott et al.
(2002, 2004). Here we provide only a brief algorithmic summary
needed to understand the implementation of the scheme on the
NCEP GFS. The version of the scheme that we describe assumes
that the rank of the background and analysis covariance matri-
ces is k when the ensemble has k + 1 members. Ott et al. (2004)
describe a more general formulation that allows for a reduction
of the rank. Finally, we consider the case where all observations
collected for the current analysis are taken at the same time. [A
simple technique to extend the scheme to the assimilation of
asynchronous observations is presented in Hunt et al. (2004).]

2.1. Global and local background vectors

A (k + 1)-member ensemble (k ≥ 1) of global background state
vectors, xb(i)

g , i = 1, 2, . . . , k + 1, is obtained by integrating

the forecast model started from a (k + 1)-member ensemble of
analysis fields created in the previous analysis cycle.

For each grid point m of the three-dimensional model grid,
we define a corresponding local volume that consists of all grid
points within a suitably prescribed neighborhood of m. Let x(m)
be the d-dimensional local vector representing the model state
within the local region centered at the grid point m. The dimen-
sion d depends on both the number of model grid points in the
local volume and the number of variables defined at each grid
points. For instance, if the model has v variables (e.g. two compo-
nents of wind, temperature, and specific humidity, etc.) defined
at all n(m) grid points within the local volume, d = vn(m). The
construction of this local vector is a linear mapping L(m) of the
D-dimensional vector xg that represents the state of the model in
the space defined by the global three-dimensional grid of N grid
points. (For the aforementioned example, D = vN .) Formally,
the mapping is performed by a multiplication of the d × D ma-
trix that represents L(m) and the D-dimensional vector xg that
represents the global state. In practice, this operation is executed
by simply copying the d relevant components of xg into x(m).
Because all the analysis operations take place at a fixed time t
and are repeated for all local regions, henceforth we suppress
the dependence of all vectors and matrices on t and m. The local
background error covariance matrix Pb and the most probable
local background state x̄b are derived from the (k + 1)-member
ensemble of global state field vectors xb(i)

g , i = 1, 2, . . . , k + 1.
The most probable local state is estimated by

x̄b = L

[
(k + 1)−1

k+1∑
i=1

xb(i)
g

]
, (1)

while the d × d local background error covariance matrix Pb is
estimated by

Pb = k−1
k+1∑
i=1

δxb(i)
[
δxb(i)

]T
, (2)

where the superscript ‘T’ denotes transpose and

δxb(i) = Lxb(i)
g − x̄b. (3)

We can express Pb in terms of the d × (k + 1) matrix,

Xb = k−1/2
[
δxb(1) | δxb(2) | . . . | δxb(k+1)

]
, (4)

as

Pb = XbXbT. (5)

2.2. Projection onto the k-dimensional analysis space

By using a (k + 1)-member ensemble, we assume that an esti-
mate of the background covariance matrix of rank k is sufficient
to obtain accurate analyses. Experience accumulated by oth-
ers (Houtekamer and Mitchell, 2001; Keppenne and Rienecker,
2002; Whitaker et al., 2004) suggests that k + 1 may be rea-
sonably small. For the purpose of subsequent computations, we
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consider the coordinate system of the k-dimensional space deter-
mined by the k orthonormal eigenvectors {u(j)} of Pb, which we
use to form the internal coordinate system for the k-dimensional
local analysis space. Because Pb has rank k, it has k positive
eigenvalues

λ(1) ≥ λ(2) ≥ . . . ≥ λ(r ) ≥ . . . ≥ λ(k) > 0. (6)

Thus,

Pb =
k∑

j=1

λ( j)u( j)
[
u( j)

]T
. (7)

Because the size of the ensemble (k + 1) is envisioned to be much
smaller than the dimension d of xb, the computation of the basis
vectors {u(j)} is most efficiently done in the basis of the ensemble
vectors. That is, we consider the eigenvalue problem for the (k +
1)× (k +1) matrix XbT Xb, whose non-zero eigenvalues are those
of Pb and whose corresponding eigenvectors left-multiplied by
Xb (and then normalized) are the k eigenvectors u(j) of Pb.

We denote the projection of vectors into the k-dimensional
space and the restriction of matrices to the same space by a
superscribed circumflex (hat). The matrix representation of the
corresponding projection operator is

Q = {
u(1) | u(2) | . . . | u(k)

}
. (8)

For instance, for the d-dimensional local background vector xb,
the vector x̂b is a k-dimensional column vector given by

x̂b = QTxb. (9)

Similarly, for a d × d matrix, such as the local background
covariance matrix Pb, the matrix P̂b is k × k and is given by

P̂b = QT Pb Q. (10)

We also note that, in the internal coordinate system, P̂b is
diagonal:

P̂b = diag
[
λ(1), λ(2), . . . , λ(k)

]
, (11)

and so is trivial to invert.

2.3. Local analysis

We solve the Kalman filter equation in the local low-dimensional
subspaces. Let yo be the vector of current observations within
the local region, and let xa denote a prospective local analysis
field. Let

�xa = xa − x̄b. (12)

We show in Ott et al. (2004) that the most probable value of the
analysis increment �x̂a = QT�xa in the local analysis space is

� ˆ̄xa = P̂aĤTR−1[yo − H(x̄b)]. (13)

Here R is the observational error covariance matrix for the ob-
servations in the local analysis space, P̂a is the analysis error

covariance matrix in the local analysis space, and H is the Ja-
cobian matrix of partial derivatives of the observation operator
H (evaluated at x̄b); thus, Ĥ = HQ maps variables from the k-
dimensional representation of the analysis to the space of obser-
vations within local region l. In eq. (13), P̂a is determined from
the usual Kalman filter equations (e.g. Kalnay, 2003, p. 156), but
restricted to the k-dimensional internal coordinate system:

P̂a = P̂b[I + ĤTR−1ĤP̂b]−1. (14)

Finally, going back to the local space representation, we have

x̄a = Q� ˆ̄xa + x̄b. (15)

2.4. Ensemble of local analyses

The ensemble of local analysis fields {xa(i)}, i = 1, 2, . . . , k + 1
is obtained by first finding the k + 1 local analysis perturbations
δxa(i),

δxa(i) = Qδx̂a(i), (16)

then forming the local analysis ensemble

xa(i) = x̄a + δxa(i). (17)

The local analysis perturbations δx̂a(i) are a linear combination of
the local background perturbations in the k-dimensional analysis
space

X̂a = X̂bY, (18)

where

X̂a,b = k−1/2
{
δx̂a,b(1) | δx̂a,b(2) | . . . | δx̂a,b (k+1)

}
(19)

and

Y = [I + X̂bT(P̂b)−1(P̂a − P̂b)(P̂b)−1X̂b]1/2. (20)

The matrix square root of the positive definite matrix in eq. (20) is
chosen to be the positive definite square root. This construction
of the local analysis perturbations has the desirable properties
that it does not distort the mean of the analysis ensemble, it
correctly represents the analysis uncertainty, and it preserves
the smoothness of the background ensemble fields as closely
as possible (see Ott et al., 2004, for details). For discussion of
other square-root choices, see Tippett et al. (2002) and Ott et al.
(2004).

2.5. Ensemble of global analyses

The components of the most probable global analysis field x̄a
g at

the grid point m are obtained by first selecting the local analysis
vector x̄a(m) associated with the local region centered at m, then
copying the components of x̄a(m) at its central grid point. The
same strategy is used to obtain the members of the global analysis
ensemble {xa(i)

g }, i = 1, 2, . . . , k + 1.
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Table 1. The computational complexity of the main steps in the
LEKF algorithm for each local region: k denotes the size of the
ensemble; d, the dimension of the local atmospheric vector; n,
the number of observations in the local region. By ‘here’ we mean for
the simulated observations we used in our numerical experiments,
which are uncorrelated and located at model grid points. In practice,
computing Ĥ and (Ĥ)TR−1 will be more expensive, but still
significantly less than the upper estimates given

x̄b; eq. (1) O(kd)
Xb; eqs. (3) and (4) O(kd)
(Xb)T Xb

l O(k2d)
P̂b; eqs. (11) O(k3)
Q, eq. (8) O(k2d)
H Depends on H; trivial here
Ĥ = HQ Up to O(knd), but trivial here
ĤTR−1 Up to O(kn2 + n3), but O(kn) here
P̂a; eq. (14) O(k2n + k3)
yo − H(x̄b) Depends on H; O(n) here
δx̄a; eq. (13) O(k2n)
x̂a

l ; eq. (15) O(kd)
X̂b = QTXb O(k2d)
Y; eq. (20) O(k3)
X̂a; eq. (18) O(k2)
xa(i); eq. (17) O(k2d)

2.6. Algorithmic complexity

An algorithm is O[f (n)] if, given input data of length n, the
required number of machine instructions is bounded by Cf (n)
for some constant C when n is sufficiently large. This so-called
‘order notation’ describes the computational complexity of a
given algorithm and provides a rough measure of the computing
time on a single processor. For instance, multiplying an n-vector
by a scalar is an O(n) procedure. The product of an n × k matrix
with a k-vector is O(nk), in so far as one must form a linear
combination of k vectors, each of length n; the classical algorithm
for computing the product of an n × k matrix with a k × m matrix
is O(nkm).

Table 1 summarizes the computational complexity of each
step in the LEKF algorithm for a single local region containing
n observations together with d dynamical variables in each of k
ensemble solutions. In typical applications, we expect d and n to
be much larger than k. Therefore, with the possible exception of
the computation of Ĥ and ĤT R−1

l , which we discuss in the next
paragraph, the most expensive steps are those with complexity
O(k2d) and O(k2n). The O(k2d) terms are related to changing
coordinates between the d-dimensional local model space and
the k-dimensional local analysis space, which the O(k2n) terms
are related to assimilating n observations in the local analysis
space. In typical applications, d is expected to be one to two
orders of magnitude larger than k. Indeed, our initial timing re-
sults, described in Section 5.9, suggest that the overall run time
is approximately quadratic in the size of the ensemble.

In the idealized experiments described here, the observation
operatorH is linear and equivalent to multiplication by H, which
is simply a gather–scatter observation. In practice, of course,
H and H are more complex, depending on the nature of the
data. For conventional observations, such as radiosonde data, H
may involve only simple linear interpolation between model grid
points, R may be banded or even diagonal, and the evaluation
of ĤTR−1 may still be O(kn). Remotely sensed data, such as
satellite measurements, may involve the evaluation of a non-
local observation operator and, hence, Ĥ and ĤTR−1 may be
more expensive to compute. However, in either case, if R is
approximately constant, then R−1 may be pre-computed, thus
reducing the cost of evaluating ĤTR−1. (The more general case,
involving a non-linear H, is discussed in Appendix A.)

The total time required to complete the LEKF is proportional
to the total number of grid points (i.e. the number of local re-
gions). However, because the assimilation is performed on each
region independently, the algorithm is amenable to efficient im-
plementation on parallel computer architectures, which substan-
tially reduces the wall-clock time.

3. Implementation on the NCEP GFS

3.1. Forecast model

The NCEP GFS is a spectral model, which means that the model
state variables are height-dependent coefficients of a spherical
harmonic expansion on the globe. We use a version of the NCEP
GFS that was in operational use at the beginning of 2001. In
this version, the model variables are spectral coefficients of the
two-dimensional vorticity and divergence, virtual temperature,
logarithm of the surface pressure, specific humidity, and ozone
mixing ratio. The only difference between our version and the
operational one is in the resolution, which we have reduced to
T62 in the horizontal direction and to 28 levels in the vertical
direction. This resolution is well tested in so far as it has been
used for many operational forecast products of NCEP for more
than a decade. In addition, with this resolution we were able to
perform a large number of experiments within the computational
resources available to us.

3.2. Definition of the local volume

The non-linear and physical parametrization terms in the T62
resolution NCEP GFS are computed on a 192 × 94 Gaussian
longitude–latitude grid. We utilize this grid to implement the
LEKF, which is formulated in model grid space. This means that
our three-dimensional global grid has 194 × 92 × 28 points.
Because all variables are defined on the global grid, except for
the logarithm of the surface pressure, the total number of grid-
point variables is 2 544 768. The number of model variables,
1 137 024 spectral coefficients, is about 44% of the number of
grid point variables.
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In our experiments, the observed variables are the two hori-
zontal components of the wind, the virtual temperature, and the
surface pressure. We use this information to obtain an analysis
of all grid-point variables. Then the spectral transform is applied
to the grid-point variables of different types to obtain an analysis
in spectral space at each level. Finally, the spectral coefficients
of the two-dimensional vorticity and divergence are computed
from the spectral coefficients of the two horizontal components
of the wind vector.

Our implementation of the LEKF scheme involves both hor-
izontal and vertical localizations of the 192 × 94 × 28 model
grid. In all experiments reported here, the numbers of grid points
in the local volume in the zonal and meridional directions are
equal, while the number of vertical levels in the local volume
varies with the height of the center point (see Section 5). For
center points near the poles, the model grid artificially truncates
the local volumes. We augment these local volumes to have the
same number of horizontal grid points by adding grid points
from across the pole. For example, consider a center point near
the north pole at 0◦ longitude. If the number of grid latitudes
available to the north of this point is two fewer than the number
required for the local volume, then we include grid points near
180◦ longitude at the two highest grid latitudes. Accommodating
the vertical localization requires special treatment of the surface
pressure variable. The surface pressure is included in the defini-
tion of the local vectors in each vertical layer, but the analyzed
value of the surface pressure is solely determined by the ana-
lyzed value in the lowest atmospheric layer. This localization
strategy ensures that the background and observed surface pres-
sure pose a constraint on the analysis of the other variables in
all local regions (layers). Our numerical experiments show that
this is essential for maintaining a proper balance of the analyzed
fields.

4. Experimental design

We assume that the NCEP GFS provides a perfect representation
of the true atmosphere, an approach frequently called the ‘per-
fect model scenario’. Under this assumption, forecast errors arise
and grow exclusively due to uncertainties in the initial conditions
and the sensitivity of the model solutions to these uncertainties.
In other words, the model is a chaotic system, in the sense that
uncertainties in the initial conditions are more frequently ampli-
fied than damped during the forecast phase of the analysis cycle.
The role of the data assimilation system, on the one hand, is
to use the information contained in the observations to remove
the (typically exponentially) growing component of the errors
from the background. (If the data assimilation was not able to
extract useful information from the observations, the state esti-
mation by the NCEP GFS would completely lose its usefulness
within two to three weeks. At that time, the rms distance be-
tween the estimated state and the true state would become equal
to the rms distance between two randomly chosen states from a

climatological archive (see, for example, fig. 5 in Szunyogh and
Toth, 2002). On the other hand, the data assimilation must use
the information contained in the background to filter the obser-
vational noise and to spread the information to unobserved lo-
cations. We have designed a series of experiments that measure
the efficiency of the LEKF in all of these three areas (removing
growing errors, reducing noise, and spreading information).

4.1. Observations

First, a time series of ‘true’ states, xt
g(t), was generated by a

60-day integration of the T62 GFS model, started from the oper-
ational NCEP analysis at 0000 UTC on 1 January 2000. Then,
simulated observations were prepared at each grid point by
adding zero-mean Gaussian random noise (simulated observa-
tional error) to the true states every 6 h (at 0000, 0600, 1200 and
1800 UTC). The standard deviations of the assumed observational
errors are 1 K, 1.1 m s−1, and 1 hPa for the virtual temperature,
horizontal wind components, and surface pressure, respectively.
The humidity and ozone variables and the physical parameters
describing the conditions of the underlying surface (e.g. sea sur-
face temperature, albedo, snow and ice coverage, soil type, etc.)
are not observed. In most of the experiments, to simulate re-
duced observational networks, only subsets of the observations
are assimilated. These subsets are created in a systematic manner,
gradually removing observational locations at randomly selected
locations to obtain sparser observational data sets. Results are
shown for four different observational networks: observing ver-
tical profiles at all (i.e. 17 848), 2000, 1000, and 500 locations
around the globe

4.2. Measures of accuracy

In what follows, the accuracy of an analysis field will be assessed
using three different types of diagnostics.

(i) A single number reflecting the overall error at a given
height level and within a specified horizontal verification region
will be obtained by first computing the spatial rms distance be-
tween the analyzed and the ‘true’ meteorological field at each
analysis time, and then averaging these numbers over time.

(ii) When latitude versus height distributions of error are
shown, the error at a given point on the plot is obtained by first
computing at each time the rms average over longitude at fixed
latitudes and height, and then averaging over time. [We note that
(i) and (ii) follow the convention of numerical weather prediction
in that the rms is never taken over both space and time.]

(iii) When horizontal distributions at a fixed height are shown,
the error fields at a given point are obtained by averaging the
absolute value of the error field at each grid point.

4.3. Explained variance and E-dimension

While the rms-based error measures can efficiently characterize
the accuracy of the analysis scheme, diagnostics measuring the
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accuracy of the assumptions made in the scheme can help find
ways to further reduce the rms errors. In particular, the main
motivation behind a Kalman filter scheme is the hope that the
scheme can capture and efficiently remove a large portion of
the actual background error, xb − xt. The explained variance,
‖Q QT(xb − xt)‖2 ‖xb − xt‖−2, measures the portion of the back-
ground error that is captured by the background ensemble in the
local region centered at a given grid point. By mapping the ex-
plained variance, we can distinguish between regions where the
background ensemble provides good and poor representations
of background uncertainties. The optimal value of the explained
variance is one, indicating that the ensemble fully captures the
space in which uncertainties evolve. It is important to note that a
nearly optimal value of the explained variance is a necessary, but
not a sufficient, condition to obtain an accurate analysis. Large
analysis errors can occur when the amount of available observed
information is insufficient to reduce the background error in some
of the well-captured directions of uncertainties. Our numerical
results, presented in Section 5, show that relatively large analysis
error can indeed occur for cases of high explained variance on
some rare occasions.

We note that the efficiency of the Kalman filter can be mea-
sured by the explained variance only under the perfect model
scenario employed here. What makes this case special is that
(i) the actual background error can be determined, (ii) the ob-
servational error statistics are exactly known due to the lack of
representativeness errors, and (iii) the quality of the estimated
background error is fully determined by the quality of the esti-
mated analysis error at the previous analysis time. Combining
(ii) and (iii) we can see that the quality of the estimated back-
ground covariance matrix is fully determined by the quality of the
estimated background covariance matrix at earlier times. When
real observations are assimilated with a non-perfect model, the
explained variance diagnostic has to be replaced with innova-
tion statistics, such as the χ 2 diagnostic (e.g. Dee, 1995; Menard
et al., 2000).

The explained variance can be small, either because the en-
semble fails to capture important background error direction(s)
due to a flaw in the ensemble design or because the background
error is spread over many phase space directions and a limited-
size ensemble cannot capture a sufficient portion of the back-
ground error. We use the ensemble dimension (E-dimension)

E =
[ ∑k

j=1 λ( j)2]
∑k

j=1 λ( j)
, (21)

where λ(j) is defined in eq. (6), to quantify the number of direc-
tions spanned by the background ensemble. The E-dimension, in-
troduced in Patil et al. (2001) and studied in detail in Oczkowski
et al. (2005), is a positive, typically non-integer number. It takes
its maximum value, k, when the uncertainty is evenly distributed
among k directions. The less even the distribution of uncer-
tainty between the k directions, the smaller the E-dimension. The

minimum value, E = 1, occurs in the extreme case where the un-
certainty is confined to a single direction. At grid points where
the analysis error is large and the E-dimension is close to k,
there is a high probability that the ensemble size is insufficient
to represent the background uncertainty. [Formally, eq. (21) is
equivalent to the effective number of degrees of freedom (ES-
DOF) defined by Bretherton et al. (1999), although the latter
notion is applied to global state vectors taken at different times
rather than an ensemble of local model vectors taken at the same
time. We emphasize that here we are assessing the dimension-
ality of the background uncertainty locally in time and space,
rather than the overall dimensionality of the dynamics.]

5. Numerical experiments

To validate and tune our implementation of the LEKF on the
NCEP GFS, we first designed a base experiment, then explored
changes in the behavior of the data assimilation system under
gradual changes to selected parameters of the scheme. In the
base experiment, the surface pressure, horizontal wind compo-
nents at all height levels, and virtual temperature are observed at
2000 randomly selected geographical grid points on the globe,
and the parameters of the LEKF are the following: the number
of ensemble members is 40, and the size of the local region is
7 × 7 × v (the depth v of the local layers varies with altitude
according to Fig. 1). The scheme also applies a uniform 4% mul-
tiplicative variance inflation (Anderson and Anderson, 1999) to
the background ensemble to compensate for the variance lost to
non-linearities and limited sample size. According to the results
of the numerical experiments described below, the base config-
uration is a reasonable, although not optimal, configuration of
the LEKF.

Fig. 1. Number of model levels in the local volumes centered at the
different model levels.
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5.1. Temporal evolution of errors

To start the LEKF cycle, we first chose the operational NCEP
background forecast at 0000 UTC on 1 January 2000 to be the
background mean x̄b

g, then we added zero-mean Gaussian ran-
dom noise to x̄b to generate the (k + 1)-member ensemble of
global background state vectors xb(i)

g , i = 1, 2, . . . , k + 1. That
is, the initial estimate of the local background error covariance
matrix Pb was a random matrix for each local region. While
the standard deviation of the assumed initial background un-
certainty was the same as for the observational error, the ran-
dom samples were independently generated for the different
ensemble members and the simulated observations. Because
the initial ‘true state’ was defined by the operational NCEP
analysis at 0000 UTC on 1 January 2000, the initial error in
the background mean was equal to the analysis increment
(the difference between analysis and background) in the NCEP
system. While choosing the operational background to be the
initial estimate of the background mean seems to be a rea-
sonable strategy to start the first analysis cycle, another anal-
ysis experiment, choosing the operational NCEP analysis at
1800 UTC on 29 March 2002 to be initial estimate of the back-
ground mean, was also carried out. Because this time is much
further apart from the ‘true’ date (0000 UTC on 1 January 2000)
than the predictability time limit for the atmosphere, this sec-
ond choice for x̄b

g can be viewed as a randomly selected possible
states of the atmosphere (as represented by the operational NCEP
analysis).

The global rms analysis error rapidly (in a few steps) tends
to a level that is much smaller than the rms error of the ob-
servations regardless of the selection of the initial estimate
of the background mean. We have found this to be a robust
property; it is characteristic of all experiments reported in this
paper. While the speed of convergence is rapid, it is slightly
different for the different variables: fastest for the temperature
and slowest for the wind components. Figure 2 shows an ex-
ample of the time evolution of the rms error for the surface
pressure of the base experiment. In this example, the rms er-
ror tends to a level that is about 40% of the observational
error within a couple of days. While some slow temporal fluc-
tuations of the error can be observed, the efficient filtering of
the observational noise by the data assimilation scheme is ev-
ident. Because observations are taken at only 2000 locations
(or about 11% of all the grid points), the results also indicate
that the LEKF efficiently propagates information to unobserved
locations.

Because the temporal fluctuation of the errors is modest, the
different configurations of the LEKF can be meaningfully com-
pared using time-mean results. To ensure that the time means
are not affected by the initial transient, the time averages are
computed for the last 45 d (the last 180 analysis cycles) of
each experiment, i.e. the first 15 d (60 analysis cycles) are
ignored.

Fig. 2. Time evolution of the analysis surface pressure rms error for
two different estimates of the initial background mean. The solid line
represents the estimation error for the case where the operational
background is used as initial estimate, while the dotted line represents
the estimation error for the case of a ‘randomly’ selected initial
estimate. The rms error of the observations is shown by dashes. The
abscissa is the number of analysis cycles performed every 6 h.

Fig. 3. Zonal average of the time-mean rms error in the temperature
analysis (shades). The zonal average of the ‘true’ time-mean
temperature is also shown (contours).

5.2. Spatial distribution of errors

The analysis errors have a strong zonal dependence (Figs. 3 and
4): the largest errors are in the tropics and over the polar regions;
the errors in the mid-latitudes are the smallest. The time-mean
errors are small compared to the rms observational errors (1 K
and 1.1 m s−1). The most important virtue of the data assimilation
system is the high accuracy of the analyses in the mid-latitudes.
In these regions, the errors are practically negligible in the lower
troposphere (below the 500-hPa level). This is most remarkable,
because these are the regions where baroclinic instabilities – the
most energetic instabilities in the Earth’s atmosphere – convert
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Fig. 4. Zonal average of the time-mean rms error in the analysis of the
zonal component of the wind (shades). The zonal average of the ‘true’
time-mean circulation is shown by streamlines (contours with small
arrowheads showing the direction of the flow).

the available potential energy to kinetic energy. (The main zones
of baroclinic energy conversion can be recognized in Fig. 4 by
the on-average upward motions that they generate in the mid-
latitudes.) This finding shows the efficiency of the Kalman filter
in correcting fast-growing background errors associated with
processes initiated by baroclinic instabilities. The largest, but
still modest, analysis errors in the mid-latitudes occur in and
immediately below the jet layer (between the 200- and 500-hPa
levels).

Estimation of the atmospheric state is the most difficult (i) in
the region of ascending motions in the Hadley cells, (ii) in the
stratosphere aloft, (iii) in the stratosphere over the two poles, es-
pecially at the top of the model atmosphere, and (iv) in the lower
troposphere in the Northern Hemisphere (NH) polar region. In
our quest for a better understanding of the mechanisms leading
to the development of relatively large errors in these regions,
we first examine the geographical distribution of the explained
variance and the E-dimension.

5.3. Explained variance and E-dimension

The explained variance is the lowest in the tropics, especially in
the mid-troposphere and the stratosphere aloft (Fig. 5). The zonal
distribution of the explained variance is remarkably symmetric,
characterized by a center of low values (somewhat shifted to
the south of the equator) and by increasing values toward the
poles. In the vertical, the explained variance is the highest at the
surface, quickly decreasing in the lower troposphere, becoming
minimum in the mid-troposphere, and then increasing again in
the upper troposphere. There is also a secondary minimum in the
tropical stratosphere above the absolute minimum in the mid-
troposphere.

Fig. 5. Zonal average of the time-mean explained variance.

Fig. 6. Zonal average of the time-mean E-dimension.

The explained variance and the E-dimension are strongly anti-
correlated; the space of background uncertainties is always well
captured in regions of low dimensionality, and always poorly
captured in regions of high dimensionality (Figs. 6 and 7).
Had the explained variance not saturated at low E-dimensions,
the anticorrelation between the explained variance and the
E-dimension would be even higher. The strong anticorrelation at
the higher E-dimension indicates that the limited size ensemble
can capture only a decreasing portion of the background error.
We note that these results do not change qualitatively when the
correlation is computed for grid-point values instead of zonal
means (the anticorrelation for the grid-point values 0.91).

Because the observational coverage is uniform over the globe,
the dimensionality of the analysis (background) errors is a prop-
erty of the model dynamics. Our results demonstrate that, as
conjectured by Ott et al. (2004), the local dimensionality of the
dynamics plays a central role in the efficiency of the LEKF. The
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Fig. 7. Zonal average of the explained variance versus zonal average of
the E-dimension. The sample is collected over all latitudes and analysis
cycles. The correlation between the explained variance and the
E-dimension is −0.93.

larger errors in the tropics are clearly due to the higher local
dimensionality of the model dynamics. (The only regions where
the explained variance is high and the E-dimension is low, but the
analysis error is still large, are over the poles. As noted earlier,
such regions can exist where there is no sufficient number of ob-
servations to remove the background errors in certain phase space
directions.) This gives us hope that the analysis accuracy can be
improved in the tropics by either decreasing the size of the local
regions (dimensionality of the local dynamics) or by increasing
the number of ensemble members, thus increasing the local di-
mensionality that can be accurately represented by the LEKF.
Care should be taken though, as each of these strategies has its
potential drawbacks. On the one hand, reducing the dimension d
of the local vectors inevitably leads to using fewer observations
in obtaining the local analyses. The resulting degradations may
offset the beneficial effects of having a better representation of
the local dynamics. On the other hand, increasing the ensemble
size k + 1 leads to a significant increase of the computational
cost (see Table 1). In what follows, experiments are carried out
to find an ideal range of d and k + 1.

5.4. Sensitivity to the horizontal size of the local regions

First we vary the horizontal size of the local regions, using 3 ×
3 × v, 5 × 5 × v, 7 × 7 × v, 9 × 9 × v, and 11 × 11 × v

patches of grid points, and keeping the ensemble size fixed at 40
members. The dimension d of the local vectors for the different-
sized regions is shown in Fig. 8. While the rms of the surface
pressure analysis error is essentially the same for all experiments
(including the base experiment shown in Fig. 2) the patch size
has a noticeable impact on the accuracy of the temperature and
wind analyses. The results are summarized in Figs. 9 and 10.

Fig. 8. Number of model variables in the local regions centered at the
different model levels. The number of variables is shown for local
regions consisting of 3 × 3 (black), 5 × 5 (blue), 7 × 7 (base
experiment, bright red), 9 × 9 (green) and 11 × 11 (cyan) horizontal
grid points at each level.

Fig. 9. The time mean of the rms error of the temperature analysis over
the globe. The color scheme is the same as in Fig. 8. The curves are
very similar for the 5 × 5 and 7 × 7 regions, and for the 9 × 9 and 3 ×
3 regions; thus, results for the 7 × 7 regions and for the 3 × 3 regions
are not shown for the sake of transparency. The rms error of the
observations is shown by black dashes.

Increasing the region size to 9 × 9 × v or 11 × 11 ×
v leads to an increase of errors in both the tropics and ex-
tratropics, with the degradation being much more substantial
in the tropics. An inspection of the explained variance and
E-dimension in figures similar to Figs. 5 and 6 (not shown)
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Fig. 10. The time mean of the rms error of the zonal wind component
analysis in the tropics, which is defined by the latitude belt between
30◦S and 30◦N. The color scheme is the same as in Fig. 8. The solid
lines indicate performance for the 40-member ensemble, while the
dashed (red) line shows results for the 80-member ensemble using 7 ×
7 horizontal regions. For the 80-member ensemble, the performance is
very similar for the 5 × 5 (not shown) and 7 × 7 horizontal regions,
while the accuracy for the 3 × 3 regions (not shown) is about the same
as for the 5 × 5 regions using a 40-member ensemble (solid blue
curve). The rms error of the observations is shown by dashes.

suggested that the degradation of the analysis accuracy is asso-
ciated with a poorer representation of the space of uncertainties.
For instance, for the 9 × 9 local regions the highest E-dimension
is 33 (compared to 31 in the base experiment), while the low-
est explained variance is 0.3 (compared to 0.45 in the base ex-
periment). Also, the anticorrelation between the two quantities
increases to −0.94 indicating a narrower saturation region than
observed for the 7 × 7 × 7 local regions. Most importantly, these
results demonstrate that increasing the amount of local observed
information by increasing the local region size becomes coun-
terproductive when a given ensemble size becomes insufficient
to capture the important background error patterns in the larger
regions.

Decreasing the size of the local regions to 5 × 5 × v, on the
other hand, reduces the highest E-dimension to 29, increases the
lowest explained variance to 0.55, and reduces the anticorrelation
to −0.89 (figures not shown). The associated improvement of the
analysis accuracy is the largest in the tropics (Fig. 10). However,
when the horizontal size of the local regions is further reduced to
3 × 3 × v the analysis accuracy degrades. We can conclude that
the optimal horizontal region size for a 40-member ensemble
and our choice of v (Fig. 1) is 5 × 5.

5.5. Sensitivity to the vertical size of the local regions

We carried out experiments with three different choices for the
layer depth in the vertical localization (results are not shown).
These include the vertical localization depicted in Fig. 1, the case
when localization in the vertical is not applied, and the case in
which each local layer contains three levels (except at the top
and the bottom boundaries of the atmosphere, where the local
layers consist of only one level.)

Decreasing the local layer depth has a noticeable influence
on the analysis accuracy only in the tropics, where it leads to
improvements similar to those obtained by reducing the hori-
zontal region size to 5 × 5. This is a plausible result considering
that both changes lead to a 50% reduction in the dimension d of
the local regions, resulting in a very similar distribution of the
explained variance and E-dimension (for the thin layers the min-
imum E-dimension in 29, while the lowest explained variance is
0.6).

Not applying vertical localization at all, on the other hand,
drastically degrades the analysis quality. The errors in the tem-
perature increase by about 50%, while the rms error in the wind
doubles in both the jet layer in the extratropics and at most lev-
els in the tropics. In the latter region, the wind analysis errors
are even larger than the observational errors. This degradation
is due to a severe reduction in the capability of the ensemble to
capture the space of uncertainty. The explained variance varies
between 0.15 and 0.45, while the E-dimension varies between 25
and 35.

The vertical localization has an obviously large beneficial ef-
fect on the analysis accuracy, although our results also indi-
cate that beyond a certain level of localization not much can
be gained by reducing the depth of the local layers. Fine tuning
the vertical localization will become an important practical issue
once the assimilation of satellite radiance observations is con-
sidered. These observations can be affected by the atmospheric
temperature and humidity at distant vertical levels. This may
severely limit the maximum possible degree of vertical localiza-
tion, thus limiting the smallest d that can be considered in an
implementation of the LEKF. [We note that some types of radi-
ance observations, such AMSU-A radiances, can be assimilated
with a Kalman filter using vertical localization (Houtekamer
et al., 2005).]

5.6. Sensitivity to the ensemble size

Now we turn our attention to the improvements that can be
achieved by increasing the number of ensemble members. Be-
cause a larger region size allows for a better utilization of more
observed information, we can expect that increasing the number
of ensemble members leads to a reduction of the analysis errors
in two ways: (i) a larger ensemble increases the explained vari-
ance for a given d, and (ii) it also allows for a larger d leading
to a better utilization of more observed information. We find
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(results are not shown) that doubling the ensemble size (to
k = 80) increases the maximum E-dimension to 55, increases
the minimum explained variance to 0.65, and reduces the anti-
correlation to −0.86.

In terms of analysis accuracy, we find that increasing the en-
semble size has the largest positive effect when the configuration
uses 7 × 7 × v grid points (Fig. 10). (Because the overall im-
provement obtained by increasing the ensemble size from 40 to
80 is relatively modest in the extratropics, the results are illus-
trated only for the tropics.) This configuration now breaks even,
in all regions and for all variables, with the configuration using
5 × 5 × v grid points and a 80-member ensemble. This result
suggests that more than 80 ensemble members would be required
to improve the performance of the scheme for patch sizes larger
than 7 × 7.

5.7. Sensitivity to the density of observations

Experiments with simple models show that Kalman filters have
a distinct advantage, as the observational density decreases, over
schemes that use static estimates of the background covariance
matrix (e.g. Hamill et al., 2001; Ott et al., 2004). More precisely,
while the performance of the static schemes, such as Optimal
Interpolation (OI) and 3D-Var, degrades dramatically with de-
creasing observational density, the accuracy of the Kalman filter
is only slightly affected until a critically low density is reached.
To test whether our implementation of the LEKF on the NCEP
GFS retains this important property, further experiments with
differing numbers of observations were also carried out. While
the observational density has only a modest impact on the quality
of the temperature analysis (Fig. 11), the accuracy of the wind
analysis, especially in the tropics, degrades more dramatically
as the density of the observations is reduced (Fig. 12). This fig-
ure also shows that increasing the number of observations is a
very efficient way to reduce the analysis errors in the tropics. A
more detailed inspection of the zonal mean errors (figures are not
shown) indicates that when all model grid points are observed (i)
the temperature and wind errors are greatly reduced in the trop-
ics in both the troposphere and the lower stratosphere, (ii) the
temperature errors in the arctic mid-troposphere are also greatly
reduced, but (iii) the large errors in the NH polar stratosphere
and boundary layers are essentially unchanged.

The changes in the E-dimension are practically negligible, in-
dicating that they are mainly determined by the ensemble size,
the dimension of the local regions and the model dynamics, and
not by the observation density. Increasing the number of obser-
vations slightly reduces the explained variance (e.g. when all
locations are observed, the lowest explained variance decreases
from 0.45 to 0.35). This shows that increasing the number of
observations improves the analysis by completely removing the
background errors along some of the well-captured directions.

Fig. 11. The time mean of the rms error of the temperature analysis
over the globe. The analysis error is shown for observing networks
consisting of 18 048 (blue), 2000 (base experiment, bright red), 1000
(green) and 500 (purple) observational locations. This corresponds to
observing 100% points (blue), 11% (bright red), 5.5% (green), and 2%
(cyan) of all grid points. The rms error of the observations is shown by
dashes.

Fig. 12. The time mean of the rms error of the zonal wind component
analysis in the tropics. The color scheme is the same as in Fig. 11.

Tellus 57A (2005), 4



LOCAL ENSEMBLE KALMAN FILTER 539

5.8. Gravity waves

Wave solutions of the atmospheric primitive equations admit
both shallow and deep gravity wave motions. The importance of
correctly analyzing these motions is one of the most challeng-
ing aspects of atmospheric data assimilation. On the one hand,
the goal is to ensure that the initial conditions do not lead to
the excitation of spurious deep gravity waves in the extratropics
where high-frequency oscillation of the surface pressure, char-
acteristic of these waves, is not observed in nature. On the other
hand, the goal is to retain those shallow gravity waves in the en-
tire atmosphere and those deep gravity waves in the tropics that
have important effects on synoptic scale motions in the atmo-
sphere. Current operational systems use a variety of techniques
to eliminate spurious gravity waves (e.g. Daley, 1991; Kalnay,
2003). Some of these techniques are integral parts of the data as-
similation schemes: 3D-Var schemes define cross-correlations
between the different variables by some variant of the balance
equation and/or by imposing an extra constraint on the diver-
gence of the horizontal wind in the statistical optimization prob-
lem. The so-called ‘initialization’ methods, on the other hand,
are applied after assimilation of the observations have been com-
pleted. Currently, the most popular initialization technique is the
digital filter, which empirically (by numerical integration of the
model) identifies and eliminates all features of the analyzed field
that excite motions with frequencies larger than a given thresh-
old (Lynch and Huang, 1992). The more traditional non-linear
normal mode initialization is based on the somewhat ‘heavier
handed’ approach of first transforming the state vector into a
form where the low-frequency ‘slow’ and the high-frequency
‘fast’ motions are represented by different components of the
transformed state vector, and then setting the time derivative of
the ‘fast’ components to zero (Machenauer, 1977). [See Lynch
(2002) for an illustration of the problem of separating and ini-
tializing the ‘fast’ component of the atmospheric model state.]

The aforementioned techniques alone or in some combina-
tions can efficiently filter deep gravity waves in the extratropics.
Nevertheless, they are based on formal assumptions that are valid
for the real atmospheric flow only to some low-order approxima-
tions. These approximations generally lead to overly aggressive
filtering, or in some other cases insufficient filtering, of the initial
conditions. One potential advantage of ensemble Kalman filter
schemes is that they may eliminate the need for inherently in-
accurate explicit balance constraints or initialization. To support
this view, we first note that deep inertia-gravity waves in the ex-
tratropics are typically transient features of numerical weather
predictions, because they are dispersive, and the diffusion and
drag terms and the time integration schemes rapidly dissipate the
energy of these waves. This means that the forecast phase of the
analysis cycle is unlikely to introduce deep gravity waves in the
extratropics. In addition, in ensemble Kalman filters the analysis
is a linear combination of the background ensemble members.

Combining these two factors, we can expect that the analysis
should contain only those types of gravity waves that can occur
during longer-term (longer than an initial transient) integration
of the model, unless generation of the analysis perturbations
leads to excitation of gravity waves. To avoid excitation of such
unwanted gravity waves, the LEKF use a spatially smoothly
varying local transformation of the background ensemble to ob-
tain an analysis ensemble, also ensuring that the transformation
introduces the smallest possible changes into the background
ensemble members with respect to a suitable norm (Ott et al.,
2004).

For the perfect model scenario, investigated in this paper, grav-
ity waves should ideally occur at the same locations and times
in the analysis and the ‘true’ state. To verify whether our system
satisfies this requirement, we first identified gravity waves by
searching for cases of high-frequency oscillations in the surface
pressure in both the analyses and the true states. We found that
our system performed as we had expected; high-frequency os-
cillation of the surface pressure occurred only at the times and
locations where high-frequency oscillations also occurred in the
true state. The most interesting case we have found is a rare
event of gravity wave propagation from the tropics deep into the
subtropical region. The unusually large surface pressure errors
between cycles 120 and 150 in Fig. 2 are associated with this
event. Animations have revealed that these errors (which are still
smaller than the observational errors) are associated with deep
gravity waves propagating from the South Pacific convergence
zone toward the extratropics, where they eventually die out be-
tween the latitudes 30◦N and 35◦N. Figure 13 shows that high-
frequency oscillation is present in both the analysis and the ‘true’
states and that the analysis accurately tracks these waves. (Al-
though the mismatch between the analyses and the ‘true’ states
is somewhat larger deeper in the tropics, the analyses always

Fig. 13. The ‘true’ (black crosses) and analyzed (red dots) time
evolution of the surface pressure at 30◦N 150◦E. The analyses are
based on 500 soundings.
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correctly capture the frequency of the changes.) We can conclude
that the LEKF can correctly capture gravity waves, without ex-
citing spurious gravity waves where they are not present in the
‘true’ state. This finding demonstrates that solving the analysis
problem locally in physical space does not necessarily lead to
artificial gravity waves in the analysis. This is in contrast to the
general wisdom mainly based on earlier results with the OI. It has
yet to be seen whether this advantageous behavior of the LEKF
carries over to the case where the model provides an imperfect
representation of the true atmospheric dynamics. However, the
fact that the LEKF analysis is a combination of balanced fore-
casts should ensure that the spurious generation of gravity waves
is avoided.

5.9. Physical interpretation

In what follows, we focus our attention on identifying the atmo-
spheric processes that affect the accuracy of the LEKF analyses.
While this part is more speculative in nature than the discussion
presented so far, it may prove useful in drawing more general
conclusions, applicable to atmospheric models other than the
NCEP GFS.

We start our investigation in the tropical region. Figure 4 indi-
cates that the analysis of the wind is the most difficult in the re-
gion of ascending motions in the Hadley cells. The error quickly
decreases toward higher latitudes in the neighboring regions of
descending motions. A comparison of Fig. 3 and fig. 14.3 of
Emanuel (1994) suggests that the errors are the largest in the
layers where the convective available potential energy (CAPE)
is the largest. A picture emerges in which the largest errors in
the tropical wind analysis are associated with deep convective
processes. This conclusion is also well supported by Fig. 14,
which depicts the geographical distribution of the errors at the
300-hPa level. The regions of largest errors in the tropics are

Fig. 14. Time-mean of the rms error in the analysis of the zonal wind
component at the 300-hPa pressure level (shades). The ‘true’ time-mean
horizontal circulation at the same level is shown by streamlines
(contours with small arrowheads showing the direction of the flow).

Fig. 15. Time mean of the rms error in the temperature analysis at the
600-hPa pressure level (shades). The ‘true’ time-mean temperature is
also shown (contours).

sandwiched between the regions of easterly trade winds to the
north and south. These regions are associated with pools of warm
air located in the south-west Pacific/north-east Indian and mid-
Atlantic equatorial regions (Fig. 15).

The sources of CAPE are air parcels lifted from the surface.
Because the analysis is accurate near the surface, the temperature
flux associated with the ascending warm air parcels may be rela-
tively well analyzed in the subcloud layer. This suggests that the
relatively poor analysis in the deep convective clouds originates
from a poor analysis of processes within the clouds themselves.
Also, because the wind analyses are of poorer quality than the
temperature analysis, it may be considerably more difficult to an-
alyze the momentum fluxes in deep convective clouds than the
associated temperature fluxes. These difficulties, encountered in
the regions of deep convection, cannot be explained by the inade-
quate parametrization of convection because, in our experiments,
the true state has also been generated by the same model.

The version of the NCEP GFS that we use employs a mod-
ified Arakawa–Schubert scheme (Pan and Wu, 1995) for the
parametrization of deep convection. The scheme is simpler than
the original Arakawa–Schubert scheme (Arakawa and Schubert,
1974): it assumes that the deep convection is associated with one
type of cloud (the deepest cloud) instead of a spectrum of clouds.
Nevertheless, the scheme corrects one important deficiency of
the original scheme: it allows for the transport of momentum by
downdrafts. Otherwise, the scheme retains the central hypothe-
sis of the Arakawa–Schubert scheme: convection is essentially a
rapid-response mechanism to neutralize the destabilizing effects
of such large-scale processes as surface fluxes and radiation.
More precisely, the scheme assumes that the consumption of
CAPE, by an ever present ensemble of deep convective clouds,
is in a statistical equilibrium with the CAPE generated by the
large-scale processes. (We note that, since 2001, NCEP has made
several important upgrades to the parametrization of deep con-
vection in the operational GFS. We would not be surprised if an
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implementation of the LEKF on the current operational model
behaved somewhat differently than reported here.)

One may ask whether our results have any significance in
the case where real observations, collected in real deep convec-
tive clouds, are assimilated. As Emanuel (1994) pointed out,
the observational evidence to support the central hypothesis
of Arakawa and Schubert (1974) is striking. He also pointed
out, however, that the entraining plume model, on which the
Arakawa–Schubert scheme is based, is a poor representation of
individual clouds. Thus, in regions of deep convection, we can
expect large model errors to occur, which makes a good analysis
even more difficult to obtain than we have found here.

This example shows the importance of carrying out experi-
ments in the perfect model scenario. Had we started assimilating
real observations first, we might have attributed all difficulties to
the inadequate parametrization of deep convection in the model.
Our results show that preparing the analysis for regions of deep
convection can be challenging even in the absence of model er-
rors. This occurs due to the complex nature of the dynamics
(reflected by high E-dimensions) that leads to complex back-
ground (and analysis) error structures. Our results show that in
the perfect model setup, the analysis error can be efficiently re-
duced in regions of deep convection by increasing the ensemble
size, finding the size of the local regions that is optimal for the
given ensemble size, and increasing the number of observations.

Animations of the error propagation reveal that in the tropics,
errors and error reduction patterns can episodically propagate
from the troposphere to the lower stratosphere. This explains the
close relationship between the errors in the regions of ascending
motions in the Hadley cells and in the lower stratosphere aloft.
We speculate that these episodes are associated with ‘convec-
tive overshoots’, in which the convective updrafts gain enough
kinetic energy to break into the stable lower stratospheric air
above the cloud tops. [‘Convective overshoots’ are thought to be
responsible for transporting most of the air and water vapor into
the stratosphere (e.g. James, 1994, pp. 331–334).]

The origin of the relatively large stratospheric errors is not
absolutely clear to us, and we suspect that minor flaws in our
implementation of the LEKF may play some role. (For instance,
we hope that using a reduced grid near the poles would take
into account the decreasing distance between grid points and
would help to reduce the errors. Similarly, we may find a better
strategy for localization near the upper boundary of the model at-
mosphere.) Nevertheless, we believe that model dynamics plays
some role in the development of the unusually large errors in the
polar regions. Animations show that, in the NH polar region, the
typical direction of error propagation is from the lower strato-
sphere to the troposphere, indicating that the sources of errors
are instabilities in the lower stratosphere. More precisely, we ob-
serve rapidly developing errors in the polar stratosphere (north
of 60◦N). These errors first propagate toward the pole and then
downward in a narrow channel over the pole. These errors are
typically much larger than those in the tropical stratosphere, but

after a sudden burst they are efficiently removed by the Kalman
filter (in contrast to the more persistent nature of the tropical
errors). Similar error bursts were observed in our earlier data
assimilation experiments with the low-order Lorenz-96 model
(Lorenz, 1996; Lorenz and Emanuel, 1998) for both the LEKF
scheme (Ott et al., 2004) and a less advanced 3D-Var scheme
(Baek et al., 2004). This phenomenon can occur when the data
assimilation scheme underestimates the background error (e.g.
due to the presence of non-linear error growth), when there are
no observations that can help remove the critical errors. The high
explained variance in the polar regions suggests that in our case
insufficient observational coverage is more likely to be respon-
sible for the large errors in the polar region.

5.10. Timing results

The timing results described here are from our initial implemen-
tation of the LEKF, which is on a relatively modest Beowulf
cluster consisting of 25 dual-processor nodes, each with 2 GB of
random access memory and connected by a 1-gigabit Ethernet;
each processor is a 2.8-GHz Intel Pentium Xeon with hyper-
threading disabled. Most runs use 40 processors on the cluster.
(See Appendix B for more details on the implementation of the
code.)

Typically, one complete cycle of the algorithm takes 15 min
of wall-clock time for an ensemble of 40 solutions when obser-
vations are available at every model grid point using the GFS
at T62/L28 resolution and vertical localization, as described be-
low. This computation involves 192 × 94 × 28 = 505 344 local
regions and slightly more than 1.5 million observations; each
local region is a cube of 7 × 7 × v model grid points, where
v = 1, 3, 5 or 7, depending on altitude (Fig. 1). The time in-
cludes: (i) that spent computing the transforms from spectral
space to physical space and back (which could be parallelized,
but which we have implemented only on a single processor); (ii)
the i/o and network overhead to transport the appropriate model
grid and observation data to each processor; (iii) one step of
the LEKF algorithm to each local region; (iv) 40 6-h forecasts
from the resulting analysis. Excluding the spectral transforms
and forecasts, the wall-clock time is about 505 s for the above
parameters. The average time needed to process one local re-
gion, where the ensemble size is 40 and the patch size is 1078,
is about 31 ms. Table 2 shows timing results for local regions
that consist of 7 × 7 × v cubes (v = 1, 3) as described above,
with either 40 or 80 ensemble members. The observing network
consists of observations of temperature and wind speed at all
28 vertical levels, plus the surface pressure, at each of N points.
The notation, N = all, refers to the case where observations are
available at each model grid point (1.5 million observations in
total); N = 2000 refers to an observing network that consists
of 2000 randomly chosen model grid points at which the obser-
vations are assumed to exist at each vertical level (i.e. a total
of 170 000 observations). The wall-clock time includes the total
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Table 2. Time needed to run the LEKF algorithm

Parameters Wall-clock LEKF step Patch mean
k + 1, N time (min) only (s) (10−3 s)

40, all 15 505 31
40, 2000 14 447 28
80, all 45 1973 122
80, 2000 42 1682 104

time needed to perform all spectral transforms, the LEKF algo-
rithm, and k + 1 6-h forecasts from the resulting analysis. The
column labeled ‘LEKF only’ refers to the maximum amount of
time that any given processor spends performing only the data
assimilation step after the model grid is distributed more or less
evenly across the cluster; the last column shows the average time
spent processing a single local region.

These results suggest that, for a given observing network and
patch size, the overall time required to perform the LEKF as-
similation step grows roughly quadratically with the number of
ensemble solutions and is relatively insensitive to the amount
of data to be assimilated. In practice, of course, the work re-
quired to decode observations from data files and to evaluate the
observation operators may be substantially greater than what is
needed here. Nevertheless, we are optimistic that, with further
tuning and a somewhat larger computer, the LEKF data assim-
ilation algorithm can be performed within the time constraints
of a typical operational forecast center. It should be noted that
the 6-h forecasts do not represent an additional cost in the oper-
ational centers that have ensemble forecasting systems, and that
the LEKF would provide initial perturbations representative of
the analysis uncertainty.

6. Conclusions

Our conclusions fall into three categories: (i) conclusions that
apply generally to ensemble Kalman filter methods that employ
localization; (ii) conclusions that, although most directly appli-
cable to the LEKF scheme, may also provide some guidance
to other Kalman-filter based schemes; (iii) conclusions that are
specific to the LEKF scheme.

6.1. General conclusions

(i) A modest size (40-member) ensemble is sufficient to
track the ‘true’ evolution of the atmospheric state when the
model provides a perfect representation of the atmospheric
dynamics.

(ii) The more complex the local model dynamics (the higher
the E-dimension), the smaller the portion of the background er-
ror that the Kalman filter can capture. This leads to relatively
large errors in the regions where the model dynamics is com-
plex. The most important regions of complex model dynamics

are the tropical convergence zones, where parametrized deep
convection plays an important role. We note that unlike the ex-
plained variance, the E-dimension of the ensemble can be com-
puted without knowing the ‘true’ state. It may be possible to im-
prove filter performance by adjusting filter parameters according
to the E-dimension.

(iii) While relatively large errors are typically associated with
locally high-dimensional behavior of the background forecast,
on rare occasions, the analysis error can also be relatively large in
regions of low local dimensionality. This anomalous behavior is
observed in the polar regions, especially during the polar night.
We speculate that this may be because in our implementation in
this paper the surface variables were not analyzed. We conjecture
that the surface analysis would be best prepared by including the
variables representing the time-dependent state of the surface in
the state vector analyzed by the LEKF.

(iv) In a real-data implementation, some analysis errors due
the limitations of the ensemble Kalman filter approach or to
formulation errors in a particular implementation may be easily
mistaken for the effects of model errors. For instance, one would
expect important model errors in the regions where parametrized
deep convection plays an important role. Our results show that
part of the large errors in these regions would be due to the
high local complexity of the dynamics. (We note that the high
complexity of the dynamics and the difficulties with accurately
modeling the atmospheric processes have closely related roots.)
This example shows the importance of a rigorous initial testing
of ensemble-based Kalman filter data assimilation systems on
simulated observations.

6.2. Conclusions with limited generality

Some of our other findings are valid only for the LEKF in a strict
sense, but they may also be useful as a guide in tuning other
ensemble based Kalman filters.

(i) Increasing the number of ensemble members provides a
better representation of the space of uncertainties in the back-
ground and analysis. The number of observations has little in-
fluence on the capability of the scheme to capture the space of
uncertainties. Instead, a better observational coverage more ef-
ficiently removes background errors in the space identified by
the ensemble. There exists an optimal region size for a given
number of ensemble members. For our system the optimal hori-
zontal size of the local region in the mid-latitude is about 800 ×
800 km2.

(ii) The analysis accuracy is most sensitive to the number
of ensemble members, dimension of the local regions, and the
observational density in the area of the most complex dynamics
(in the tropics). In the polar regions, where the analysis errors
are large but the local dimensionality of the dynamics is low,
the analysis accuracy is mainly sensitive to the observational
density.
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6.3. LEKF-specific conclusions

The most important LEKF specific finding is the very reasonable
computational efficiency of the scheme. We achieved a less than
9 min per analysis performance for the T62 and 28-level version
of an operational model, using a cluster of 40 2.8-GHz processors
communicating through a 1-Gbit ethernet. We anticipate that the
extra computational cost that would arise at the higher resolu-
tion of current operational systems could be compensated by the
much higher performance of the computers used by the opera-
tional centers. Encouraged by the positive results of our attempt
at assimilating simulated observations, we have started working
on the assimilation of real observations. We are cautiously op-
timistic about the outcome of these efforts, expecting major but
not insurmountable challenges stemming from the presence of
model errors.
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8. Appendix A: Non-linear observation
operators

If the observation operator H is non-linear, a slightly different
formulation than that of Section 2.3 may be advantageous. By
rewriting eqs. (13) and (14), we can place each instance of the
linearized operator H adjacent to the matrix Xb of ensemble
perturbations defined in eq. (4), and then replace HXb with the
matrix of non-linear observation increments

Eb = {
δH

[
xb(1)

] | δH[
xb(2)

] | . . . | δH[
xb(k+1)

]}
, (A1)

where

δH[xb(i)] = H[xb(i)] − H(x̄b). (A2)

Alternatively, one can define δH[xb(i)] to be H[xb(i)] minus the
mean over i of this expression (in other words, take the mean
after applying H rather than before). This is the approach de-

scribed by Houtekamer and Mitchell (2001), and is mathemat-
ically equivalent to the joint state-observation space approach
described by Anderson (2001). With either definition, this ap-
proach avoids the potentially non-trivial implementation of H
and HT, and may produce better analyses by avoiding the unnec-
essary linearization.

Notice that X̂
b = QTXb and, because Xb lies in the space

spanned by the columns of Q, conversely Xb = QX̂
b
. Thus, us-

ing eqs. (5) and (10), P̂b = X̂
b
X̂

bT
. Also, HXb = HQX̂

b = ĤX̂
b
,

so based on the preceding paragraph we will replace ĤX̂
b

by Eb.
One can show that eq. (14) is equivalent to

P̂
a = X̂

b[
I + X̂bTĤ

T
R−1ĤX̂b

l

]−1
X̂

bT
. (A3)

Substituting this expression into eq. (13) and substituting Eb for
ĤX̂

b
by Eb yields

� ˆ̄xa = X̂
b
[I + EbTR−1Eb]−1EbTR−1[yo − H(X̄b

)]. (A4)

Also, substituting Eb into eq. (A3), we have

P̂
a = X̂

b
[I + EbTR−1Eb]−1X̂bT. (A5)

We can then use eqs. (A1), (A4), and (A5) in place of eqs. (13)
and (14).

The algorithmic complexity described in Section 2.6 is af-
fected very little by this alternative formulation. We no longer
need to compute H and Ĥ, but must instead compute Eb at a cost
of roughly k times the cost of computing H(x̄b). Because Eb has
k + 1 columns, while Ĥ has k, some operations will take slightly
longer accordingly.

9. Appendix B: Computational implementation

Our initial implementation of the LEKF is in FORTRAN 95,
which provides a simple, portable, and efficient notation for
handling dense matrices. We have used version 3 of the LA-
PACK library (Anderson et al., 1999) to compute matrix in-
verses, eigenvalues, and eigenvectors, because it is numerically
robust, thoroughly tested, and widely available; most computer
vendors provide optimized implementations of the Basic Lin-
ear Algebra Subroutines (BLAS) (Lawson et al., 1979; Don-
garra et al., 1988, 1990) upon which the LAPACK library is
built. The LAPACK routine DSYEVR implements the algorithm of
choice for finding all eigenvalues and eigenvectors of a symmet-
ric k × k matrix. However, for maximum efficiency, DSYEVR

requires IEEE-754 (IEEE, 1985) infinity arithmetic to be im-
plemented without trapping (Anderson et al., 1999, p. 146).
This requirement can be problematic, depending on the pro-
cessor and FORTRAN compiler, although we have had no diffi-
culty with version 6.1 of the Lahey FORTRAN compiler (Lahey
Computer Systems, see http://www.lahey.com) on Intel Pen-
tium Xeon processors running Red Hat Linux (Red Hat, Inc.,
see http://www.redhat.com). Because the underlying algorithm
is iterative, the operation count associated with DSYEVR is not
fixed: the convergence rate depends on the data, but in general is
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expected to be O(k3). The overall efficiency of the LEKF algo-
rithm also is influenced by the quality of the FORTRAN intrinsic
function MATMUL, which we use heavily to multiply matrices.
The level-3 BLAS routines DGEMM and DGEMV (Dongarra et al.,
1990) may be substituted to yield faster code, depending on the
FORTRAN implementation.

References

Anderson, J. L. 2001. An ensemble adjustment filter for data assimilation.
Mon. Wea. Rev. 129, 2884–2903.

Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo implementation
of the non-linear filtering problem to produce ensemble assimilations
and forecasts. Mon. Wea. Rev. 127, 2741–2758.

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J. and
co-authors. 1999. LAPACK Users’ Guide, 3rd Edition. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA.

Arakawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud
ensemble with the large-scale environment.Part I. J. Atmos. Sci. 31,
674–701.

Baek, S-J., Hunt, B. R., Szunyogh, I., Zimin. A. and Ott, E. 2004. Lo-
calized error bursts in estimating the state of spatiotemporal chaos.
Chaos 14, 1042–1049.

Bishop, C. H., Etherton, B. J. and Majumdar, S. 2001. Adaptive sampling
with the ensemble transform Kalman filter. Part I: Theoretical aspects.
Mon. Wea. Rev. 129, 420–436.

Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. and
Blade, I. 1999. The effective number of spatial degrees of freedom of
a time-varying field. J. Climate 12, 1990–2009.

Daley, R. 1991. Atmospheric Data Analysis. Cambridge Univ. Press,
Cambridge.

Dee, D. P. 1995. Testing the perfect-model assumption in variational data
assimilation. Proc. 2nd Int. Symp. on Assimilation of Observations in
Meteorology and Oceanography. World Meteorological Organization,
Tokyo, Japan, 225–228.

Dongarra, J. J., Du Croz, J., Hammarling, S. and Hanson, R. J. 1988. An
extended set of FORTRAN Basic Linear Algebra Subprograms. ACM
Trans. Math. Soft. 14, 1–17.

Dongarra, J. J., Du Croz, J., Hammarling, S. and Duff, I. S. 1990. A
set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math.
Soft. 16, 1–17.

Dowell, D. C., Zhang, F., Wicker, L. J., Snyder, C. and Crook, N. A.
2004. Wind and thermodynamic retrievals in the 17 May 1981 Arcadia,
Oklahoma, supercell: ensemble Kalman filter experiments. Mon. Wea.
Rev. 132, 1982–2005.

Emanuel, K. A. 1994. Atmospheric Convection. Oxford Univ. Press, New
York.

Hamill, T. M., Whitaker, J. and Snyder, C. 2001. Distance-dependent
filtering of background error covariance estimates in an ensemble
Kalman Filter. Mon. Wea. Rev. 129, 2776–2790.

Houtekamer, P. L. and Mitchell, H. L. 2001. A sequential ensemble
Kalman Filter for atmospheric data assimilation. Mon. Wea. Rev. 129,
123–137.

Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron,
M. and co-authors. 2005. Atmospheric data assimilation with the en-
semble Kalman filter: results with real observations. Mon. Wea. Rev.
133, 604–620.

Hunt, B. R., Kalnay, E., Kostelich, E. J., Ott, E. and Patil, D. J. and co-
authors. 2004. Four-dimensional ensemble Kalman filtering. Tellus
56A, 273–277.

IEEE, 1985. IEEE Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Std. 754-1985. American National Standards Institute.

James, I. N. 1994 Introduction to Circulating Atmospheres. Cambridge
Univ. Press, Cambridge.

Kalnay, E. 2003. Atmospheric Modeling, Data Assimilation, and Pre-
dictability. Cambridge Univ. Press, Cambridge.

Keppenne, C. and Rienecker, H. 2002. Initial testing of a mas-
sively parallel ensemble Kalman filter with the Poseidon isopyc-
nal ocean general circulation model. Mon. Wea. Rev. 130, 2951–
2965.

Lawson, C. L., Hanson, R. J., Kincaid, D. R. and Krogh F. T. 1979. Basic
Linear Algebra Subprograms for FORTRAN usage. ACM Trans. Math.
Soft. 5, 308–323.

Lorenz, E. N. 1996. Predictability: a problem partly solved. In Proc.
Seminar on Predictability, Vol. 1. European Centre for Medium-Range
Weather Forecasts, Shinfield Park, Reading, Berkshire, RG2 9AX,
UK.

Lorenz, E. N. and Emanuel, K. A. 1998. Optimal sites for supplementary
weather observations: simulation with a small model. J. Atmos. Sci.
55, 399–414.

Lynch, P. 2002. The swinging spring: a simple model of atmo-
spheric balance. In: Large-scale Atmosphere–Ocean Dynamics II (eds.
J. Norbury, and I. Roulstone). Cambridge Univ. Press, Cambridge.

Lynch, P. and Huang, P. M. 1992. Initialization of the HIRLAM model
using a digital filter. Mon. Wea. Rev. 120, 1019–1034.

Machenauer, B. 1997. On the dynamics of gravity oscillation in a
shallow-water model, with application to normal mode initialization.
Beitr. Phys. Atmos. 50, 253–251.

Menard, R., Cohn, S. E., Chang, L-P. and Lyster, P. M. 2000. Assimilation
of stratospheric chemical tracer observations using a Kalman Filter.
Part I: Formulation. Mon. Wea. Rev. 128, 2654–2670.

Oczkowski, M., Szunyogh, I., Patil, D. J., and Zimin, A. V. 2005. Mech-
anisms for the development of locally low dimensional atmospheric
dynamics. J. Atmos. Sci. 65, 1135–1156.

Ott, E., Hunt, B. H., Szunyogh, I., Corazza, M., Kalnay, E.
and co-authors. 2002. Exploiting local low dimensionality of
the atmospheric dynamics for efficient Kalman filtering. Preprint
(physics/0203058).

Ott, E., Hunt, B. H., Szunyogh, I., Zimin, A. V., Kostelich, E. J. and co-
authors. 2004. A local ensemble Kalman filter for atmospheric data
assimilation. Tellus 56A, 415–428.

Pan, H-L. and Wu, W-S. 1995. Implementing a Mass Flux Convec-
tion Package for the NMC Medium-Range Forecast model. NMC Of-
fice Note 409. Available from NCEP, 5200 Auth Road, Washington,
20233.

Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A. and Ott, E. 2001.
Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett.
86, 5878–5881.

Snyder, C. and Zhang, F. 2003. Assimilation of simulated Doppler radar
observations with an ensemble Kalman filter. Mon. Wea. Rev. 131,
1663–1677.

Szunyogh, I., and Toth, Z. 2002. The effect of increased horizontal reso-
lution on the NCEP global ensemble mean forecasts. Mon. Wea. Rev.
130, 1125–1143.

Tellus 57A (2005), 4



LOCAL ENSEMBLE KALMAN FILTER 545

Tippett, M. K., Anderson, J. L., Bishop, C. H., Hammill, T. M. and
Whitaker, J. S. 2002. Ensemble square-root filters. Mon. Wea. Rev.
131, 1485–1490.

Whitaker, J. S. and Hamill, T. H. 2002. Ensemble data assimila-
tion without perturbed observations. Mon. Wea. Rev. 130, 1913–
1924.

Whitaker, J. S., Compo, G. P., Wei, X. and Hamill, T. H. 2004. Reanalysis
without radiosondes using ensemble data assimilation. Mon. Wea. Rev.
132, 1190–1200.

Zhang, F., Snyder, C. and Sun, J. 2004. Impacts of initial estimate and
observation availability on convective-scale dataassimilation with an
ensemble Kalman filter. Mon. Wea. Rev. 132, 1238–1253.

Tellus 57A (2005), 4


