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ABSTRACT
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal in part because of high compu-
tational cost of evolving the error covariance for both linear and non-linear systems (in this case, the extended Kalman
filter). Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local
covariance information. We demonstrate the compression characteristics by implementing a wavelet approximation
scheme on the assimilation of the one-dimensional Burgers’ equation. The discrete linearized equations (tangent linear
model) and analysis covariance are projected onto a wavelet basis and truncated to just 6% of the coefficients. A nearly
optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors
due to covariance truncation.

1. Introduction

Data Assimilation is in general the estimation of the state
of a system, including state variables and model parameters,
achieved through the combination of observations and a physi-
cal/dynamical model of the system. Most data assimilation sys-
tems use Bayesian estimation theory to obtain an optimal es-
timate of the state. Achieving this optimal estimate requires
the minimization of a cost function which in turn requires a
statistical knowledge of the forecast and observation errors. In
schemes where the error statistics are not evolved in time errors
are generally assumed homogeneous and isotropic, in spite of
the numerous physical sources of inhomogeneity (e.g. fronts,
Desroziers and Lafore, 1993). In the Kalman filter, the forecast
errors consist of propagated initial errors and errors created by
the model (which are in turn propagated forward). Error statistics
are also altered by the observation network, which in reality is
non-uniform and temporally changing. Localized features like
fronts affect the error covariance to the extent that the compu-
tational grid can resolve them. Thus the propagated error fields
produced by the Kalman filter contain the inhomogeneities which
represent both the physical and data driven variations in accu-
racy. However, propagation of forecast errors is perhaps one of
the most computationally expensive component of a data assim-
ilation system. Approximation of the propagation step therefore
has become an important area of investigation. It can also be
argued that because so little is known about error covariances to
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begin with, it is meaningless to try to evolve them. However, as
methods to estimate error statistics improve, covariance evolu-
tion will become more important (Dee, 1995).

Numerous techniques which approximate the forecast errors
and their propagation have been proposed and tested. The goal of
the approximation is to represent the error covariance with fewer
degrees of freedom while retaining the most significant part of the
forecast errors. The many approximation schemes differ in what
part is retained (and therefore also differ as to which part of the
error covariance is assumed to be the most significant). These
include those that evolve just the error variance (Dee, 1991),
SVD and eigen-decomposition (Cohn and Todling, 1996; Tip-
pet et al., 2000), which retain either the leading singular values
or eigenmodes, and flow-dependent covariances (Riishøjgaard,
1998) that assume a correlation between the state forecast and
its error covariance (and therefore retain just this correlated part
of the covariance). The ensemble Kalman filter (Evensen, 1994;
Houtekamer and Mitchell, 1998) evolves error statistics using an
ensemble of forecasts rather than applying the dynamical model
(or its tangent linear model) to the full error covariance. In this
way, a subspace estimate of the error covariance is evolved by the
full dynamical system, avoiding any concerns about truncation
of dynamics. Error subspace estimation (ESSE) (Lermusiaux
and Robinson, 1999), retains the “dominant” eigenmodes sta-
tistical properties of an ensemble forecast. Farrell and Ioannou
(2001; 2002) adapted the “balanced truncation” method from
engineering control theory (Moore, 1981), which retains both
leading terms in both the covariance and the dynamics in terms
of Hankel singular values.
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Wavelet representation has been studied as an alternative ap-
proach to covariance approximation (Chin and Mariano, 1994;
Chin et al., 1999; Tangborn and Zhang, 2000). Chin and Mariano
used an orthonormal wavelet transform to approximate the error
covariance for the Kalman filtering of linearized shallow water
equations. Tangborn and Zhang applied wavelet approximation
to the linear conduction diffusion equation. Both of these showed
that accurate representation of error covariances for linear dy-
namics could be achieved using a small fraction of the wavelet
coefficients.

In the present work, we apply the wavelet approxima-
tion scheme to a more realistic non-linear system, the one-
dimensional Burger’s equation. We focus in particular on the
scale features of error covariances and how they influence the
success of the wavelet approximation for a non-linear dynamical
system. Evolution of error covariance by a Tangent Linear Model
(TLM) in terms of wavelet expansion coefficients, requires the
same truncation of the TLM coefficients as for the error covari-
ance coefficients. This could potentially cause a loss of some of
the growing coefficients which become important in later stages
of the assimilation. Therefore we investigate the impact of both
error covariance and propagator truncation.

The paper is organized in the following way: In Section 2
we discuss representation of the covariance dynamics in wavelet
space, and its implications for reducing the order of the sys-
tem. Section 3 describes the extended Kalman filter (EKF) for
Burger’s equation and Section 4 presents the EKF with error
covariances propagated in wavelet space. Results for two differ-
ent observation networks are given in Section 5 followed by the
conclusions in Section 6.

2. Representation of linear error covariance
propagation in wavelet space

The accuracy and efficiency of covariance propagation depends
on the approximation of the linearized model dynamics (which
propagates the covariance) and on the approximation of the error
covariance itself. Error covariance propagation in a non-linear
system is carried out by the TLM, so we only need consider a
linear system here. This will be combined with the non-linear
state evolution in the next section. As an example of linear prop-
agation, consider the solution to a linear convection/diffusion
type problem by a finite difference method with implicit time-
stepping. The system will have the form

Auf
k+1 = Buf

k, (1)

where uf
k is the state of the system at time tk and A and B are

matrix representations of the discretization (See Appendix B for
more details on a typical discretization). A is generally invertible
when boundary conditions are properly imposed, and we can
define the propagator as Ψ = A−1B so that the system becomes

uf
k+1 = Ψuf

k . (2)

In most NWP models, A has some banded structure, which
is taken advantage of when choosing a solution algorithm. The
actual computation is based on eq. (1) while eq. (2) is a conve-
nient notation for presenting the propagation portion of a data
assimilation system. If we define ut as the true state of the system
then the forecast error covariance is defined as Pf = 〈(ut − uf)
(ut − uf)T〉 and, assuming the model is perfect, the evolution of
Pf can be calculated by

Pf
k+1 = �Pa

kΨ
T . (3)

The numerical algorithm is actually solving for Pf from

APf
k+1AT = BPa

kBT , (4)

so we analyze the wavelet representation of the matrix A.
The particular wavelet transform used in this work comes from

the family of compactly supported orthonormal wavelets intro-
duced by Daubechies (1988). Our approach involves starting
with the discretized equations from another numerical scheme
(e.g. finite differences) and projecting them onto a wavelet ba-
sis (Tangborn and Zhang, 2000). We have not considered other
wavelets because our focus is on the algorithm itself. As al-
gorithms to approximate error covariance from the continuous
equations are developed, issues related to spherical geometry
and edge effects will become more important. Basis functions
suitable for the two-dimensional sphere have been developed by
Gottelmann (1999), for example, and may provide a solution to
these problems.

We represent the discrete wavelet transform of a vector b by
the n × n matrix, W, so that

b̂ = Wb. (5)

The matrix W need not be formed explicitly, and it consists
of a sequence of linear operations on the elements of the vec-
tor. Details of on discrete wavelet transforms are given in Ap-
pendix A. Projection of the analysis error covariance matrix onto
a wavelet basis requires the same matrix operations on both rows
and columns, which can be written as

P̂ = WPWT . (6)

In order to carry out the covariance propagation, we need to
project the matrices A and B onto the wavelet basis as well:

Â = WAWT , (7)

ÂT = WAT WT , (8)

B̂ = WBWT , (9)

B̂T = WBT WT . (10)

The structure of coefficient matrices Â and b̂ depend on the struc-
tures of the matrices A and B. One might be concerned that the
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sparse banded structure that occurs in finite difference discretiza-
tion of convection-diffusion type problems might be destroyed
by the wavelet transform. Quite fortunately, the reverse occurs:
Most of the entries become very small, so that the matrices can
be made more sparse by applying thresholding to the smallest en-
tries. Ground breaking work by Beylkin et al. (1991) showed that
diagonally dominant matrices have fewer terms with significant
magnitude when projected onto a wavelet basis. This is another
sort of compression since fewer terms are needed to represent the
operator, thereby reducing the operation count. The meaning of
this near diagonalization of the propagator is that there is much
less interaction between the wavelet coefficients representing the
error covariance than there is in physical space. This is a natural
effect of the orthogonality and quasi localizability of the basis.

We can illustrate this on a relatively simple system, the fi-
nite difference approximation to the two- dimensional univariate
convection diffusion equation. The discretization of this equa-
tion on an n × n grid (details are given in Appendix B) results
in a sparse pentadiagonal matrix structure (n2 × n2) for A where
the bandwidth is 2n. Solution of this system generally requires
O(n2) operations. Figure 1 shows a 40 × 40 pentadiagonal ma-
trix (a) and its projection onto the Daub12 wavelet basis (b). In
wavelet space the matrix is no longer pentadiagonal, but rather
has a still sparse hierarchically banded diagonal form. If we can
truncate the very small off diagonal terms (about 1/100th the
size of the diagonal terms), we then end up with a diagonal sys-
tem. Other options include using solvers created specifically for
solving systems of this form (Beylkin et al., 1991) which require
only O(n) operations. In addition, the covariance and propagator
are truncated from n × n to L × L, so this smaller system can be
solved by an O(L) algorithm.

Truncation of the error covariance will retain the greatest in-
formation if truncation is carried out first on the diagonal el-
ements (and their associated rows and columns) that have the
smallest magnitude. This requires reordering of both the error
covariance matrix and the propagator. The selective truncation
of wavelet coefficients could introduce loss of potentially impor-
tant dynamics from the propagator when the largest coefficients
of the TLM differ from the largest coefficients for the covari-
ance. Farrell and Ioannou (2001; 2002) dealt with this issue by
using a balancing transformation to obtain a representation in
coordinates where the stochastic optimals (preferred structures
of excitation) and the empirical orthogonal functions (EOFs)
coincide. The simple system of Fig. 1 is normal and no special
treatment is needed. However, the TLM of the Burgers’ equation
in the next section is non-normal and dynamical truncation may
result in eventual covariance loss. While there is not yet a general
method for ensuring that the important parts of the dynamics are
retained, from Fig. 1 and the work of Beylkin et al., one can see
that diagonally dominant matrices tend to have fewer important
elements (i.e. with large magnitude) in wavelet space.

By examining the structures of the error covariance propaga-
tion matrices in wavelet space, we have shown that a wavelet

Fig 1. (a) Plot of the 40 × 40 pentadiagonal matrix that results from
the finite difference discretization of the convection/diffusion equations
in two-dimensions. Note that the two off-diagonals are so close to the
main diagonal that they appear as one. (b) Projection of the above
matrix onto Daub12 wavelet basis. The finest scale is represented by
half the indices in each direction.

basis is an efficient representation of the propagator for an im-
plicit convection/diffusion type solver. Wavelet representation
should therefore greatly reduce the computational cost of error
covariance propagation in data assimilation without significant
loss in accuracy. In the next section we apply the wavelet com-
pact representation method to a simple non-linear system using
the extended Kalman filter (EKF).

3. The extended Kalman filter
for Burgers’ equation

We have chosen the one-dimensional Burgers’ equation to
demonstrate the wavelet approximation scheme for several rea-
sons. Solutions to this non-linear equation tend to contain sharp
frontal features (particularly when small viscosity is used). Lo-
calized structures of this sort are generally difficult to approx-
imate by some traditional expansions (i.e. spectral, eigende-
composition). For details of solutions to Burgers’ equation, see
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Benton and Platzman (1972), and for Kalman filtering of Burg-
ers’ equation, see Ménard (1994). We wish to compare the suc-
cess of the assimilation scheme with the full extended Kalman
filter. Burgers’ equation with a viscosity term, ν, is used as the
dynamics of interest, i.e.

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (11)

with periodic boundary conditions:

u(0, t) = u(1, t);

and initial conditions:

u(x, 0) = f (x).

Discretization is carried out using a second order centered dif-
ferencing scheme in space. Temporal discretization is the im-
plicit Crank–Nicolson scheme for viscous terms and the explicit
Adams–Bashforth scheme for advective terms. Details of the
discretization are given in Appendix C. The resulting equations
can be written in matrix-vector notation as

Auk+1 = B(uk). (12)

The n × n matrix A is constant while B is state dependent
because of non-linearity.

The full extended Kalman filter, with analysis carried out every
m timesteps, consists of the following steps:

update forecast:

uf
k+m = Ψm

(
ua

k

)
(13)

Ψm = Ψm represents m applications of the non-linear operator.
Update true state (as a substitute for a real physical process to
observe)

ut
k+m = Ψ

(· · · {Ψ [
Ψ

(
ut

k

) + wk

] + wk+1

} · · ·) + wk+m,

(14)

by applying the Ψ operator m times. with the Gaussian dis-
tributed random noise vectors, wk, wk+1, etc, which act as model
error. An observation process is defined by

uo = Hut + wo (15)

where where uo is the observed value, H is the observation ma-
trix, and wo is the observational error, which is also Gaussian
distributed.

Update forecast covariance using the TLM of Ψ

Pf
k+m = ΨTLM

m Pa
k(ΨTLM)T

m + Qm . (16)

Calculate Kalman gain:

Kk+m = Pf
k+mHT

(
HPf

k+mHT + Rk+m

)−1
. (17)

Update analysis variable

ua
k+m = uf

k+m + Kk+m

(
uo

k+m − Huf
k+m

)
. (18)

Update analysis covariance

Pa
k+m = (I − Kk+mH)Pf

k+m, (19)

where Pf is the forecast covariance matrix, Pa is the analysis
covariance matrix, Q is the model error covariance and R is the
observational error covariance. K is the Kalman gain matrix.

The operation count for the covariance propagation step (16)
is O(n2) (where n is the number of grid points). If the number
of observations at each analysis time is significantly less than n,
then equation (16) is the most computationally intensive step in
the assimilation system. The next section outlines a scheme for
approximating the error covariance propagation by a truncated
wavelet expansion.

4. A Wavelet approximation to the EKF

The wavelet approximation scheme involves projecting both the
tangent linear propagator ΨTLM and the analysis covariance Pa

onto the wavelet basis and retaining L wavelet coefficients, where
L � n. The error covariance propagation is then carried out in the
small space of the wavelet coefficients. We repeat the Kalman
filter algorithm here with the wavelet space approximation of the
error covariance and propagator. The state update equation for
uf and ut are carried out in physical space as

uf
k+m = Ψmua

k (20)

ut
k+m = Ψm

{· · ·Ψm

[
Ψm

(
ut

k

) + wk

] · · ·} + wk+m

(21)

The projection of the analysis error covariance onto a wavelet
basis follows from eq. (6):

P̂a
k = WT Pa

kW (22)

and the projection of the error covariance propagator is:

�̂TLM = WT ΨTLMW. (23)

The important question here is how to decide which part of �̂

and P̂a
k to retain. Simply using the first L terms is equivalent to

removing all small-scales represented by the remaining coeffi-
cients. In the case of Burgers’ equation, small-scale features are
particularly significant as viscosity decreases. In a steep frontal
system, forecast errors tend to be large and very localized be-
cause any velocity (or dispersion) errors are amplified. It is also
important that the resulting error forecast covariance be posi-
tive definite. Any truncation of the wavelet space representation
of P̂a is carried out on entire rows and columns, rather than on
individual matrix entries.

The matrix equation (16) can be projected onto the wavelet
basis following eqs. (4)–(10), and therefore can be written as

P̂f
k+m = (�̂m)

(
P̂a

k

) (
�̂T

m

) + (Q̂m). (24)
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Table 1. Operation count

Ref. Equation Flops

20 uf
k+m = Ψmua

k O(n)
22 P̂a

k = WT Pa
kW O(n2)

23 �̂TLM = WT ΨTLMW. O(n2)
25 (P̂f

k+m )L = (�̂m )L (P̂a
k )L (�̂T

m )L + (Q̂m )L . O(L2)
26 Pf

k+m = WP̂f
k+mWT O(n2)

27 Kk+m = Pf
k+mHT (HPf

k+mHT + Rk+m)−1 O(nM)
28 ua

k+m = uf
k+m + Kk+m(uo

k+m − H ua
k+m) O(nM)

29 Pa
k+m = (I − Kk+mH)Pf

k+m O(nM2)

In order to retain the most important components of the co-
variance, the rows and columns of P̂a are reordered using the
magnitude of the main diagonal as the ordering criterion. Note
that in wavelet space, this diagonal term contains information
on both the variance and correlation fields. Simultaneously, we
must reorder the covariance propagator �̂TLM and its transpose
as well.

After reordering, the covariance propagation equations are
truncated to L terms and covariance propagation is carried out
in wavelet space:(

P̂f
k+m

)
L

= (�̂m)L

(
P̂a

k

)
L

(
�̂T

m

)
L

+ (Q̂m)L . (25)

The forecast error covariance is transformed back to physical
space:

Pf
k+m = WP̂f

k+mWT , (26)

and the Kalman gain is computed in physical space:

Kk+m = Pf
k+mHT

(
HPf

k+mHT + Rk+m

)−1
. (27)

The analysis is updated as in eq. (18):

ua
k+m = uf

k+m + Kk+m

(
uo

k+m − Huf
k+m

)
, (28)

and the analysis covariance is also updated in physical space:

Pa
k+m = (I − Kk+mH)Pf

k+m . (29)

The operation count of this scheme is summarized in Table 1,
where the significant savings are shown to be in the computation
of the forecast error covariance [eq. (25)], which is reduced from
n2 to L2 for the one-dimensional Burgers’ equation. The added
expenses of transforming error covariance to and from wavelet
space is required only at analysis times. The reduction in com-
putational cost will depend on the number of timesteps between
analysis times, kanal, and the change in computational expense
would then be

O
[
kanal × (n2 − L2) − n2

]
per analysis time. If L � n then the saving is

O
[
(kanal − 1) × n2

]

5. Assimilation experiments

We have carried out assimilation experiments for each of four
wavelet expansion sizes, L = 4, 8, 16 and 128 coefficients. For
each case, 15 twin experiments are run in order to obtain mean-
ingful statistics of the assimilations. The total number of grid
points is n = 128 so that the full covariance evolution is in-
cluded in the experiments. Each assimilation differs in initial
condition and model error perturbations, but all have the same
error statistics. We assume that both the initial, model error and
observation statistics are known perfectly.

The full (untruncated) and approximate EKF are compared
for Burgers’ equation on the domain

0 ≤ x ≤ 1

using initial conditions on u

uo(x) = sin(2πx) x ≤ 0.1 (30)

uo(x) = 0, 0.1 ≤ x ≤ 1.0 (31)
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Fig 2. (a) Initial value of u(x, t), (b) final value of ut (x, t). The peak
has moved to the right and the stochastic component is the result of the
model error term added to eq. (21).
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and run parameters: δ t = 0.01, timestep for the discretization; m
=40, number of timesteps between analyses; andν =0.005, fluid
kinematic viscosity. The model error and observational error
covariances have correlation lengths of Lc = 0.02 and variance of
0.0001. The simulations ran for 360 timesteps with observations
taken every 40 timesteps. In the experiments, we separate our
analyses with respect to error covariance and propagator trun-
cation.

0 50 100 150 200 250 300 350 400
0.12

0.14

0.16

0.18

0.2

0.22

0.24

 timestep

 r
m

s 
er

ro
r

L=128
L=16 
L=8  
L=4  

Fig 3. Ensemble mean RMS error for the four assimilation
experiments of the one-dimensional Burgers’ equation using the
uniform 42 observation network (UO). The wavelet expansions have
sizes L = 128 (thick solid line), L = 16 (dash–dot), L = 8 (thin solid)
and L = 4 (dotted). The assimilations that result from L = 8, 16
approximations show only a slight increase in RMS error, while the L
= 4 case shows a more noticeable increase.

0 50 100 150 200 250 300 350 400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 timesteps

 r
m

s 
er

ro
r

L=128
L=16 
L=8  
L=4  

Fig 4. Ensemble mean RMS error for the different four experiments
of the one-dimensional Burgers’ equation using the non-uniform 80
observation network (NUO). The wavelet expansions have sizes L =
128 (thick solid line), L = 16 (dash–dot), L = 8 (thin solid), and L = 4
(dotted) for each set of 15 twin experiments. The 16 coefficient
expansion experiment follows the full system closely for the entire time
period, while the eight coefficient experiments show significantly
larger errors. The L = 4 system shows filter divergence due to errors in
the correlation field.

5.1. Effect of truncated error covariance

The important components of error covariance that need to be
maintained are the error variance and the correlation length. The
error variance determines the relative weight given to the forecast
and observations, while the correlation length determines the
spread of the impact of the observations. The effect that the
accuracy of these two components has on the assimilation will
depend on the nature of the observation network. By examining
whether the analysis increment, ua −uf , is spreading information
from the observations into data void regions where their impact
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Fig 5. Forecast error variance obtained from the diagonal of Pf for the
uniformly distributed 42 observation experiment just before the second
analysis time. The expansions are L = 128 (thick solid line), L = 16
(dash–dot), L = 8 (thin solid) and L = 4 (dotted). The error variances
are almost identical to the NUO experiments at this point in the
assimilation.
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Fig 6. Forecast error variance obtained from the diagonal of Pf for the
non-uniformly distributed 80 observation experiment (NUO) just
before the second analysis time. The expansion sizes are L = 128 (thick
solid line), L = 16 (dash–dot), L = 8 (thin solid) and L = 4 (dotted). All
of the approximations lose some variance information, but only the L =
4 case does not resolve the variance peak occurring around x = 0.3.
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may be greater, one can determine the effect of truncation on
error variance and particularly on correlation length.

In the first set of experiments the observations are uniformly
spaced (henceforth called the UO experiment) and are made at
every third grid point (nobs = 42). The second set of experiments
the observations are non-uniformly spaced (called UO experi-
ments), with observations at every grid point for 0.38 ≤ x ≤ 1
and none elsewhere (nobs = 80).

The initial uo (x) field used in both sets of experiments, from
eqs. (30) and (31), is shown in Fig. 2(a). Advection will cause
the spike in u(x) to move to the right, while viscosity will result
in a decay in the peak. The non-linearity of Burgers’ equation
maintains a steep front on the right side of the peak. Figure 2(b)
shows a single realization of the true state ut at a later time. The
initial spike has shifted to the right and decreased in magnitude,
while the stochastic component is due to the addition of the
random noise vector in eq. (21).

The ensemble mean of the RMS errors (u − ut) for the UO
experiments using each of the wavelet expansion sizes is shown
in Fig. 3. experiments. Reductions of 87% (L = 16) and 94%
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Fig 7. Forecast error correlations extracted from Pf for the UO (uniform observing network) experiments just before the second analysis time, for
L = 128, 16, 8 and 4.

(L = 8) in the number of coefficients do not increase the RMS
errors, and even when L = 4 (97% reduction), the RMS error
increases only about 5%.

Figure 4 shows the ensemble mean of the RMS errors for the
NUO experiments. Here the errors in u due to approximations
in the error covariance field are substantially larger. While the
L = 16 case has nearly identical RMS error to the full co-
variance evolution case, further reduction to L = 8 increases
the error by about 50% and the L = 4 case results in filter
divergence.

In order to understand how approximating the error covari-
ance by truncating its wavelet expansion [eq. (25)] affects the
analysis errors of Figs. 3 and 4, we need to consider representa-
tion errors in the error covariance itself. Figures 5 and 6 show the
diagonal of the forecast covariance matrix, Pf, (a prediction of
the forecast error variance) after being propagated for one analy-
sis interval for the UO and NUO experiments, respectively. The
two experiments have remarkably similar error variances, and
therefore this can not explain the differences in the forecasts. In
both cases the approximate error variances have some loss that
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increase as more coefficients are truncated. More significantly,
both the L = 8 and L = 16 cases mostly retain the peak in error
variance around x = 0.25 that is associated with the frontal struc-
ture in u. The accurate approximation of the variance spike in the
observation void region appears to be one important component
of the covariance approximation.

We consider error correlations to help explain the difference in
the relative success of the two observation networks. The forecast
error correlation, Cf is extracted from the covariance fields using

C f
i, j = P f

i, j

σiσ j
(32)

where Cf
i,j is the (i, j) entry in Cf and σ i, σ j are the forecast

error standard deviations at the ith and jth grid points. Figures 7
and 8 are the forecast error correlations just after propagation,
for NUO and UO experiments, with coefficient truncations of
L = 128, L = 16, L = 8 and L = 4. Both experiments show an
increase in correlation length as L is reduced. This is the result of
the elimination of some of the smaller-scale wavelets which are
required to represent the short correlation length structure. Be-
cause the correlations in Figs. 7 and 8 are so similar, they do not
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Fig 8. Forecast error correlations extracted from Pf for the NUO (non-uniform observing network) experiments, just before the second analysis
time, for L = 128, 16, 8 and 4.

explain the differences between the analyses of the UO and NUO
experiments. To understand this we need to examine how the in-
crease in correlation length affects the Kalman gain in eq. (27).
The Kalman gain represents both the relative weight of the fore-
cast and observations and the spreading of the increments due to
the observations. When the correlation length scale is overesti-
mated, as it is in the L = 4 truncation for both experiments, the
effect of observations will be spread too far. In the UO experi-
ments, the impact of incorrect correlation lengths does not cause
filter divergence because there are nearby observations which
act to constrain any errors. In the NUO experiments, the large
data void region contains significant analysis increments from
distant observations because the correlations are too large. Fig-
ure 9 shows the difference between the Kalman gain for full error
covariance propagation and the Kalman gain at different els of
truncation. In the NUO experiments, (a–c), there is a significant
difference between the Kalman gains for the full and truncated
systems. As L is reduced from 16 to 4, the difference can be seen
to stretch across the entire data void (where off-diagonal values
are non-zero). From the UO experiments we have plotted the
difference between the full system Kalman gain and the L = 4
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case (d), and see there is no significant influence from distant
observations. Thus, severe truncation of the wavelet expansion
is found to affect the assimilation when there are large regions
without observations. With a uniformly distributed observation
network, the RMS errors are significantly lower, even though
only about half the number of observations are used.

Another measure of the information contained in the wavelet
expansions is the energy retained in the approximated covariance
matrices. We define the fraction of “energy” in a reconstruction
as

EL

Etotal
=

(∑L
k=1(ûk)2∑n
k=1(ûk)2

)1/2

. (33)

Fig 9. contour plots of the difference between the Kalman gain for the full and approximated error covariances (K128 − KL) where L = 16 (a), L =
8 (b) and L = 4 (c) using the non-uniform observing network (NUO). The uniform observing network (UO) is used in (d) for the case L = 4.

This comparison is made after one propagation interval and just
before the first analysis time, so that the observation network
has no impact and it is valid for either observation network.
The 4-, 8-and 16-term expansions represent 3, 6 and 12% of
the coefficients in one dimension (or about 0.1, 0.4 and 1.6% if
extended to two dimensions). The energy retained in each case is
found to be [by eq. (33)] 54, 72 and 81%, respectively. Therefore,
in our one-dimensional Burgers’ equation assimilation, we need
to retain about 74% of the energy by using 6% of the coefficients
in order to achieve assimilation results close to the full system
for the uniform observation network, but need 81% of the energy
using 12% of the coefficients for the non-uniform observation
network.
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Fig 10. Difference between between full and partial covariance matrix
diagonals in wavelet wavelet space. The Diagonal terms of
(P̂ f)128 − (P̂ f)16 is represented by the thin solid line, while the thick
solid line is (P̂ f)128 − (P̂ f)8, and the dash–dot line is (P̂ f)128 − (P̂ f)4.

5.2. Effect of truncated propagator dynamics

We next consider whether the loss of accuracy is due to the trun-
cation of the covariance itself or to the truncation of the propa-
gator. Figure 10 shows the difference between the full and trun-
cated wavelet representation along the main diagonal (P̂f − P̂f

L )
for the cases L = 8, 16. For L = 16, the difference in the di-
agonal are very small up to (and including) the 16th and then
become large. This jump at the 17th coefficient is due entirely to
the truncation of the covariance, and the propagator truncation
has no impact. For the L = 8 case, we see that the differences
in the first eight coefficients are on the same order as the larger
coefficients, indicating that propagation errors have become im-
portant. When the expansion is truncated at four coefficients, the
propagator truncation errors become more important than co-
variance truncation errors, since the 4th coefficient difference is
the largest. Thus we see that it is only when the system becomes
most severely truncated that the errors incurred by truncating the
dynamics Ψ dominate. This confirms the qualitative argument
made about the reduction of significant modes in the projection of
Fig. 1(b).

Finally, we return to the question of the impact of truncation
of the TLM on the dynamics. While the TLM used here for
Burgers’ equation is non-normal, the coefficient ordering has
been such that, except for the first eight terms, the coefficient
magnitudes decrease monotonically. Thus, as long as the first
few coarsest scales are retained (up to j = 3 in this case), the
remaining decay exponentially. In this TLM, wavelet represen-
tation results in a nearly diagonal matrix with entries that decay
rapidly towards zero as the coefficient index increases, as shown
in Fig. 11. Thus truncation of finer scales past some cutoff will not
result in a loss of the most significant dynamics in this particular
case.

Fig 11. Projection of discretized tangent linear model onto wavelet
basis. The wavelet representation of the dynamics is nearly diagonal
and shows a exponential decay in diagonal elements with increasing
scale j.

6. Conclusions

We have developed a reduced rank extended Kalman filter which
uses truncated wavelet expansions to represent error covariances
and covariance dynamics. For Burgers’ equation assimilation,
we demonstrate that the representation is accurate enough to
obtain nearly optimal assimilation results using an extended
Kalman filter when about 6% of the coefficients and 74% of
the energy are retained with a uniform observation network. The
assimilation results in sharply higher RMS errors when the num-
ber of retained coefficients is dropped below this level (3% of
coefficients). At this point the forecast error covariance matrix
does not resolve the spike in variance occurring at the front and
results in a correlation length that is too long. The effect of errors
in the correlation length scale become more pronounced when
the observation network is non-uniform. In this case, when the
correlation length becomes to long, analysis increments are in-
correctly spread into data void regions, generating larger errors.
Significant loss of the dynamics is seen for the most severe trun-
cation (L = 4). The important conclusion from these results is
that these important covariance characteristics can be attained
with just 6% of the coefficients resulting in a near optimal as-
similation. Better results can be achieved when the observation
network is uniform.

The extension of these techniques to global three-dimensional
models will naturally involve substantial further work. For exam-
ple, the task of storing the entire error covariance field becomes
unwieldy at these scales. Existing schemes that store error covari-
ances in spectral (Parish and Derber, 1992) and physical (Cohn
et al., 1998) space calculate the covariances only when and where
they are needed. This approach can easily be adapted to wavelet
representation because of their inherent localization in space.
Thus the wavelet transform need not be carried out everywhere
at one time, but in spatially localized pieces that will access only
a fraction of the stored coefficients at a given time. This contrasts
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sharply with existing spectral methods in which every coefficient
is needed to calculate the error covariance in some sub-region.

7. Acknowledgments

I thank Steve Cohn for his encouragement during the course
of this work, and Ricardo Todling and Richard Menard for their
comments on an early version of the manuscript. The anonymous
reviewers a careful reading of the paper have helped to improve
it greatly.

8. Appendices

A. Wavelet transforms

Wavelets are sets of basis functions with local support. The
Daubechies family of wavelets are generated from scaling func-
tions which satisfy the recursion relationship

φ(x) =
∑

k

ckφ(2x − k), (A.1)

where the choice of filter coefficients ck determines the properties
of the resulting scaling function and wavelet. A small number
of non-zero ck will give rise to more localized wavelets and a
larger number of ck will produce smoother (i.e. continuous higher
derivatives) wavelets. The basic Wavelet function, ψ , for a given
set of filter coefficients can be derived from scaling functions by
taking differences

ψ(x) =
∑

k

(−1)kc1−kφ(2x − k). (A.2)

The representations of different scales and locations are then
obtained by dilating and translating ψ(x)

ψ j,k(x) = 2 j/2ψ(2 j x − k), (A.3)

where j refers to dilation (scale) and k refers to translation (lo-
cation).

The pyramidal wavelet transform matrix (Mallat, 1989) is con-
structed from the filter coefficients which acts on a vector as a
series of “averages” and “differences” differences at increasingly
coarser scales. For example, given a vector b of length n = 2J , the
first operation in the decomposition of b into its multi-resolution
representation would be to calculate the “averages” at the next
coarser scale (J − 1), which is followed by a series of differences

that determine the wavelet coefficients, b̂
J−1,k

. This process is
continued through increasingly coarse scales, J − 2, J − 3,
. . . , j, . . . , 1, 0, until all of the coefficients are determined. The
operation count for this algorithm is o(n).

We represent this discrete wavelet transform by the matrix W
(which is not actually constructed), so that the wavelet transform
of a one-dimensional (discretized) data set, b, is

b̂ = Wb (A.4)

where b̂ is the vector of wavelet coefficients of b. The the gridded
values in one dimension are then represented by the expansion

b(xi ) =
∑

j

∑
k

b̂ j,kψ j,k(xi ). (A.5)

For a two-dimensional data set, P for example, the wavelet
transform must be applied to both the rows and columns, so we
have

P̂ = WPWT (A.6)

where P̂ is the matrix of wavelet coefficients of P. Then the
gridded values in two-dimensions are represented by the tensor
product basis

P(xi , yi ′ ) =
∑

j

∑
k

∑
j ′

∑
k′

P̂i, j,i ′,k′ψ j,k(xi )ψ j ′,k′ (yi ′ ).

(A.7)

Interested readers are directed to either short (Press et al., 1992)
or longer (Strang and Nguyen, 1996) introductions to wavelet
transforms.

B. Discretization of the convection–diffusion equation

An example of discretization of the two-dimensional
convection–diffusion is centered differencing in space and im-
plicit Euler-backward in time. The linear differential equation
is

∂C

∂t
+ U (x, y)

∂C

∂x
+ V (x, y)

∂C

∂ y
= α

(
∂2C

∂x2
+ ∂2C

∂2 y2

)
,

(B.1)

where C(x, y) is a two-dimensional conserved scaler field, U(x, y)
and V(x, y) are known velocity components and α is a diffusivity
coefficient. The second order spatial approximations are

(
∂C

∂x

)(i, j)

= C (i+1, j) − C (i−1, j)

2�x
+ o(�x2), (B.2)

(
∂C

∂ y

)(i, j)

= C (i, j+1) − C (i, j−1)

2�y
+ o(�y2), (B.3)

(
∂2C

∂x2

)(i, j)

= C (i+1, j) − 2C (i, j) + C (i−1, j)

2�x2
+ o(�x2),

(B.4)

(
∂2C

∂ y2

)(i, j)

= C (i, j+1) − 2C (i, j) + C (i, j−1)

2�y2
+ o(�y2),

(B.5)

where �x and �y are the x and y direction grid spacing, (i, j) are
their node numbers on a uniform grid. The first order implicit
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time stepping is

(
∂C

∂t

)(i, j)

k+1

= C (i, j)
k+1 − C (i, j)

k

�t
+ o(�t), (B.6)

where �t is the timestep size and k is the timestep number.
Inserting eqs. (B.2)–(B.6) into eq. (B.1) and rearranging yields

−
(

�t

2�x
U (i, j) + �tα

2�x2

)
C (i−1, j)

k+1

−
(

�t

2�y
V (i, j) + �tα

2�y2

)
C (i, j−1)

k+1

+
(

1 + �tα

�x2
+ �tα

�y2

)
C (i, j)

k+1

+
(

�t

2�x
U (i, j) − �tα

2�x2

)
C (i+1, j)

k+1

+
(

�t

2�y
V (i, j) − �t

2�y
V (i, j) − �tα

2�x2

)
C (i, j+1)

k+1 = C (i, j)
k .

(B.7)

Equation (B.7) results in the pentadiagonal matrix from Fig. 1
when the C(i,j) are put into a single column vector form. Since
we are not solving this system we have not defined any boundary
conditions.

C. Discretization of Burgers’ equation

The semi-implicit scheme used to solve the one-dimensional
Burgers’ equation employs centered difference approximation
in x [eqs. (B.2) and (B.4)], Euler backward in time [eq. (B.6)] for
the linear (diffusion) term and second order Adams–Bashforth
for the non-linear term. This results in the discretized equations

− ν�t

�x2
u(i+1)

k+1 +
(

1 + ν�t

�x2

)
ui

k+1 − ν�t

�x2
u(i−1)

k+1

(C.1)

= − �t

2�x
u(i+1)

k +
(

1 − ν�t

�x2

)
ui

k + �t

2�x
u(i−1)

k

(C.2)

where �t is the timestep size, �x is the spatial discretization and
i is the spatial index. In this case, both A and B are tridiagonal
matrices. Periodic boundary conditions will add the equation

u(n)
k+1 = u(1)

k+1 (C.3)

where n is the number of grid points.
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