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ABSTRACT

A four-dimensional variational assimilation (4D-Var) scheme is now widely used by meteorological
centres in a operational way. However, most of these applications do not take account of model error.
Indeed, the classical 4D-Var with imperfect model formulation is unaffordable for current computa-
tional means. This paper presents a low-cost method for dealing with model errors in 4D variational
assimilation. This method can be formally compared to a Kalman filter. This new scheme is tested on
two configurations: first on a Burger equation, which allows one to calibrate the method, and second
on a more relevant shallow-water equations model, both in a twin experiment framework. It is shown
that, compared to classical 4D-Var results, this method provides a noticeable improvement.

1. Introduction

Data assimilation is a wide class of numerical meth-
ods for estimating the state of a system by combining
information from observational data with information
provided by a numerical model. One of the most im-
portant applications of these methods is the best esti-
mation of the state of the atmosphere (or the ocean) at
a given time in order to improve the accuracy of the nu-
merical forecast. In recent years, developments of both
observational means (remote sensing, buoys, tomog-
raphy, etc.) and computing resources have permitted
a wide improvement in data assimilation methods and
their efficiency.

The current operational method in meteorological
centres is called 4D-Var (four-dimensional variational
data assimilation). It consists of assimilating all the
observational and model information from the previ-
ous time sequence. The problem is formulated as an
optimal control problem in which the criteria mea-
sure the misfit between the model predictions and the
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observations of the system state. One of the main
assumptions of 4D-Var is that the model describes
exactly the system behaviour. However, in practice
the model equations do not represent the exact evo-
lution of the system, and model errors arise because
of the lack of resolution, inaccurate representation of
small-scale physics or errors in boundary conditions,
topography or forcing terms.

The next step in 4D-Var development will be to con-
sider that the model is not exact, i.e., for example, to
introduce the model errors correcting term in the con-
trol vector (see Jazwinski, 1970; Derber, 1989; Cohn,
1997). The principle of the complete method is to add
in the control vector, a residual error correcting term
which is added to the model equation at every time
step. Due to the size of this new problem [the dimen-
sion of the state variable (typically 106–107) times the
number of time steps], this approach is unaffordable
for current computational resources. In order to reduce
the cost of model error control, one can propose to
control only several and well chosen directions of the
error (Vidard et al., 2000), or only the time-correlated
part (bias) (Nichols and Griffith, 2000; Derber,
1989).

In this paper we will introduce a new technique
for treating model errors, based on an idea of Zou

Tellus 55A (2003), 1



2 P. A. VIDARD ET AL.

et al. (1992). This method is an extension of nudging
(or Newtonian relaxation), which was the first opera-
tional data assimilation method used in oceanography
(Lyne et al., 1982; Krishnamurti et al., 1991; Lorenc
et al., 1991). It consists of relaxing the model state to-
wards the observations during the assimilation period
by adding a non-physical ‘nudging’ term to the model
equation. The nudging terms are defined as the differ-
ence between the observation and the model solution
weighted by a nudging coefficient.

The nudging can be thought as an approximation of
the Kalman filter (KF): the best nudging coefficients
are those related to a KF in a linear case (see Lorenc,
1986; Lorenc et al., 1991). However, the KF is very
costly in practice (storage and manipulation of N × N
matrices where N is the size of the state vector) com-
pared to the very cheap nudging. Moreover, in order
to be applied, a KF needs simplifications that do not
take into account the whole time period.

In this paper we will use optimal control methods
to estimate both the initial condition (as in 4D-Var)
and the nudging coefficients in order to correct model
errors in a much more efficient way (from the compu-
tational point of view).

First we will recall the equations of 4D-Var and
introduce optimal nudging, and we will show that this
new method and the Kalman filter are equivalent in a
sense to be defined. Section 2 deals with the application
of optimal nudging data assimilation on a very simple
Burger’s equation. Three forms of the nudging matrix
will be tested to determine which compromise between
the size of control and the quality of the results will be
optimal.

Finally we will test this method on a more realis-
tic shallow-water model and compare it with classical
4D-Var data assimilation on the same model. We will
show that for a little extra cost this new method pro-
vides a quite noticeable improvement.

The notations used in this paper are the unified ones
advocated by Ide et al. (1997).

2. Optimal nudging: motivation

The aim of the 4D-Var classical approach of data
assimilation is to try to reduce the misfit between the
observations and the forecast state by controlling the
initial condition of the analysis period.

Given a discretised model M, let x ∈ C ⊂ R
N · xb is

the background state, or first guess of the minimisa-
tion; the evolution of the state can be described as

{
x0 = xb + δx0

xi+1 = M(ti ,ti+1)(xi ).
(1)

The aim of the method is to search for δx0 that min-
imises the following cost function:

J (δx0) =

Jo︷ ︸︸ ︷
1

2

n∑
i=0

〈
R−1

(
Hi (xi ) − yo

i

)
, Hi (xi ) − yo

i

〉

+

Jb︷ ︸︸ ︷
1

2

〈
B−1δx0, δx0

〉
where R is the m × m observational error covariance
matrix and B the n × n background error covariance
matrix, yo

i ∈ R
m is the observation vector at time ti

and Hi is the observation operator that computes the
model equivalent quantities and interpolates them to
the observation location at time ti . The first term of
the cost function (called Jo) represents the misfit we
wish to minimise in an idealised case with true obser-
vations and a model describing exactly the evolution
of the system. However, due to observation errors and
errors induced by the model, this term can not be can-
celled. That is why one introduces the second term
(called Jb) that prevents the solution from being non-
physical (trying to to fit the observations exactly) and
then generating oscillations to retrieve physical equi-
librium. The appropriate equilibrium between the two
terms is provided by the inverse of the error covari-
ance matrices B−1 and R−1, which represent the confi-
dence we have in the background and the observations,
respectively.

Due to the term Jb and to the model errors, the in-
novation residual dk = Hk(xa

k) − yo
k remains non-zero

after the 4D-Var assimilation.
The error sources can be written as:

Prediction (or Forecast) Error:

εf
k = xf

k − xt
k

Observation Error:

εo
k = yo

k − Hk

(
xt

k

)
where xf

k represents the forecast state at time tk and xt
k

the true state.
Then we note that the innovation residual can be

written as:

dk = Hk

(
xf

k

)− yo
k

≈ Hkε
f
k − εo

k (2)
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where

Hk = ∂ Hk

∂x

∣∣∣∣
x=xf

k

is the tangent linear of the observation operator, and
εf is assumed to be negligible with respect to xf.

Equation (2) shows that important information
about model and observation errors remains in this
residual. In the following we will try to use it to im-
prove the 4D-Var assimilation scheme.

Formally, in the case of a completely and directly
observed state an intuitive approach was to modify the
forecast state using a correcting term including the in-
novation residual. In this case, the inverse of the obser-
vation operator H−1 exists and then we could write:

xa
k = xf

k + H−1
k

(
dk − εo

)
.

Among existing data assimilation methods one can
quote the Kalman filter (Kalman, 1960), which pro-
vides an analysed state using the innovation vector to
correct the forecast by

xa
k = xf

k + Kkdk

where K is called the gain matrix and is computed as
follows:

Kk = Pf
kHk

(
HkPf

kHT
k + R

)−1

with Pf the forecast error covariance matrix.

J (δx0, G) = 1

2

n∑
i=0

〈
R−1 Hi (xi ) − yo

i , Hi (xi ) − yo
i

〉 + 1

2

〈
B−1δx0, δx0

〉

+

Jnudg︷ ︸︸ ︷
1

2

n∑
i=1

〈
Q−1

i Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))
, Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))〉 . (4)

It can be pointed out that in the Kalman filter, if
observations are assumed exact (R = 0), we retrieve
the gain matrix as: Kn = H−1

n and εf
n = H−1

n dk .
However, there are two major drawbacks in Kalman

filtering: it requires the manipulation of very large ma-
trices and it needs simplifications that do not take into
account the whole time period.

That is why we try here to estimate an optimal
‘Gain’ matrix using variational methods (4D-Var). The
following extends the method of optimal nudging in-
troduced by Zou et al. (1992), exploring three kinds
of nudging matrices and introducing the smoothed

optimal nudging which avoids the shocks induced by
nudging corrections in the model.

3. Optimal nudging: the method

In this section we introduce the main point of this
paper: the Four-Dimensional Optimal Nudging Data
Assimilation scheme (4D-ON). The computation of
the gradient of the cost function does not require more
tools than for classical 4D-Var, but only a few more
operations and storage.

The aim of nudging methods is to relax the model
states toward the observations by adding a ‘nudging’
term. This term is the misfit between observation
and forecast yo

i+1 − Hi+1(M(ti+1,ti )(xi )) weighted by the
nudging operator Gi . In this part the complete nudging
case is considered, i.e. Gi is a n × m matrix where n is
the dimension of the state vector and m the dimension
of the observation vector. The problem is now how to
estimate Gi .

Let M be a non-linear discretised model describing
the ocean or atmosphere evolution. We focus on the
problem:


x0 = xb + δx0

xi+1 = M(ti+1,ti )(xi ) + Gi+1

× (
yo

i+1 − Hi+1

(
M(ti+1,ti )(xi )

)) (3)

and we wish to minimise the cost function:

Basically we will consider a 4D-Var cost function
where R is the observation error correlation matrix and
B is the background error covariance matrix, plus a reg-
ularisation term Jnudg that prevents G = G1, . . . , Gn

from being too large, where Q is the forecast error co-
variance matrix. This formulation can be related to an
adjoint parameter estimation where G are the model
parameters to be estimated (see Navon, 1998).

Actually, the regularisation term Jnudg comes from
the classical formulation of the cost function of the
4D-Var with imperfect model data assimilation (see
Jazwinski, 1970; Tikhonov and Arsenin, 1977; Cohn,
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1997; Alekseev and Navon, 2001). In this entire formu-
lation of the control of model errors the cost function
is

J (δx0, η1, . . . , ηn)

= 1

2

n∑
i=0

〈
R−1 Hi (xi ) − yo

i , Hi (xi ) − yo
i

〉

+ 1

2

n∑
i=1

〈
Q−1

i ηi , ηi

〉 + 1

2

〈
B−1δx0, δx0

〉
(5)

where ηi is the correcting term at time ti . So ηi has sim-
ply been replaced with the nudging correcting term.

In order to compute the gradient of the cost func-
tion we will use a classical Lagrangian method under
the constraint of eq. (3). Let L, the Lagrangian, being
defined by:

L
(
G, δx0; x∗)
= J (G, δx0) +

n∑
i=1

〈
x∗

i , xi − M(ti ,ti−1)(xi−1)

− Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))〉
x∗ being the Lagrangian multiplier. Computing the par-
tial derivatives

∂L

∂x∗
(
G, v; h∗

x

) = xi − M(ti ,ti−1)(xi−1)

− GT
i

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))
we can first retrieve

∂L

∂x∗ = 0 =⇒ (3).

Moreover,

∂L

∂δx0

(
G, hδx0 , x∗)

=
n∑

i=0

〈
HT

i

(
Hi (xi ) − yo

i

)
, x̂i

〉 + 〈
B−1δx0, hδx0

〉
−

n∑
i=1

〈
MT

(ti ,ti−1)H
T
i GT

i Q−1Gi

×
(

yo
i − Hi

(
M(ti ,ti−1)(xi−1)

))
, x̂i−1

〉
−

n∑
i=1

〈
x∗

i , x̂i

〉 + 〈
MT

(ti ,ti−1)x
∗
i , x̂i−1

〉
−

〈
MT

(ti ,ti−1)H
T
i GT

i x∗
i , x̂i−1

〉
− 〈

x∗
0, hδx0

〉
.

So, if the adjoint state x∗ is defined by:


x∗
n = HT

n R−1
[
Hn(xn) − yo

n

]
x∗

i = (
M(ti+1,ti ) − Gi+1Hi+1M(ti+1,ti )

)T
x∗

i+1

+ HT
i R−1 Hi (xi ) − yo

i − MT
(ti+1,ti )H

T
i+1GT

i+1

× Q−1Gi+1

(
yo

i+1 − Hi+1

(
M(ti+1,ti )(xi )

))
(6)

we obtain

∂L

∂δx0

(
G, hδx0 , x∗) = 〈∇δx0 J, hδx0

〉
i.e. ∇δx0 J = −x∗(0) + B−1δx0; (7)

and finally:

∂L

∂Gi

(
v, hGi , x∗

i

)
= 〈

Q−1Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))
,

hGi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))〉
−〈

x∗
i , hGi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))〉
=〈∇G J, hG〉. (8)

Thus the gradient of the cost function with respect to
Gi can be written:

∇Gi J = Q−1Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))
× (

yo
i − Hi

(
M(ti ,ti−1)(xi−1)

))T

− x∗(t)
(
yo(ti ) − Hi

(
M(ti ,ti−1)(x)i−1

))T
. (9)

Provided the initial condition contribution to the
gradient [eq. (3)] is computed (thanks to one integra-
tion of the direct model and of the adjoint model) the
computation of the nudging contribution of the gra-
dient does not need extra ‘heavy’ computations. In-
deed ∇ JGi is obtained by the product of vectors used
in ∇ Jδx0 (i.e. Gi (yo

i − Hi (M(ti ,ti−1)(xi−1))), (yo
i −

Hi (M(ti ,ti−1)(xi−1)))T and x∗).
It can be proved that this algorithm is formally

equivalent to the Kalman filter (see Appendix A).

4. Basic experiment on a Burger
equation (1D)

In this section we will apply the optimal nudging
data assimilation scheme on a simple one-dimensional
Burger equation. It can be an easy validation of the ON
scheme and will permit us to find an appropriate choice
for the form of Gi .
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Let the model be


∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f

u(0, t) = u(1, t) = 0

u(x, 0) = sin πx

(10)

with x ∈ ]0, 1[, t > 0.
Note that a known analytic exact solution is associ-

ated with a fixed forcing term ( f ). For this experiment
we impose f to be f (x, t) = e−t [πu cos πx + (−1 +
νπ 2) sin πx], and then u = e−t sin πx is an exact
solution of eq. (10).

The 4D-ON is defined by adding the nudging term
into the model equations:


∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f + g[uobs − h(u)]

u(0, t) = u(1, t) = 0

u(x, 0) = sin πx .

(11)

We will focus on a sequence [0,1] split into N + 1
time steps. The same holds for spatial discretisation
of [0,1] in E points. In this experiment N = 5000 and
E = 20.

During this time sequence, we have M observations
located at (xm, tm)m = 1 . . . M .

Therefore we can rewrite our model as:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2

= f +
M∑

m=1

gm

(
uobs

m − um

)
δ(x − xm)δ(t − tm).

In a discrete formulation:

du
dt

(t) + M(u)(t)

= F(t) +
K∑

k=1

Gk

[
uobs

k − H (uk)
]
δ(t − tk)

where H is the observation operator. In this experi-
ment the minimisation is performed by a home-made
conjugate gradient method using the Hessian of J as
a preconditioner. The Hessian–vector product is com-
puted using the second order adjoint of the model (see
Wang et al., 1992; Le Dimet et al., 1998).

We will apply two types of model error simultane-
ously on the forcing term f: a 5% white noise and a
10% correlated noise (bias). The observations are ob-
tained from the model free of error; only one point
over five in space and one time step over 50 will be
retained as observation, and we add a 5% white noise

to these observations. Moreover, we add 20% noise to
the initial condition in order to simulate background
errors, and we set all the control vectors (increment of
initial conditions and nudging coefficients) to 0.

In this experiment the number of time steps N is set
to 5000 and the number of grid points E is set to 20;
therefore the number of observed gridpoints at a given
time step, M, is equal to 5.

Now we will analyse the results of three types of
nudging coefficient matrices:

1. Gk is a full rank E × M matrix, i.e. at each
point the correcting term is a linear combination of all
forecast/observation misfits at the same time. This is
the “dream” case, because each component of the state
vector will be corrected and not only observed ones.
Even if only a very small size problem allows one this
form of Gk , this experiment allows are to compare the
efficiency of this ideal case with simpler forms of the
nudging matrix and to emphasise the fact that the most
is not necessarily the best.

2. Gk is a “pseudo-diagonal” matrix. In this case
the model equations are only corrected at observation
locations and the correction coefficient is different for
each observation.

3. Gk is a scalar coefficient (just varying with
time). It is the same case as previously, but for a fixed
time tk the correction coefficient is the same at every
observation location.

Using one of these three forms of Gk increases the
size of the control vector (in relation to the classical
4D-Var the control size of which is E) by E × M × N ,
M × N and N, respectively.

In Table 1 we compare the level of error RMS and
the computational cost for these three forms of 4D-
ON. The first column shows the “raw” results of the
assimilation and the second one is obtained using a lin-
ear time interpolation of correcting terms as temporal
smoothing and, for G diagonal matrix and scalar coef-
ficients, a convolution product with a gaussian function
λ as spatial smoothing [eq. (12)]:

u(t) = u(t) + Gk

(
uobs

k − H (u(t))
)

if t = tk

u(t) = u(t) +
(

t − tk

tk+1 − tk
Gk+1 + tk+1 − t

tk+1 − tk
λ � (Gk)

×
(

t − tk

tk+1 − tk
uobs

k+1 + tk+1 − t

tk+1 − tk
uobs

k − H (u(t))

)

if tk < t < tk+1

)
. (12)
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Table 1. Norm of the error and CPU time for both raw and smoothed methods
according to the form of G

Raw Interpolated

Form of G Size of control RMS CPU RMS CPU

G is a full matrix E × M × N 45.06 57.80s 38.49 57.69s
G is a diagonal matrix M × N 65.30 6.90s 17.57 7.43s
G is a scalar coefficient N 64.23 9.74s 17.33 3.63s

4D-Var E 73.73 5.82s
Without assimilation 248.21

The level of RMS of error is computed by comparing
the results of the assimilation to the known analytic
solution.

In Table 1 the CPU time is not directly related to
the size of the control due to the different number of
iterations needed for convergence.

As a fair conclusion of this first experiment it can
be noticed that even though all the 4D-ON schemes
provide better results than classical 4D-Var, the com-
plete 4D-ON (Gk full matrix) does not really provide
better results than other alternatives. Even if in the raw
method case the full matrix is slightly more efficient
compared to simpler forms of Gk , the difference does
not justify the huge computational over-cost induced.
(The full matrix control is more than 60 times more
expensive than the scalar control.) Moreover, in the
results shown for interpolated methods the diagonal
matrix and the scalar coefficient provide better results.
This can be explained by the excess degrees of free-
dom that the complete method contains. The simpler
the control vector, the better conditioned the optimi-
sation problem, which leads to a much more efficient
minimisation. Moreover, we can notice that both the
diagonal matrix and the scalar coefficient give almost
the same results (different but indistinguishable on the
graphs), which could indicate that the misfit vector
contains spatial information, i.e. the misfit vector is
itself well equilibrated on the whole grid. (The opti-

1

2

3

4

5
2 4 6 8 10 12 14 16 18 20

Fig. 1. Transpose of the estimated G as a full matrix.

mal nudging coefficient is nearly the same for all the
observed points at a given time.)

Figure 1 shows the shape of one of the Gk as a
full matrix. In this figure the inner contours represent
higher values than outer ones. All the Gk being of the
same shape, with slight amplitude variations, it can
be noticed that the method gives more weight to the
observations located in the centre of the domain.

5. Numerical experiment with a non-linear
shallow water model

5.1. The model

For this test experiment we use a non-linear one-
layer shallow-water model on a square basin with a
flat bottom. (This model is classically used; see for
example Adcroft and Marshall, 1998.)

Even if this model is not a very realistic one, the
non-linearities included in the equation and the size of
the state vector (more than 104) make its complexity
sufficient to be a relevant test case.

Actually, the framework of this experiment is a twin-
experiment one, i.e. the observations do not come from
reality but from the model (with a slight difference
from the model used in assimilation). In this way two
different models are used. The first is used to represent
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the reality; it provides a simulated ‘true’ state evo-
lution, and then using the observation operator (and
possibly white noise) synthetic observations can be
obtained. The second one represents the model (called
a forecast model in the following in contrast to the true
model or the truth evolution). In this way the presence
of model errors is simulated and the evolution of the
(pseudo-) reality is known.

Both evolutions of xtrue/forecast =
[

u
v
h

]
are described

by:


∂t u − ( f + ζ )v + ∂x B = τ

ρ0h
− ru + ν�u

∂t v − ( f + ζ )u + ∂y B = τ

ρ0h
− rv + ν�v

∂t h + ∂x (hu) + ∂y(hv) = 0

(13)

where (u,v) represents the current velocity, h is the
height of the layer, ζ = ∂x v − ∂yu is the relative vor-
ticity, B = g∗h + 1

2 (u2 + v2) is the Bernoulli poten-
tial, g∗ is the reduced gravity, r is the linear friction
coefficient and ν is the viscosity coefficient.

The forcing terms of the models are:

wind: τforecast = τ0
sin 2π [y − (L/4)]

L
Li , and

τtrue = τforecast ×
[
1 + 0.8 × sin

(
2π t

�t × 480

)]

where L is the basin length.
Coriolis factor: f = f0 + βy.

Boundary conditions are:

v = 0 on north–south boundaries and u = 0 on east–
west boundaries

non-slippery boundary conditions.

In this experiment the numerical values are: L =
2000 km, f0 = 0.7×10−4 s−1, β = 2×10−11 m−1 s−1,
ν = 15 m2 s−1 (forecast), ν = 0.9 × 15 m2 s−1 (true),
r = 10−7 s−1 (forecast), r = 0.9 × 10−7 s−1 (true),
ρ0 = 103 kg m−3, g∗ = 0.02 m s−2 and τ0 = 0.015 N
m−2.

For the spatial discretisation a second-order cen-
tred scheme is used on an Arakawa C-grid with �x =
�y = 25, km and for the time discretisation a leap-
frog scheme with a time-step size �t = 30 min and
an Asselin time filter is added in the equations.

The initial condition of our data assimilation win-
dow is provided using a 6 yr spin-up of the forecast
model, whereas true initial states and observations are
computed with a true model spin-up.

5.2. The assimilation

The cost function is defined by eq. (4), but in order
to improve the minimisation efficiency we operate a
change of variable,

v = B−1/2δx0 (14)

where B−1/2 is defined as A = A1/2 AT/2. This precon-
ditioning has two advantages. (i) B−1/2 is the square
root of the Hessian of Jb (and then a very good pre-
conditioner for the minimisation) (Thepaut and Moll,
1990; Yang et al., 1996; Courtier, 1997; Derber and
Bouttier, 1999). (ii) It implies the manipulation of
B1/2 instead of its inverse [actually the inverse of
eq. (14), δx0 = B1/2v, is performed at the beginning
of each iteration in order to retrieve a convenient initial
condition].

Even in this simplified case (and consequently for
more realistic ones) the entire Q and B matrices can
neither be estimated nor stored explicitly because of
their size (B is an N × N matrix where N is the size
of the state vector). We are therefore forced to see Q
and B as operators. Roughly (for more explanation
see Weaver and Courtier, 2001) following Derber and
Bouttier (1999) we can write, for instance:

B = KBuKT

where K is a balance operator that relates one state
variable to the other (here K uses the geostrophic bal-
ance to compute the balanced part of u and v from
h) and Bu is the error covariance matrix for the un-
balanced part of variables and assumed to be a block
diagonal (i.e. the cross-covariances of the unbalanced
part of variables are negligible):

Bu = �BC�B.

Here �B is the diagonal matrix of background error
standard deviation and represents the symmetric ma-
trix of background error correlations for the unbal-
anced part of the state variables. The C operator is
modelled using a diffusion equation (see Weaver and
Courtier, 2001). Therefore the inverse of change of
variable can be written as

δx0 = K�BC1/2v.

The same approach is used to build Q, modifying stan-
dard error deviations (�Q) and possibly the parameters
of the diffusion equation (C).

In the same way, for this more realistic problem
we can not really control the entire G matrices but

Tellus 55A (2003), 1
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Fig. 2. SSH for forecast model (left) and true state (right) at initial time step.

only a few coefficients. However, this implies that the
corrections are only applied on observed locations. In
order to correct this drawback we can pre-multiply the
correcting term by Q1/2; this will smooth the correction
and simplify the computation of the cost function.

Now we can rewrite eq. (19):




x0 = xb + B1/2v

xi+1 = M(ti+1,ti )(xi ) + Q1/2Gi+1

× (
yo

i+1 − Hi+1

(
M(ti+1,ti )(xi )

)) (15)

and the cost function

J (v, G) = 1

2

n∑
i=0

〈
R−1 Hi (xi ) − yo

i , Hi (xi ) − yo
i

〉
+ 1

2

n∑
i=1

〈
Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))
,

Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))〉
+ 1

2
〈v, v〉. (16)

This change of variable modifies the adjoint equations


x∗
n = HT

n R−1
(
Hn(xn) − yo

n

)
x∗

i = (
M(ti+1,ti ) − Q1/2Gi+1Hi+1M(ti+1,ti )

)T
x∗

i+1

+ HT
i R−1 Hi (xi ) − yo

i

) − MT
(ti+1,ti )H

T
i+1GT

i+1

× Gi+1

(
yo

i+1 − Hi+1

(
M(ti+1,ti )(xi )

))
. (17)

The gradients become


∇v J = BT/2x∗
0 + v

∇Gi J = QT/2x∗
i

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))T

+ Gi

(
yo

i − Hi

(
M(ti ,ti−1)(xi−1)

))
×(

yo
i − Hi

(
M(ti ,ti−1)(xi−1)

))T

(18)

Note that this second change of variable cannot
be considered as a good preconditioner because Q1/2

is not the square root of the inverse of the Hessian
of Jnudg. Thus the minimisation efficiency can be
improved by considering Jnudg = 1

2

∑n
i=1〈Q̃−1Gi , Gi 〉

(before the change of variable), where Gi is a state di-
mension vector.

Although the optimisation problem is modified and
the Kalman equivalence (see Appendix A) is lost, the
assimilation provides roughly the same quality of re-
sults compared with the preceding Jnudg, and the num-
ber of needed iterations is highly reduced (about 1/10).

In the following, in both B and Q operators the cor-
relation scales are about 250 km.

The minimisation method used in the following ex-
periment is M1QN3 Quasi-Newton with limited mem-
ory developed at INRIA by Gilbert and Lemarechal,
(1989). Both classical 4D-Var and 4D-ON methods
have been implemented with the PALM modular data
assimilation system. This software package allows a
full modularity by splitting data assimilation algo-
rithms into elementary units (see Appendix B and/or
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Fig. 3. Location of the observations (ground track of satellites).
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Fig. 4. Evolution of the value of the different terms of the cost function.

Piacentini et al., 2000); therefore it has been of a great
help in the construction and the handling of these two
methods.

5.3. Numerical experiment

In this section we will compare the 4D-ON results
with classical 4D-Var ones. In both cases, the control
vectors is set to 0 at the beginning of the assimila-
tion. The assimilation is carried out for 30 d. This
time window represents a relevant time scale of the
ocean model, furthermore the tangent linear hypothe-

sis,1 which ensures the validity of the adjoint computa-
tion of the gradient, is still valid. Following the results
of the Burger experiment we only focus on nudging
coefficient as time-dependant scalar coefficients. The
observations are simulated as satellite tracks (Fig. 3)
with one track every 3 d. This is not a favourable case
for nudging because of the lack of information pro-
vided by the observations; indeed only 500 grid points
are observed, whereas the state vector size is about
20 000. In Fig. 4 values of the different terms of the

1 M(t0,tN )(xb + δx0) = M(t0,tN )(xb) + M(t0,tN )δx0.

Tellus 55A (2003), 1
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Fig. 5. Evolutions of the nudging coefficient according to the number of iterations.

cost function and the initial and the final values of the
gradient are shown. The norm of the gradient decreases
by six orders of magnitude during the minimisation.
We note a rapid decrease in the Jo term of the cost
function during the first few iterations. After six iter-
ations the algorithm has already converged. Figure 5
shows the corresponding evolution of the nudging co-
efficient Gh according to time at several steps of the
minimisation, and confirms the convergence after six
iterations. The 4D-Var (not shown) requires almost the
same number of iterations.
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Smoothed 4D-ON data assimilation

Fig. 6. RMS of the error on the current velocity for smoothed version of the 4D-ON compared to 4D-Var.

Due to the undersampling of the observation, com-
paring the different levels of RMS (Figs. 6–9) (com-
puted thanks to the knowledge of the “true” trajec-
tory), it can be seen that the former version of 4D-ON
(long-dashed line) gives slightly better results com-
pared to 4D-Var (full line) and poor results compared
to smoothed 4D-ON (with the change of variable)
(short-dashed line, Fig. 7). The non-smoothed 4D-ON
corrects the model only on observed locations, there-
fore it is not consistent with the other coordinates, and
then gravity waves can be created to return to a more

Tellus 55A (2003), 1



OPTIMAL NUDGING COEFFICIENTS 11

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

3 days 6 days 9 days 12 days 15 days 18 days 21 days 24 days 27 days 30 days

rm
s

time

rms on sea level elevation according to time

4D-Var assimilation
Raw 4D-ON assimilation

Smoothed 4D-ON assimilation

Fig. 7. RMS of the error of SSH for smoothed version of the 4D-ON compared to 4D-Var and raw 4D-ON.

coherent state (extreme fluctuations in Fig. 7). More-
over, the Jo term is only computed by the corrected
terms, so the cost function does not really reflect the
gap between reality and model state. Indeed the cor-
rected state can be a smooth field with some Dirac
functions on observed locations, and the Jo term will
be very small.

The smoothed version of 4D-ON allows under-
sampling of the observation, replacing a Dirac correc-
tion by a Gaussian correction (with help from Q1/2).
In addition to spatial smoothing, a temporal smooth-
ing is performed multiplying the correcting term by a
time-decreasing coefficient. The time-smoothing dis-
tance is 6 h; this parameter has been tuned by hand,
and a more generalistic estimation may be explored as
a further development of this method. If this temporal
smoothing is disabled, the level of RMS remains sim-
ilar to the full smoothing one, but some light oscilla-
tions reappear. This may due to the fact that the nudg-
ing correction is not enough balanced for the model
and therefore some gravity waves may be induced.

All these developments permit 4D-ON to give no-
ticeable improvement to classical 4D-Var for the same
number of iterations. On the observed component (sea
surface elevation) the improvement compared to 4D-
Var is very significant (RMS of the error is up to 50%
less, see Fig. 7). On the other components (current
velocity, Fig. 6) thanks to K, the balance operator in-
cluded in Q, the gain in RMS error remains about 10%.

The introduction of smoothing implies, for this
shallow-water model, that the computational cost of
one iteration of 4D-ON is about 10% more expensive

than a 4D-Var one, and may be smaller for bigger mod-
els. Compared to the gain provided by the 4D-ON this
overhead is not a limitation.

Due to the risk of shocks induced by nudging correc-
tions, we want to check if the analysed state obtained
at the end of the 4D-ON assimilation window is con-
sistent with the dynamics and will provide a quality
forecast. Figures 8 and 9 show that there is no par-
ticular problem: after the assimilation on the left part
of the graph (under the grid) a one month forecast
is performed starting from analysed state at the end
of the assimilation window. Due to model errors the
RMS of error becomes more and more important, but
the deviation is roughly the same for 4D-Var as for
smoothed 4D-ON, i.e. the analysed state obtained by
optimal nudging is as consistent as that obtained by
classical 4D-Var (but closer to the true state).

6. Conclusion

This paper presents the 4D-ON, a new data assim-
ilation method, starting from 4D-Var and nudging.
This methods allows are to correct the model errors
through the information contained in the innovation
residual (the remaining misfit between analysed state
and observation). A direct application of this method
improves the results of the 4D-Var but may induce
gravity waves. Even if the analysed state provided by
the 4D-ON at the end of the assimilation window is
better the the classical 4D-Var one, these gravity waves
are not desirable in an operational data-assimilation

Tellus 55A (2003), 1
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scheme. It is shown that, provided the change of vari-
able introduced in Section 5.2 is done, these waves
can be avoided. Indeed, owing to spatial and tempo-
ral smoothing, the (smoothed) 4D-ON provides a bal-
anced state of the system during the whole assimilation
window.

The experiment on Burger’s equation (Section 4)
shows that control of the entire G matrix is not nec-
essary and even harmful. Therefore the control can be
restricted to a few scalar coefficients without a loss of

quality. This allows us to use a configuration of the
4D-ON that is dramatically cheaper than the 4D-Var
with an imperfect model. Moreover, this new scheme
is very easy to implement starting from an existing
4D-Var (little algorithm modification, since all new
terms are already calculated), even if the theory is quite
complicated.

The run-time extra computational cost induced by
the introduction of the control of nudging terms in ad-
dition to initial conditions is about 10%. Thanks to the
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current growth of computational means, this extra cost
is not really a limitation to practical applications. To
find an adequate balance between both regularisation
terms Jb an Jnudg requires care, and the time spent for
this research may be added to the extra computational
cost. However, this balance only depends on the kind
of the observation dataset and on the model, there-
fore it needs to be set only once. For these reasons,
4D-ON may be successfully implemented in the near
future on a variety of meteorological or oceanographic
problems.

In parallel to its implementation in realistic models,
further development can be carried out. In the consid-
ered case CQ the diffusion operator included in opera-
tor Q is the same as the background diffusion operator
CB. However, there is no reason for this: the model er-
ror and the background error do not necessarily have
the same correlation structures. Finding the appropri-
ate balance could be a natural future development of
this method.

Appendix A: Links between the Kalman
filter and optimal nudging

In this section we will point out that in a linear case,
the Kalman filter and the optimal nudging method in-
troduced in previous sections, will provide the same
results. This equivalence is based on a demonstration
provided by Li and Navon (2001) for a more classical
4D-Var.

Let now consider optimal nudging for a discrete
linear model where the Gi are considered to be n × m
matrices:


x0 = xb + δx0

xi+1 = M(ti ,ti+1)xi

+ Gi+1

(
yo

i+1 − Hi+1

(
M(ti ,ti+1)xi )

))
.

(19)

For the sake of simplicity, we note di = yo
i −

Hi (M(ti ,ti )xi−1) and c = (δx0, G1, . . . , Gn). We would
like to minimise the cost function:

J (c) = 1

2

n∑
i=0

〈
R−1

(
Hi (xi ) − yo

i

)
, Hi (xi ) − yo

i

〉

+ 1

2

n∑
i=0

〈
Q−1

i Gi di , Gi di

〉 + 〈
B−1δx0, δx0

〉
where 〈. , .〉 denotes the “classical” Euclidean inner
product, and (. , .) the Frobenius inner product between
two matrices:

(A, B) =
∑

j

∑
i

ai j

∑
i

abi j .

First of all, we can note that there exists a relation-
ship between those two inner products. If X is an n
vector, Y an m vector and B an n × m matrix then

〈X, BY〉 = (X·YT, B).

If the model errors are assumed to be Gaussian, Li
and Navon (2001) have shown the additive properties
of a 4D-Var, i.e. solving the optimisation problem on
the whole data assimilation period provides the same
results as splitting our data assimilation period in two
subspaces 1 . . . n1 and n1 . . . n and defining two cost
functions as:

J1(c) = 1

2

〈
B−1δx0, δx0

〉 + 1

2

n1∑
i=0

(. . .)

and

J2(c) = 1

2

〈(
Pa

xn1

)−1 (
xn1 − x̂n1

)
, xn1 − x̂n1

〉

+ 1

2

n∑
i=n1+1

(. . .)

where Pa
xn1

is the analysis error covariance matrix of
first data assimilation subsequence (which can be ob-
tained by the computation of the Hessian matrix of
J1 (Rabier and Courtier, 1992) and x̂n1 is the analysed
state (the result of this assimilation).

In order to compare optimal nudging with the
Kalman filter, we assume that we have already per-
formed the data assimilation on a former subspace of
observations{y1, . . . , yk−1}, and so we know Pa

xn1
and

x̂n1 .
We wish to minimize the following cost function:

Jk(ck) = 1

2

〈(
Pa

xk−1

)−1
(xk−1 − x̂k−1), xn1 − x̂n1

〉

+ 1

2

〈
R−1

(
Hk(xk) − yo

k

)
, Hk(xk) − yo

k

〉
+ 〈

Q−1
k Gkdk, Gkdk

〉
. (20)

Using

xk−1 = M−1
k,k−1(xk − Gkdk)
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the cost function could be rewritten as:

Jk = 1

2

〈(
Pa

xk−1

)−1 (
M−1

k,k−1(xk − Gkdk) − x̂k−1

)
,

M−1
k,k−1(xk − Gkdk) − x̂k−1

〉

+ 1

2

〈
R−1Hk(xk) − yo

k, Hk(xk) − yo
k

〉
+ 1

2

〈
Q−1

k Gkdk, Gkdk

〉
. (21)

Then our problem is to find (x̂k, Ĝk) as


∂ Jk

∂xk
= 0

∂ Jk

∂Gk
= 0.

(22)

Using (20), eq. (22) becomes:


0 = HT
k R−1

(
Hk(x̂k) − yo

k

) + M−T
k,k−1

(
Pa

xk−1

)−1

×
[
M−1

k,k−1(x̂k − Ĝkdk) − x̂k−1

]

0 = Q−1
k ĜkdkdT

k + M−T
k,k−1

(
Pa

xk−1

)−1

× M−1
k,k−1ĜkdkdT

k + M−T
k,k−1

(
Pa

xk−1

)−1

× [
x̂k−1 − M−1

k,k−1x̂k

]
.

(23)

According to eq. (23) we obtain

Ĝkdk = H−1
Qk

M−T
k,k−1

(
Pa

xk−1

)−1 [
x̂k−1 − M−1

k,k−1x̂k

]
(24)

where HQk = Q−1
k + M−T

k,k−1(Pa
xk−1

)−1M−1
k,k−1

Using eq. (24) in eq. (23) leads to

0 = HT
k R−1

(
yo

k − Hk(x̂k)
) + M−T

k,k−1

(
Pa

xk−1

)−1

×
(

I + M−1
k,k−1H−1

Qk
M−T

k,k−1

(
Pa

xk−1

)−1
)

× [
x̂k−1 − M−1

k,k−1x̂k

]
.

We can rewrite it as[
HT

k R−1Hk + M−T
k,k−1

(
Pa

xk−1

)−1
M−1

k,k−1+ M−T
k,k−1

×
(

Pa
xk−1

)−1
M−1

k,k−1H−1
Qk

M−T
k,k−1

(
Pa

xk−1

)−1
M−1

k,k−1

]
× [Mk,k−1x̂k−1 − x̂k] = HT

k R−1
[
Mk,k−1x̂k−1 − yo

k

]
.

(25)

If we pose

P f
k = Mk,k−1Pa

xk−1
MT

k,k−1 + Qk (26)

using a matrix inversion lemma2:

H−1
Qk

= Qk − Qk

(
Pf

k

)−1
Qk

= Mk,k−1Pa
xk−1

MT
k,k−1

(
Pf

k

)−1
Qk . (27)

Introducing eq. (27) in eqs. (25) and (26) × (Pf
k)−1

[
HT

k R−1Hk + (
Pf

k

)−1
]

[Mk,k−1x̂k−1 − x̂k]

= HT
k R−1

[
Mk,k−1x̂k−1 − yo

k

]
(28)

we can retrieve, using another matrix formula3:

x̂k = Mk,k−1x̂k−1 + Pf
kHT

k

[
HkPf

kHT
k + R

]−1

× [
yo

k − Mk,k−1x̂k−1

]
.

This is exactly the expression of x̂k in the Kalman
filter. It shows that, in theory and when the model is
linear, optimal nudging leads to the same results as the
Kalman filter, which is optimal.

Appendix B: The PALM assimilation coupler

PALM aims to provide a general structure for the
modular implementation of a data assimilation suite. In
this system, a data assimilation algorithm is described
as a set of appropriate sequences of elementary “units”
such as the forecast model, the observation operator,
the adjoint model, the operators approximating the er-
ror correlation matrices, etc. This approach allow one
to separate the physical part of the problem from the
algebraic part.

PALM ensures the scheduling and the synchronisa-
tion of the units, drives the communication of the fields
exchanged by the units and performs the algebra. This
goal is achieved without a significant loss of perfor-
mances if compared to a standard implementation.

This approach proves to be useful for any kind
of dynamic coupling, not only for data assimilation
suites.

2(ATB−1A + C−1)−1 = C − CAT(ACAT + B)−1AC.
3(A−1 + BTC−1B)−1BTC−1 = ABT(C + BABT)−1

whenever the inverses exist (see Wunsch, 1996).
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