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ABSTRACT

Can the superensemble methodology provide improved precipitation forecasts by combining existing
physical parameterizations? We recently addressed this question in the context of Numerical Weather
Prediction (NWP). We feel, however, that the information provided here may be useful for seasonal cli-
mate modeling as well. In the NWP context, we have developed multi-model forecasts from six versions
of the Florida State University global spectral model (at a horizontal resolution of 170 waves, trian-
gular truncation). These different versions deployed six different cumulus parameterization schemes;
these models were identical in all other aspects, including the initial states. Making the assumption
that differences in short-range (one day) forecasts of precipitation arise largely from differences in
the cumulus parameterization, a superensemble methodology, following a recent study, was deployed
to assign geographically distributed weights to convective heating for the different cumulus parame-
terization schemes. This was done after completion of some 85 experiments for each model for the
training phase of the superensemble. A new single spectral model was next designed that included the
weighted sum of the six cumulus parameterization schemes strung out within this model. This model
was next shown to outperform in NWP forecasts of precipitation compared to any of those models that
used a single cumulus parameterization scheme. This merely suggests that no single, present scheme
is superior to all other schemes over the entire tropical belt; they all seem to have some virtues over
different geographical regions. This Unified collective scheme is physically based since it does carry
mechanisms such as mass flux, moisture convergence, cloud detrainment, downdrafts, effects of sea
surface temperature etc. that are explicitly carried within one or the other schemes. This collective
scheme is, however, based on optimized weights for these processes that vary geographically. It is our
premise that even if a new breakthrough in cumulus parameterization were to occur from the devel-
opment of a new scheme, that scheme, at best, may only achieve a skill ranking of number three for
precipitation forecasts. The first place, we noted, still belongs to a multi-model superensemble, based
on the optimal combination of six separate models. The second place belongs to the single model that
utilizes a strung out weighted sum of many cumulus parameterization schemes within it. The individual
member models have larger precipitation forecast errors compared to the two above. The skills, here,
are evaluated using standard metrics such as correlations, root mean square errors and the equitable
threat scores; finally we also present the vertical profiles of the apparent heat source and the apparent
moisture sink that also confirm these above findings.

1. Introduction

This present paper addresses precipitation forecasts
from six versions of the FSU (a list of acronyms is
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presented in Table 1) global spectral model outlined in
Appendix. The six versions deploy six different cumu-
lus parameterization algorithms, these include three
different versions of the Arakawa–Schubert scheme,
a modified Kuo scheme, Kerry Emanuel scheme and
Zhang and McFarlane scheme. This paper next ad-
dresses the precipitation forecasts for the FSU multi-
model superensemble (Krishnamurti et al., 2001) that
is developed from this array of models. It is followed
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Table 1. List of acronyms

AMIP Atmospheric Model
Intercomparison Project

A-S Arakawa–Schubert Cumulus Scheme
BMRC Bureau of Meteorology Research Centre
CAPE Convective Available Potential Energy
DMSP-SSM/I Defense Meteorology Space

Program-Special Sensor
Microwave/Imager

ECMWF European Centre for Medium range
Weather Forecasts

ECS Emanuel Cumulus Scheme
FSU Florida State University
GPROF Goddard Profiling (algorithm)
GSFC Goddard Space Flight Center
JMA Japan Meteorological Agency
NCAR National Center for Atmospheric

Research
NCEP National Center for Environmental

Prediction
NOGAPS Navy Operational Global Atmospheric

Prediction System
NRL Naval Research Laboratory
NWP Numerical Weather Prediction
RAS Relaxed Arakawa–Schubert

Cumulus Scheme
RPN Recherche en Prévision Numérique
SAS Simplified Arakawa–Schubert

Cumulus Scheme
T170 170 wave Triangular truncation
TRMM Tropical Rainfall Measuring Mission
TSDIS TRMM Science Data and

Information Service
UTC Coordinated Universal Time
ZM Zhang and McFarlane Cumulus Scheme

by the precipitation forecasts from a single Unified
FSU global spectral model where a string of cumulus
parameterization schemes are deployed within a single
model. The relative weights for different cumulus pa-
rameterization schemes, within that single model, are
based on multimodel superensemble forecasts of pre-
cipitation. These weights are determined from the per-
formance of the individual models, each of which car-
ries one cumulus parameterization scheme. Figure 1
provides a schematic outline of the modeling compo-
nent of this paper. The top part identifies the forecasts
from a single model that carries a single cumulus pa-
rameterization algorithm. The middle part shows our
so-called “Unified model”; this is a single model that
carries a string of cumulus parameterization schemes
within it. The bottom part of the illustration conveys
the forecasts from a multimodel superensemble, where
each member model carries a single cumulus parame-
terization algorithm.

Fig. 1. A schematic outline of three types of models used
in this study. (a) Single model running a single cumulus pa-
rameterization scheme. (b) A unified model (a single model)
that carries all six cumulus parameterization schemes of this
study. (c) A multimodel superensemble where each member
model carries a single cumulus parameterization scheme.

Finally, this paper presents a comparison of the
following precipitation forecasts: (a) performance of
individual cumulus parameterization algorithms;
(b) performance of Unified cumulus parameterization
algorithms; and (c) performance of the FSU multi-
model superensemble.

The purpose of this study is not to provide a detailed
physical insight into the various cumulus parameteri-
zations used here. We are merely examining the precip-
itation forecast capabilities of the member models, a
Unified model and of the FSU superensemble. We also
examine the heating and moistening profiles, along the
vertical coordinate, in this same context.

The multimodels used in this study are derived from
the FSU global spectral model at the resolution T170,
see Appendix. In all 85 separate forecast experiments
were first carried out using each of the six differ-
ent versions of the cumulus parameterization. Thus,
a total of 510 experiments were carried out to de-
fine what is called a training phase for a multimodel
superensemble. The start dates for these experiments
covered each of the days during the second week of
April through June 2000 at 12 UTC. Details on these
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experiments are presented in Shin and Krishnamurti
(2003a,b).

The superensemble approach is a recent contribu-
tion to the general area of weather and climate fore-
casting, developed at the FSU, and is discussed in a
series of publications by Krishnamurti et al. (1999,
2000a,b and 2001). The novelty of this approach lies
in the methodology, which differs from ensemble
analysis techniques used elsewhere. This approach
yields forecasts with considerable reduction in fore-
cast error compared to the error in the member mod-
els, the ‘bias-removed’ ensemble averaged forecast,
and the ensemble mean. In brief, the technique entails
the division of a time line into two parts. One part is a
‘training’ phase, where forecasts by a set of member
models are compared to observed fields with the ob-
jective of developing a least squares fit of the forecasts
to the observations. Specifically, the observed anoma-
lies are fit to the member model forecasts according to
the classical prescription

O ′ =
N∑

i=1

ai (Fi − Fi ) + εi , (1)

where Fi is the ith model forecast (out of N total
models), Fi is the mean of the ith forecast over the
training period, O′ is the observed anomaly relative
to the observed mean over the training period, the ai

values represent the regression coefficients and εi is
an error term. The ai are determined by requiring the

summed squared error E =
N∑

i=1
ε2

i integrated over the

training period to be as small as possible. A fit of this
sort is performed for all model variables and at all
model grid points for which reanalysis observations
are available, and typically yields some 107 regression
parameters. These may be thought of as bias correc-
tion weights. The second time line part is composed
of genuine model predictions, i.e. the forecasts of the
member models. The superensemble approach com-
bines each of these forecasts according to the weights
determined during the training period through the
formulation

S = Ō +
N∑

i=1

ai (Fi − Fi ), (2)

where the notation is defined above except the ai

values, which are the regression coefficients. The pre-
diction S is referred to as the “superensemble” forecast.
This forecast should be contrasted with the more stan-
dard anomaly forecasts known as the biased - removed
ensemble mean (E) or ensemble mean (Ê) forecasts:

E = 1

N

N∑
i=1

(Fi − Fi ) or Ê = 1

N

N∑
i=1

(Fi − O). (3)

The distinction between them comes in the weighting.
Assigning all models a weight of unity in eq. (2) not
only illustrates the connection between the forecasts,
but also illustrates how the training period attempts to
identify and highlight good model performance.

We have developed a real-time NWP capability for
the forecast of all basic variables such as winds, tem-
perature, surface pressure, geopotential heights and
precipitation. These are multianalysis–multimodel su-
perensemble forecasts where 11 models are used on a
daily basis. These include the daily operational fore-
casts from the NCEP, Canadian Weather Service RPN,
the Australian model for the BMRC, the U.S. Navy’s
NOGAPS, the Japanese model for JMA and different
versions of the in-house FSU global spectral model
physically initialized using different rain rate algo-
rithms (see section 1.1). In one sense, the construction
of the superensemble is a post-processing of multi-
model forecasts. This is still a viable forecast prod-
uct that is being prepared experimentally in real time
at FSU and is currently available on a real-time ba-
sis on the website http://lexxy.met.fsu.edu/rtnwp. In
medium range real-time global weather forecasts, the
largest skill improvement is seen for precipitation fore-
casts both regionally and globally. The overall skill
of the superensemble is 40–120% higher than the
precipitation forecast skills of the best global models.
For forecasts of variables other than precipitation, the
superensemble exhibited major improvements in skill
for the divergent part of the wind and the temperature
distributions. Tropical latitudes show major improve-
ments in daily weather forecasts. For most variables,
we have used the operational ECMWF analysis at 0.5◦

latitude/longitude as the observed fields for the train-
ing phase.

Real-time hurricane track and intensity forecasts are
another major component of superensemble modeling.
This approach of carrying out a training phase fol-
lowed by real-time forecasts has shown improved track
and intensity predictions (up to 5 d) for the Atlantic
hurricanes during 1999, 2000 and 2001. Improvements
in track forecasts were 25–35% better than those of
the participating member models. The intensity fore-
casts for hurricanes have been only marginally better
than the best models. In some recent real-time tests
during 1999, marked skill improvement in the fore-
casts of difficult storms such as Floyd and Lenny were
noted where the performance of the superensemble
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was considerably better than that of the member
models.

The area of seasonal climate simulations has only
been addressed recently in the context of atmospheric
climate models where the sea surface temperatures
and sea ice are prescribed, such as the AMIP data
sets. In this context, given a training period of some
8 yr and a training data base from the ECMWF, the
results exhibit improved skill compared to the mem-
ber models and the ensemble mean. Preliminary work
in this area (Krishnamurti et al., 2002) examines the
difficulties involved with prediction of seasonal pre-
cipitation anomalies. Most individual member mod-
els perform poorly compared to climatology, whereas
the superensemble appears to demonstrate precipita-
tion skills slightly above those of climatology. The ef-
fectiveness of weather and seasonal climate forecasts
from the superensemble methodology has also been
assessed from measures of standard skill scores such as
correlation against observed fields, root mean square
(RMS) errors, anomaly correlations and the so-called
Brier skill scores for climate forecasts (assessing skills
above those of a climatology).

Training is a major component of this forecast initia-
tive. We have compared training with the best quality
‘observed’ past data sets versus training deliberately
with poorer data sets. This has shown that forecasts
are improved when higher quality training data sets
are deployed for the evaluation of the multimodel bias
statistics. It was felt that the skill during the ’forecast
phase’ could be degraded if the training was executed
with either a poorer analysis or poorer forecasts. This
was noted in our recent work on precipitation fore-
casts, where we showed that the use of poorer rain-
fall estimates during the training period affected the
superensemble forecasts during the ‘forecast phase’
(Krishnamurti et al., 2001). In addition, issues on op-
timizing the number of training days have been ad-
dressed from an examination of training with days
of high forecast skill versus training with low fore-
cast skill, and training with the best available rain-rate
datasets versus those from poor representations of rain.
We have learned to improve the forecast skill by se-
lectively improving the distribution of weights during
the training phase.

Why does the superensemble generally have higher
skill compared to all participating multimodels and the
ensemble mean? At each location and for all variables,
the ensemble mean assigns a weight of 1/N to all N
member models, including several poorer-performing
models. As a result, assigning the same weight of 1/N

to some poorer models was noted to degrade the skill
of the ensemble mean. It is possible to remove the bias
of models individually (at all locations and for all vari-
ables) and to perform an ensemble mean of the bias
removed models. That, too, has somewhat lower skill
compared to the superensemble, which carries selec-
tive weights distributed in space among all multimod-
els and for all variables. A poorer model does not reach
the levels of the best models after its bias removal.

1.1. Summary of past work on
precipitation superensemble

A major advance in precipitation forecasts has
emerged from the use of a multimodel/multianalysis
superensemble (Krishnamurti et al., 2001). “Multi-
model” refers to different models whose forecasts
are being assimilated for the construction of the su-
perensemble. “Multianalysis” refers to different ini-
tial analyses contributing to forecasts from the same
model. In this study, the multianalysis component is
based on the FSU global spectral model initialized
with TRMM and SSM/I data sets via a number of rain
rate algorithms. Five different initial analyses for each
day are deployed that define the multianalysis compo-
nent. Those are based on different versions of rain rate
estimates derived from TRMM and the DMSP-SSM/I
satellites. The differences in the analyses arise from
the use of these different rain rates within the phys-
ical initialization procedure outlined in Krishnamurti
et al. (1991). The resulting initialized fields have dis-
tinct differences among their initial divergence, heat-
ing, moisture and rain rate descriptions. The five mul-
timodel forecasts with diverse horizontal and vertical
resolutions are received from a number of global oper-
ational centers. The model output is then interpolated
to a common grid of the lowest resolution member
model. Generally, the resulting horizontal resolution
is around 125 km. The global models include sev-
eral different parameterizations of physical processes;
effects of ocean, snow and ice cover; and treatment
of orography. The training data set is produced from
the daily TSDIS operational files of the TRMM mi-
crowave radiometer-based rainfall estimates. In order
to extend the global coverage, the observed data sets
are augmented with the use of the SSM/I derived rain
rates from the US Air Force polar orbiting DMSP satel-
lites (F11, F13, F14 and F15).

Some recent skill scores are presented here from
the 11-model multimodel/multianalysis superensem-
ble, which includes other than the five multimodels
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Fig. 2. Day 3 precipitation forecast skill over the global domain during October 2000. (a) RMS errors (mm d−1) for su-
perensemble (based on multimodels and multianalysis), and the results for the individual member models. The color legends
are provided within the illustration. (b) Correlation of predicted rain against observed measures (derived from satellite mi-
crowave radiances) from member models (red lines) and the superensemble shown by black line.

and the five multianalysis components, a control fore-
cast using FSU global spectral model without physical
initialization. These results are relevant to the design
of a Unified cumulus parameterization scheme, which
is the main objective of this study. We calculate three
measures of skill on a regular basis: (i) correlation
of model predicted daily rainfall totals and observed
estimates; (ii) RMS errors of model predicted daily
rainfall totals; (iii) equitable threat scores (Mesinger,
1996) for different thresholds of observed and pre-
dicted rain. Figures 2 and 3 illustrate these monthly
skills for October 2000. Our results indicate that the
multimodel/multianalysis superensemble has a much
higher skill when compared to (i) the individual mod-
els, (ii) the conventional ensemble mean and (iii) the
ensemble mean of the individually bias-removed mod-
els. As was summarized in Krishnamurti et al. (2001)
the 1- to 3-d forecast skills of the daily precipita-
tion totals for the three metrics used here are indeed
highest for the superensemble. The equitable threat
scores are also highest for each threshold (0.5–
75 mm d−1) for the superensemble. These compu-
tations are illustrated on our website (http://lexxy.
met.fsu.edu/rtnwp) for many sub-regions of the globe
where the results are equally promising. We have also

made use of these precipitation forecasts for assess-
ing guidance for the occurrence of local floods. We
have thus far examined as many as 10 regional floods
arising from heavy rainfall episodes. An example of
heavy rains during the passage of Hurricane Allison
of the year 2001 over the northern shores of the Gulf
of Mexico is illustrated in Fig. 4. The heavy rains and
floods affected Texas, Louisiana and the Florida Pan-
handle during 6–10 June 2001. Even the results for
the best model, shown here, did not carry these heavy
rains in the region of local floods. There was clearly
more skill in the prediction of heavy rains during the
passage of Hurricane Allison from the superensemble.
The results presented in Figs. 2 and 3 are all for day 3
of forecasts. The day 1 skills were considerably higher
(Krishnamurti et al., 2001).

2. Various cumulus parameterization
schemes used in the present study

A rather large number of papers have appeared in
recent literature on the comparisons of the perfor-
mance of various cumulus parameterization schemes;
Kuo et al. (1996), Wang and Seaman (1997),
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Fig. 3. Equitable threat scores for day 3 precipitation forecasts over different belts for different thresholds of precipitation
rates (in mm d−1). Green line shows results for the multimodel multianalysis superensemble. Blue line shows the results for
the ensemble mean of the 11 member models and the red line show the results for a member model.

Belair et al. (2000), Ferretti et al. (2000), Rajendran
et al. (2002), Das et al. (2001) and several others. The
impression one gets from these comparative studies,
that are generally based on integrations starting from

a few initial states, is that no single cumulus parame-
terization scheme is superior to another, and that is
often a function of the initial state. When we car-
ried out 85 experiments with six different cumulus
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Fig. 4. An example of heavy rain forecast during a flood event
covering the passage of hurricane Allison during June 2001.
These include the 4 d observations (satellite-based estimates),
those from the superensemble forecasts and those from the
use of the best model. Units: 4 d totals in mm.

parameterization schemes (Shin and Krishnamurti,
2003a,b) we did see an intersection of their skill score
curves (as a function of time). This is depicted in Fig. 5
where we show the precipitation RMS errors and cor-
relations for the six member models (thin lines), the
ensemble mean (light, thick line) and the super en-
semble (dark, thick line) for day 1 and day 2 forecasts
during the training phase over the global belt. This im-
plies that the short-range precipitation forecast skills
are often initial value dependent. We shall next de-
scribe the various cumulus parameterization schemes
used in this study.

2.1. FSU Modified Kuo Scheme (KUO)

The basic ingredients of this scheme (Krishnamurti
et al., 1980; Krishnamurti and Bedi, 1988) include ver-

tical advection of moisture and differences in temper-
ature and specific humidity between a local moist adi-
abat and the environmental sounding. Moisture supply
for the definition of clouds is given by vertical advec-
tion of moisture, whereas difference of temperature
and specific humidity define the heating and moist-
ening of a unit vertical column. This scheme further-
more invokes a mesoscale moisture convergence and a
moistening parameter which are based on conservation
laws for moisture and heat that in turn define the evolv-
ing amplitudes for the column heating and moistening.
A closure is required for determining these amplitudes,
which involves additional large-scale features such as
the vertically averaged vertical velocity and the lower
tropospheric cyclonic vorticity. This scheme has been
tested in numerous studies on tropical weather dis-
turbances by the FSU group, e.g. Krishnamurti et al.
(1993, 1994).

2.2. GSFC Relaxed Arakawa–Schubert
Scheme (RAS1)

This scheme is a simplified form of the Arakawa and
Schubert (1974) cumulus parameterization (AS) in-
troduced by Moorthi and Suarez (1992). The complex
cloud model in AS is simplified by assuming that the
normalized cloud updraft mass flux is a linear function
of height and the effects of cloud condensate loading
and moisture content in the buoyancy calculations are
ignored. The quasi-equilibrium is achieved through re-
laxation of the sounding towards the equilibrium state
in a prescribed time, instead of simultaneously letting
all cloud ensembles adjust the environment to a state of
equilibrium. This original implementation of RAS is
used in the model version using GSFC cumulus code.
This version is known to have excessive drying due
to the lack of downdraft effects and because of not
including the effects of evaporation of falling rain in
the environment, which was also a problem with the
original AS scheme. In spite of these problems we
have used this original RAS version to bring out the
diversity in model forecasts when such observed fea-
tures are not present.

2.3. NRL-NOGAPS Relaxed Arakawa–Schubert
Scheme (RAS2)

The NOGAPS forecast model uses a variant of the
original AS scheme based on a discrete form of the pa-
rameterization developed by Lord and Arakawa (1980)
and Lord et al. (1982). The closure is simplified by
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Fig. 5. Precipitation RMS errors (mm d−1) [(a) and (b)], and correlations [(c) and (d)] of member models (thin lines), the
ensemble mean (light thick line) and the superensemble forecasts (dark thick line) for day 1 and day 2 over the global belt.
These results pertain to the training phase. The results of member models are clustered together in these illustrations, while
that for the superensemble with much higher skill stands out.

allowing the environment to be modified through re-
laxation similar to the RAS scheme by Moorthi and
Suarez (1992). In this formulation, the ensemble cloud
model is generalized to include the effects of a sim-
ple cloud scale moist downdraft. It also includes the
low-level moistening effects due to the evaporation
of convective precipitation. The moist static energy is
conserved during both of these moist processes.

2.4. NCEP Simplified Arakawa–Schubert
Scheme (SAS)

In this scheme penetrative convection is simulated
following Pan and Wu (1995), which is based on
(AS) as simplified by Grell (1993) and with a satu-
rated downdraft. Cloud ensemble is reduced to only
one cloud type with detrainment only from its top.
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Similar to original AS scheme, it includes the effects of
moisture detrainment from convective clouds, warm-
ing from environmental subsidence, and convective
stabilization in balance with the large-scale destabi-
lization rate. Differing from the general AS formula-
tion, which requires the presence of large-scale atmo-
spheric destabilization with time, SAS uses the rate
of change in stability as a major factor to determine
convection trigger. It differs from the Grell scheme in
the triggering details and the link to large-scale vari-
ables. While AS schemes, including Grell, respond to
changes in CAPE, the SAS responds instead to dif-
ferences between model CAPE and a climatological
CAPE (from tropical oceans) that varies with cloud
height. Over land the scheme allows the atmosphere
to completely eliminate CAPE and buoyancy in the
presence of large-scale upward vertical motion at the
cloud base.

2.5. NCAR Zhang–McFarlane Scheme (ZM)

This simplified cumulus parameterization scheme,
developed for climate modeling, was reported in
Zhang and McFarlane (1995). This is based on a plume
ensemble concept somewhat similar to the original
proposition of AS. This scheme addresses penetra-
tive deep convection. This scheme, first tested on a
column model, attains equilibrium where large-scale
humidity in the tropics in presence of convection is
less than the saturation limit. It includes an ensemble
of entraining updrafts with an evaporatively driven en-
semble of convective scale downdrafts. This scheme
is simplified to address the issues of quasi-equilibrium
by stating that the same initial mass flux characterizes
the cloud base mass flux for updrafts and cloud top
mass flux for downdrafts. Furthermore they assume
that the fractional entrainment rates are limited to cer-
tain values dictated by large-scale thermodynamical
structure. In this formulation quasi-equilibrium is ac-
complished when the production of convective avail-
able energy balances the consumption of this quantity
by moist convection. Convective available energy is
generated by the combined actions of surface fluxes
of heat, moisture, radiative cooling and large-scale as-
cent. The rest of the formulation is quite similar to that
of the simplified AS scheme.

2.6. NRL-NOGAPS Emanuel Scheme (ECS)

This cumulus scheme is described in two papers,
Emanuel (1991) and Emanuel and Zivkovic-Rothman

(1999). Here deep cumulus convection is designed to
penetrate the level of neutral buoyancy of the par-
cel originating as an undiluted sub cloud layer air.
Entrained air is what mostly constitutes the mass of
these convective clouds. This scheme permits strong
saturated downdrafts even in the absence of rain. Sta-
bilization of the boundary layer is accomplished by
evaporation of falling rain initiated by the unsaturated
downdrafts. An important ingredient of this scheme
is the ‘buoyancy sorting’, a notion introduced by
Raymond and Blyth (1986), which assumes that a
spectrum of cloud air mixes with different mixing
fractions by ascending or descending to the level of
vanishing buoyancy. Mixing in clouds is highly in-
termittent and inhomogeneous in this scheme. Two
precipitation formation processes are central in this
scheme, i.e. the Bergeron–Findeisen and a stochastic
coalescence mechanism. This scheme uses a mass flux
parameterization where the flux transports across var-
ious sorted levels; this is accomplished by a predictive
equation for the mass flux. The roots of convection are
assumed to arise from a level where maximum value
of the moist static energy is found below the level of an
equivalent potential temperature (θ e) minimum. This
permits several possible vertical levels where initia-
tion of convection can occur. Precipitation is gener-
ated from prescribed cloud water thresholds for each
sample of cloud air. Temperature dependence of this
cloud water thresholds account for the definition of
ice content. Cloud water and precipitation are essen-
tially separate and do not carry any further interaction.
Downdrafts are assumed to have a single predefined
cross-section size where heat, water substances and
precipitation are transported according to a prescribed
rate equation.

We have noted a considerable diversity in the
monthly mean performance of the individual mod-
els. Although the initial states and the rest of the dy-
namics and physics of the six member models are the
same (except for the aforementioned cumulus param-
eterizations) the one-day forecasts of rain were quite
different. The June 2000 monthly averaged values of
rain rates, vertically integrated heat source 〈Q1〉 and
moisture sink 〈Q2〉 are illustrated over a North Amer-
ican (Fig. 6) and an Indian monsoon (Fig. 7) domain.
The methodology used in the computation of 〈Q1〉 and
〈Q2〉 are discussed in detail in section 4.1. In these fig-
ures, the top panel from left to right shows the rain
rates from the FSU real time analysis, Krishnamurti
et al. (2001), and the estimates of 〈Q1〉 and 〈Q2〉 us-
ing the substantial derivatives of the dry static energy
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Fig. 6. June 2000 monthly mean vertically integrated apparent heat source 〈Q1〉 and apparent moisture sink 〈Q2〉 based on
FSU analysis and the day 1 forecasts from the six member models over the North American region.
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Fig. 6. (cont’d).

and specific humidity based on FSU analysis, which
uses ECMWF datasets as first-guess fields. Below that
are shown six rows of corresponding forecast results
from the use of the six different cumulus parameter-
ization schemes. Here we shall examine the relative
performance of the day 1 forecasts of these differ-
ent schemes averaged over an entire month of June
2000. The performance of the individual schemes can
be assessed by visual inspection of the horizontal dis-
tribution of the fields. Alternatively one can also look
at the spatial correlation and RMS errors of each fore-
cast with respect to the observed estimates. The spread

of rainfall over the Arabian Sea and Bay of Bengal
(Fig. 7) is somewhat large for RAS1, which does not
include downdrafts. This spread is less for SAS. The
North American monsoon rainfall (over land areas)
is, however, underestimated by SAS and ZM. Over-
all the performance of most member models for the
North American monsoon is deficient. An examina-
tion of the RMS errors and the correlation for pre-
cipitation forecasts, posted at the top of each forecast
panel, shows that for the North American region the
spread of correlation range from 0.60 to 0.71, while
that for the monsoon rainfall forecasts have a spread of
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Fig. 7. Same as in Fig. 6, except over the Indian region.
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Fig. 7. (cont’d).

correlation between 0.15 and 0.59. Thus the forecasts
over the monsoon region appear to show a very large
spread. The RMS errors of rainfall over this region also
show large spread ranging from 5.36 mm d−1 for SAS
to 15.5 mm d−1 for RAS1 that does not include down-
drafts. The range of variability of 〈Q1〉 and 〈Q2〉 are
found largest along the ITCZ over the North American
belt near 5–10◦N. Here the spread of 〈Q1〉 ranges from
around 300–600 W m−2 for SAS to as high as 1500
W m−2 for RAS1 without downdrafts. This range of
values is clearly reflected in the respective RMS er-
rors and the correlation. Very similar spreads are also
noted for 〈Q2〉 for these same models. Thus it appeared

worthwhile to examine a Unified scheme, which
has been determined from a larger experimentation
program.

3. Distribution of weights and the design
of a Unified model

We used 85 d of multimodel day one precipita-
tion forecasts to construct the weights from the train-
ing phase. These weights are optimized by selecting
those recent 85 d that exhibited highest skills for the
precipitation superensemble. For determination of the
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weights during the training phase and for the forecast
verification (in the forecast phase), observed precip-
itation estimates are obtained from a continual, once
daily, analysis of the precipitation estimates from the
TRMM and DMSP satellites.

Global distribution of the statistical weights from
training phase of the multimodel superensemble cov-
ering a 85-d period prior to 1 July 2000 are illustrated
in Fig. 8. The six panels show the weights derived from
the precipitation forecasts for six versions of the FSU
model that made use of six respective cumulus param-
eterization schemes. Since the weights vary in space
based on their recent past performance skills, in effect
there are as many as 131 072 cumulus parameteriza-
tion schemes over the globe, which is the size of the
transform grid (512 × 256) over the global belt for the
model at a resolution T170. The distribution of these
weights is monotonically changing, thus over fairly
large areas similar weights for a particular cumulus
parameterization prevail.

The weights have positive and negative fractional
values. Those models that exhibit a better performance
during the training phase over a given region carry pos-
itive weights and those that performed poorly acquire
negative weights. Overall four of the six models appear
to carry a large number of points with strong positive
weights, whereas two of the models show a spread of
negative weights.

We make use of these weights to define the Uni-
fied model. This single model utilizes these afore-
mentioned differing weights to incorporate within it
the string of six cumulus parameterization schemes to
define the respective convective heating rates. These
weights are thus obtained by utilizing the large amount
of information available from the training phase about
the past skill performance (of short-range rainfall fore-
casts). In these experiments the initial states and the
models are identical, except for the cumulus param-
eterization schemes. It was felt that one day forecast
differences that arise in these experiments would thus
largely be a function of the varying cumulus parame-
terization schemes. That is what led us to assign the
weights based on day one precipitation forecast skills
to the convective heating of the various models.

3.1. When do we invoke convection
in the Unified model

When a single cumulus parameterization scheme
is used, such as the modified Kuo’s scheme

(Krishnamurti et al., 1980; Krishnamurti and Bedi,
1988), we had to invoke convection if certain external
conditions are met. For the Kuo’s scheme it is re-
quired that lower tropospheric conditional instability
be present at a level along with a large-scale supply of
moisture over a unit vertical column. In this instance it
is also required that large-scale upward vertical veloc-
ity be present at the base of the cloud being invoked.
In the Unified model having six different cumulus
schemes with differing features (Table 2), the criteria
for invoking convection may seem to be complicated.
However, since all these schemes are independently
strung out within a single model without modifying
their individual convection triggering requirements,
the implementation becomes relatively easy. Only the
end products from these individual cumulus schemes,
such as the convective heating and precipitation rates at
each model time step, are scaled using the respective
superensemble weights, and their cumulative effects
modify the model temperature and moisture profiles.
This is how presently cumulus convection is invoked
in the Unified scheme.

4. Results from multimodel forecasts,
the Unified model and the FSU
Superensemble

The results from individual multi-model forecasts
(during 5 d of the forecast phase) are shown in
Figs. 9a–9c for the Global tropics, North American
and Asian region. The regional domains are identified
on top of these illustrations. Here the results valid
on days 1 and 2 of forecasts are shown. The top
panels show the RMS errors and the bottom panels
show the correlation of the predicted daily rainfall
totals with the observed estimates. The vertical barb
at the far right (dark, shaded) shows results from
the FSU multi-model superensemble, the vertical
barb next to it (no shading) shows results from the
FSU Unified model that incorporates six cumulus
parameterization schemes with varying weights over
the global belt. These are the results from the use of
131 072 combinations of the six cumulus parameter-
ization schemes at the model transform grids. The
remaining vertical barbs (light, shaded) show the
skill scores from individual FSU model members that
use one of the same six cumulus parameterization
schemes. Overall it is clear from this figure that
the FSU superensemble has the least errors. The
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Fig. 8. The global distribution of weights for the six different cumulus parameterization schemes. These are derived from
using the same model each time with a separate cumulus parameterization scheme. These weights are determined from the
precipitation forecast skills during the training phase of the multimodel superensemble at T170 resolution.
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Unified model outperforms all of the single models.
The improvements in skill from the FSU superensem-
ble clearly stand out. The Unified scheme appears to
be a better way to go than to use a single cumulus
parameterization scheme within a single model. The
results pertaining to the global tropical belt (Fig. 9a)
show that the range of RMS errors for day 1 and day 2
of forecast for the member models are around 10.0 and
12.0 mm d−1, respectively, whereas corresponding fig-
ures for the superensemble are around 7.0 and 7.5 mm
d−1, respectively. The correlations of the model rain
to observed estimates for day 1 and day 2 of forecasts
for the member models are around 0.30 and 0.25, re-
spectively, whereas the corresponding figures for the
superensemble are around 0.60 and 0.45, respectively.
These results pertain to the forecast phase covering the
period 29 June to 4 July 2000. The member model’s
forecast skills for day 1 and day 2 of precipitation
are slightly lower than those of the Unified model,
whereas the superensemble has significantly higher
skill. It is tempting to say that if a very much im-
proved cumulus parameterization scheme were to ap-
pear on the scene tomorrow, its use in a single model
might receive a ranking of number three in terms of
skill scores for precipitation forecasts. The ranking of
number two may be held by a Unified model that in-
cludes this future ‘best scheme’ along with the other
available schemes in a weighted sense within a sin-
gle model. The ranking of number one for rainfall
forecasts may still be assigned to the multi-model su-
perensemble, which is constructed from a training, and
a forecast phase where all available versions of the
cumulus parameterization were run separately within
single models. Only some 85 separate multimodel ex-
periments have thus far been run, further confirma-
tion of these results could have a significant impact to
NWP.

Precipitation forecasts from multimodel su-
perensemble are shown for the global tropical belt in
Figs. 10 and 11. This figure includes observed esti-
mates of rain (24 hourly total ending on 1 July 12 UTC
and 2 July 12 UTC, respectively, for the year 2000),
the predicted rainfall totals from the Unified model,
the ensemble mean, the multimodel superensemble
and the predicted rainfall from the individual models
using the six different single cumulus parameteriza-
tion schemes. This is a typical example of a tropical
precipitation forecast from the models described in
this paper. When we look at the different panels of
these two illustrations it is difficult to assess a com-
parison of one panel against another. Some of the

prominent heavy rains over southern Bay of Bengal
and the western Pacific are noted in the FSU/RAS1,
FSU/RAS2, the superensemble and the FSU/KUO
panels. It is the overall statistics over a longer pe-
riod that seems to convey the relative performances
better.

4.1. Vertical structure of heating and moistening

For the evaluation of performance of the var-
ious cumulus parameterizations we have used
precipitation forecast skills as a measure of their relia-
bility. The optimization of the Unified scheme and the
FSU superensemble forecast skills addressed above
made use of the weights of the precipitation during
the pre-forecast training phase. Thus the issue of how
well these models carry the vertical profiles of heat-
ing and moistening (the apparent heat source, Q1 and
the apparent moisture sink, Q2, Yanai et al., 1973)
was indirect since Q1 and Q2 were not optimized for
the definition of the proposed weights, those were de-
termined entirely from the past precipitation forecast
skills. It is difficult to bring in an optimization of three
different parameters R (the rain rates), Q1 and Q2. Here
Q1 and Q2 were calculated, after the fact, in order to
assure that the Unified scheme was not running away
towards unrealistic values after the forecasts had been
completed.

Yanai et al. (1973) definition of Q1 and Q2 are as
follows:

∂s

∂t
+ V · ∇s + ω

∂s

∂p
≡ Q1 ≡ L(c − e)

− ∂

∂p
s ′ω′ + QR (4)

−L

(
∂q

∂t
+ V · ∇q + ω

∂q

∂p

)
≡ Q2 ≡ L(c − e)

+ ∂

∂p
q ′ω′ (5)

where s = CpT + gz is the dry static energy, T is the
temperature, z the height above the ground surface, g
the acceleration due to gravity and q the mixing ratio
of water vapor. c is the rate of condensation per unit
mass of air, e the rate of re-evaporation of cloud and
rain water, and the primes denotes the deviation from
the average due to unresolved eddies such as cumulus
convection and turbulence.

There are two ways for computing the fields of Q1

and Q2. One can take model output at adjacent time
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Fig. 9. The results of precipitation forecast skills for the forecast phase of the superensemble for days one and two of
forecasts over the (a) Global tropics, (b) North American and (c) Asian regions. The forecasts dates are indicated at the
bottom of each panel. The left six vertical barbs in each panel show the performance of the member models, the barb
with no shading pertains to the unified model and the black barb that stands out belongs the multimodel superensemble.
Units: mm d−1.

steps and calculate the substantial derivatives of the
dry static energy s and the (negative of) latent heat
–Lq. This would provide measures of the left hand
side of eqs. (4) and (5). Here computational errors
are entirely avoided by using the spectral transform
method for the horizontal advective terms and model
consistent finite differences for the vertical advec-

tive terms. There is, however, a minor difference in
the way the model deals with the time differencing
(i.e. the semi-implicit scheme) versus what is used
here (i.e. central time differencing over a half time
step). The second way of estimating Q1 and Q2 re-
quires use of the right-hand side of eqs. (4) and (5).
The calculation of Q1 requires the model estimates
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Fig. 9. (cont’d).

of radiation, condensation, evaporation and the eddy
convergences of flux of dry static energy. The calcula-
tion of Q2 requires model estimates of condensation,
evaporation and the eddy convergence of flux of mois-
ture (in energy units). These equivalent right-hand side
terms differ from one cumulus parameterization to
another depending on their respective formulations.
Given these two possibilities it was easier to present
the results for Q1 and Q2 based on the left-hand side,
i.e. the substantial derivative. However, we did take the

trouble to examine the right-hand side as well and con-
firmed that the two approaches provided nearly equiv-
alent results.

Figure 12 illustrates day 1 forecasts for the (Q1,
Q2) profiles over a sample convective area. Here ver-
tical distributions for the six individual FSU model
members (with single scheme) are shown as thin solid
lines; the results for the FSU Unified model (sin-
gle model containing weighted sum of six cumulus
parameterization schemes) are shown as a light dashed
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Fig. 9. (cont’d).

line, the ensemble mean as a dark dashed line, the
FSU multimodel superensemble results as a light solid
line and the observed estimates are shown as a dark
solid line. The observed estimates came from the anal-
ysis data sets of ECMWF. Here 24 hourly analy-
ses were available, hence the time tendencies of the
static energy and specific humidity were based on
those time intervals. The advective terms, horizontal
and vertical, were determined from the use of spec-
tral transform method and finite differences, respec-

tively. Construction of vertical profiles for the mul-
timodel superensemble involved optimization of the
Q1 and Q2 weights at each model sigma levels from
85 experiments with the six individual model mem-
bers during the training phase. It is clear from this
diagram that the best results arise from the multi-
model superensemble, the member models show a
considerable spread and the Unified model appears to
carry these profiles reasonably well compared to the
observations.
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Fig. 10. A sample of observed rainfall estimates and those produced from model forecasts for day 1 of forecasts from the
following: Unified model, ensemble mean of model forecasts, multimodel superensemble and from six member models.
Units: mm d−1.

5. Summary and conclusions

Table 2 lists various physically based cumulus pa-
rameterization schemes that invoke a number of pro-
cesses such as detrainment, massflux, moisture con-

vergence, plume ensemble model, restoration of moist
static instability, saturated and unsaturated down-
drafts, buoyancy sorting, conversion of cloud and ice
water, etc. The proposed Unified scheme is physi-
cally based since it does include all of these processes.
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Fig. 11. Same as in Fig. 10, but for day 2 of forecasts.

There are in fact 131 072 cumulus parameterization
schemes that were deployed over the global domain
in this study. The superensemble methodology, which
was needed to determine these globally distributed
weights, is an important component of this study. Al-
though, that many weighted combination of the six

basic schemes may not have been necessary, it was
felt that coding that degree of regional variability was
a relatively simple matter. The rationale here is that
a parameter such as moisture convergence provides a
good measure of rain over some regions, such as the
Eastern Atlantic (Reed et al., 1977), it is not the best
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Fig. 12. Vertical profiles of the apparent heat source, Q1, and
the apparent moisture sink, Q2, units: K d−1. Thin solid
lines show the results for the member models. The light
dashed line shows the results from the Unified model (UCu),
the dark solid line pertains to the observed measures (Anl),
the ensemble mean (Ens) is represented by the dark dashed
line and the results for the multimodel superensemble (SEn)
are shown by the light solid line.

measure of deep convection at some other places. Like-
wise, we perceive that no single mechanism, illustrated
in Table 2, is the best measure for deep convective pro-
cesses globally. Just as data uncertainties call for a host
of initial perturbations in ensemble forecasts (Toth and
Kalnay, 1993; Palmer and Tibaldi, 1988), likewise we
feel that the current parameterizations of physical pro-
cesses carry a high degree of uncertainty. A Unified
ensemble approach can provide benefits especially if
they are cast in the spirit of the superensemble, where

the weights determined for their individual past perfor-
mance could be extended to develop a Unified physical
parameterization. While carrying out these forecasts
with individual models, we have deliberately limited
the forecasts to one or at most two days, towards the
design of this Unified scheme. The models used here
are all identical except for the cumulus parameteriza-
tion schemes and furthermore all of these models used
the same set of initial states. Thus, we have tacitly
assumed that very short-term differences in rainfall
forecasts arise from the differences in their respective
cumulus parameterizations.

Further improvements from the Unified model are
possible if we construct the superensemble by optimiz-
ing Q1 and Q2 at each vertical level. Currently we have
only used the past precipitation forecasts to construct
and assign statistical weights for convective heating. If
the weights were directly determined for Q1 and Q2 in
addition to using the rain rates, the performance of the
Unified model could have been improved even further.

In the current NWP practice one notes only minis-
cule improvements arising in the forecast skills from
the refinements of physical parameterizations. An ex-
ample of such was noted by John (2001), where the
replacement of a radiative transfer code from a for-
mer emissivity/absorptivity algorithm to an explicit
cloud-resolving algorithm only yielded an improve-
ment in the anomaly correlation of roughly 1/5 of
a percent. The notable improvements from the en-
semble mean and the superensemble, illustrated here,
demonstrates an order-of-magnitude higher improve-
ment of skill. The future improvements in NWP appear
painstaking but are necessary.

In closing, we illustrate an example, Fig. 13, on the
reduction of systematic error from an entire year of
multimodels and superensemble forecasts. It is clear
that the superensemble drastically reduces large sys-
tematic errors found in the models with the highest
and lowest skills and in the ensemble mean. It is this
feature that makes performance of the superensem-
ble considerably higher than the individual models or
even the Unified model. The Unified model appears
somewhat appealing, and one can in principle con-
struct such Unified models for specific physical pa-
rameterizations such as the planetary boundary layer
and radiative transfer. Thus collectively it may be pos-
sible to improve the performance considerably further
from the design of a grand Unified model. In spite of
those possible improvements we recognize that if the
Unified model is improved within one single model
it may still not be able to compete with a multimodel
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Fig. 13. Day 2 forecast systematic errors of 500 hPa geopotential heights (m) over the global domain during the entire year
2000 (Ross and Krishnamurti, 2003). This includes the mean forecast errors for superensemble (based on multimodels and
multianalysis), the ensemble mean and the results for the best and the worst of the 11 member models.

superensemble. The latter can provide a diversity from
the global modeling community, which always seems
to produce superior forecasts.
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7. Appendix: an outline of the FSU
global spectral model

The global model used in this study is identical in
all respects to that used in Krishnamurti et al. (1991).

The T170 version of the model, however, has been
highly vectorized to reduce the model integration time.
In addition, moisture variable, dew point depression
(T−Td) has been replaced by specific humidity and a
look-up table is used for calculating saturation vapor
pressure to further reduce the computational time. An
outline of the model is as follows:

(1) Independent variables: longitude (λ), latitude
(φ), vertical coordinate (σ ) and model time step (t).

(2) Dependent variables: vorticity, divergence, tem-
perature and specific humidity. Horizontal resolution:
Triangular spectral truncation; T170 resolution has a
512 × 256 Gaussian transform grid with a horizontal
separation of about 80 km at 20◦ latitude.

(3) Vertical resolution: 14 layers in the vertical
between 50 hPa and 1000 hPa. Model variables are
staggered in the vertical using Charney–Phillips ver-
tical discretization: vorticity, divergence, wind and
geopotential are located at layer interface while tem-
peratures, specific humidity and vertical velocity are
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assigned at the center of the layer. The vertical grid has
higher resolution in stratosphere (two model layers)
and in planetary boundary layer (three model layers).

(4) Time integration scheme: The divergence equa-
tion, thermodynamic equation and pressure tendency
equation are integrated implicitly while for vortic-
ity equation and moisture continuity equation explicit
time integration scheme is used. The tendencies of the
physical processes are integrated using a forward time
integration scheme.

(5) Space differing scheme: Spectral in the horizon-
tal; centered differences in the vertical for all variables
except moisture which is handled by an upstream dif-
ferencing scheme.

(6) Surface topography is based on envelope orog-
raphy (Wallace et al., 1983).

(7) Parameterization of physical processes: (a) Deep
convection: based on modified Kuo cumulus parame-
terization scheme (Krishnamurti et al., 1983), where
the moistening and mesoscale convergence parame-
ters are obtained from 700 mb vorticity and mean
vertical velocity averaged over cloud depth through
a regression relation. (b) Shallow convection (Tiedke,
1984). (c) Dry convection. (d) Large-scale conden-
sation (Kanamitsu, 1975). The scheme accounts for

evaporation of falling precipitation. (e) Surface fluxes
of heat, moisture and momentum are calculated using
similarity theory (Businger et al., 1971). (f) Vertical
distribution of fluxes in the free atmosphere is based
on stability (Richardson number) dependent exchange
coefficient (Louis, 1979). (g) fourth -order horizon-
tal diffusion (Kanamitsu et al., 1983). (h) Long- and
short-wave radiative fluxes are based on band model
and incorporate the radiative effects of water vapor,
carbon dioxide, ozone and clouds (Harshvardan and
Corsetti, 1984; Lacis and Hansen, 1974). (i) Parame-
terization of low, medium and high clouds for radiative
transfer calculation is based on threshold relative hu-
midity. Fractional area of various cloud distribution
configurations in the vertical is based on random over-
lap consideration. (j) Surface temperatures: Prescribed
over the oceans, while over the land a surface energy
balance coupled to the similarity theory determines the
surface temperature including its diurnal cycle (Krish-
namurti et al., 1991).

(8) Nonlinear normal mode initialization: (Kitade,
1983), wherein the tendencies of the first five modes
with phase speed exceeding about 30 m s−1 are damped
during the initialization. The slow moving higher
modes are allowed to adjust freely.
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