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ABSTRACT
To provide scientific support for improvements in land surface modeling on the Tibetan Plateau (TP) by
reducing uncertainties in the physical parameters of models, comprehensive uncertainty and sensitivity
evaluations were performed for the simulation of surface soil moisture (SSM). Five observational stations
were selected for the study. The conditional nonlinear optimal perturbation related to parameters (CNOP-P)
approach and the Common Land Model (CoLM) with 28 uncertain parameters were employed to evaluate
the maximal uncertainty of the simulated SSM. The uncertainty analysis indicated that the parameter errors
could induce large uncertainties. These uncertainties in the SSM generally fluctuated over the range from
0.33 to 0.64m3 m�3 in terms of absolute changes and from 235% to 510% in terms of percentage changes.
The uncertainty analysis addressed the necessity of decreasing the uncertainties in the parameters. When
resources are limited, the most important and sensitive parameter set should first be identified in order to
reduce uncertainties. To find this parameter set, a sensitivity analysis framework based on the CNOP-P
approach was applied. The results showed that the most sensitive and important combinations of 4
parameters changed slightly among the study sites and consisted of soil texture-related parameters. Although
the most sensitive and important parameter combinations only had 4 elements, the uncertainties that they
could induce accounted for a large proportion of the uncertainties caused by all 28 uncertain parameters.
Furthermore, the decreases in parameter errors, which were derived from the CNOP-Ps of the most sensitive
and important parameter combinations, led to the maximal reductions in the uncertainties of the simulated
SSM. The above results imply that we should prioritize reducing the uncertainty of sensitive parameters or
parameter combinations in order to improve prediction and simulation abilities.
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1. Introduction

It has been widely accepted that land surface processes
can have significant impacts on the climate through vege-
tation, soil moisture, surface albedo, and surface rough-
ness (Sud and Smith, 1985; Seneviratne et al., 2010;
Huang et al., 2011; Zhang and Zuo, 2011; Liu et al.,
2017). Apart from in situ observations, land surface mod-
els (LSMs), which are designed to simulate the exchanges
of momentum, energy and mass between the land surface
and the atmosphere, are also vital tools for comprehen-
sively understanding land surface processes and their
interactions with the atmosphere. As indispensable

components of numerical weather and climate models,
LSMs supply the necessary lower boundary conditions
required by atmospheric models, which exert an import-
ant influence on weather forecasting and climate predic-
tions (Crossley et al., 2000; Pitman, 2003; Kumar et al.,
2014; MacLeod et al., 2016; Orth et al., 2016). However,
extensive studies have demonstrated that there are still
great uncertainties in the simulations of current LSMs,
especially in regions with complex terrain and sparse
vegetation (Yang et al., 2009; Chen et al., 2012; Zhang
et al., 2014).

Model parameter uncertainties can lead to great differ-
ences between the model simulations in LSMs and obser-
vations (Gupta et al., 1999; Jackson et al., 2003; Xie�Corresponding author. e-mail: sungd@mail.iap.ac.cn
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et al., 2007; Rosolem et al., 2013). In order to remove
uncertainties in parameters, many researchers have
focused on parameter estimations by means of data
assimilation or calibration methods to improve model
simulations (Xia et al., 2004; Vrugt et al., 2006; Rosolem
et al., 2013; Shi et al., 2015; Zhang et al., 2017a).
Moreover, at present, the applications of traditional
assimilation methods (such as the three-dimensional vari-
ational assimilation method, 3DVAR, and the ensemble
Kalman filter, EnKF) to land surface assimilation are
limited. The 3DVAR method faces the challenges of the
derivations of tangent linear models or adjoint equations.
A primary drawback of the EnKF is filter inbreeding
caused by the underestimations of forecast errors. To
overcome this, inflation techniques need to be applied
(Zhang et al., 2017b; Bauser et al., 2018). For example,
Zhang et al. (2017b) employed the EnKF with a multi-
plicative inflation algorithm to estimate both parameters
and state variables from two LSMs and reported
improved model performance in the calibration and
evaluation period.

With the inclusion of more complex and sophisticated
parameterization schemes, LSMs often have a large num-
ber of parameters (o(10)-o(100)). Due to the limitations
of optimization algorithms and computational resources,
it is impractical to implement parameter estimation for
all model parameters. Moreover, model performance is
not critically sensitive to all parameters (e.g., Gupta
et al., 1999; Li et al., 2013; Gan et al., 2015; Zhang et al.,
2017a). As a result, parameters that have the most influ-
ence on model simulations should first be discerned to
reduce the dimensionality of the parameter estimation
problems. Sensitivity analysis (SA), which aims to identify
the importance and sensitivity of model parameters by
evaluating the influence of perturbations in parameters
on the model output(s) of interest, has been widely used
for this purpose. SA is helpful in providing guidance for
parameter estimation efforts and, ultimately, in supplying
scientific guidance for improving LSMs through more
accurate parameter values.

Numerous SA approaches exist for LSMs. For
example, the OAT (one-at-a-time) method, in which each
parameter is changed independently and its impact on
model performance is analyzed, was employed to evaluate
the sensitivity of parameters from the Biosphere-
Atmosphere Transfer Scheme model (Pitman, 1994).
Bastidas et al. (2006) applied the multiobjective general-
ized sensitivity analysis algorithm to explore the param-
eter sensitivities of 5 LSMs with different levels of
complexity and reported that the sensitivities of parame-
ters with similar physical meanings across different LSMs
were closely related to the model structures and locations.
Gan et al. (2015) used Latin hypercube-based OAT

screening and multivariate adaptive regression splines
(MARS)-based Sobol sensitivity indices to examine the
sensitivities of 24 model parameters in the Conjunctive
Surface-Subsurface Process (CSSP) LSM for 18 represen-
tative watersheds in the contiguous United States. They
found that 10 of the 24 parameters were identified as
important across different watersheds. In addition, there
are numerous other SA approaches for land surface mod-
eling. However, few studies have explored the sensitivity
of parameter sets with specified number of members. To
identify the sensitive parameter set, Sun and Mu (2017)
proposed an approach for identifying important and sen-
sitive parameter combinations based on the conditional
nonlinear optimal perturbation related to parameters
(CNOP-P) approach (Mu et al., 2010), which could
reflect the effects of nonlinear interactions among param-
eters. Furthermore, they employed three steps built on
the CNOP-P method to determine the sensitivities of par-
ameter combinations for net primary production (NPP)
simulated by the Lund-Potsdam-Jena (LPJ) model and
confirmed the key role of nonlinear interactions among
parameters in identifying sensitive parameters in the arid
and semiarid regions of China. To identify the sensitive
parameter sets of LSMs, it is worthwhile to apply the SA
approach developed by Sun and Mu (2017).

As the highest plateau on Earth, the Tibetan Plateau
(TP) is a region with complex topography and strong
land-atmosphere interactions. However, primarily due to
model error, TP land surface processes are not yet well
represented by the current LSMs (Li et al., 2012; Gao
et al., 2015; Xie et al., 2017, Yang et al., 2009). For
instance, Yang et al. (2009) evaluated the performance of
three LSMs for TP land surfaces: the Simple Biosphere
scheme (SiB), the Common Land Model (CoLM) and the
Noah LSM. They found that all of the models signifi-
cantly underestimated the soil moisture in the topsoil in
the central and eastern TP owing to soil stratification and
considerably underpredicted the ground-air temperature
gradients for the western TP alpine deserts due to the
underestimation or neglect of the excess resistance to heat
transfer. By applying the optimized soil parameters and
adjusted soil layers in the CoLM, Li et al. (2012) made
an obvious improvement to soil moisture simulations at
three observational stations on the TP. Gao et al. (2015)
reported that at the Amdo (i.e., AnDuo) site, located on
the central TP, the default Noah-MP (the Noah LSM
with multiparameterization options) underestimated the
topsoil moisture by approximately 50%. These uncertain-
ties in land surface modeling on the TP inevitably have
an important impact on the numerical weather predic-
tions and climate simulations associated with TP-elevated
heating and circulation (Duan et al., 2013; Gao et al.,
2017; Wang et al., 2018). It is important to improve land
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surface modeling over the TP. From previous studies, it
can be observed that model parameter errors lead to
simulation uncertainties on the TP (van der Velde et al.,
2009; Li et al., 2012). If these uncertainties are substan-
tial, it is necessary to reduce uncertainties in model
parameters and thereby improve model performance on
the TP.

To provide scientific support for improvements in land
surface modeling on the TP by reducing uncertainties in
model parameters, it is necessary to conduct a compre-
hensive uncertainty and sensitivity analysis for LSMs to
determine the relatively important parameters. For this
purpose, the extent of the uncertainty in land surface
modeling that is due to model parameter errors is first
investigated. If the uncertainty due to parameter errors is
high, it is meaningful and useful to eliminate the uncer-
tainties in those parameters. Then, based on the uncer-
tainty analysis results, the relatively important and
sensitive parameter combinations with a specified number
of members that primarily contribute to the uncertainties
in land surface modeling are identified by considering the
nonlinear interactions among parameters using the sensi-
tivity analysis framework presented in Sun and Mu
(2017). Finally, the reduction in the extent of uncertainty
in land surface modeling is assessed by decreasing errors
in the identified important and sensitive parameter com-
binations to reflect the effectiveness and value of the
identified sensitive parameter combinations.

Over the TP, soil moisture is a crucial state variable
for land-atmosphere interactions. It controls the partition
of net radiation into sensible and latent heat, both of
which are closely related to TP thermal forcing and have
been demonstrated to exert significant impacts on the
Asian monsoon and general circulation (e.g., Ye and Wu,
1998; Liu et al., 2012; Wu et al., 2017). As surface soil
moisture (SSM; soil moisture in the top 10 cm of the soil
layer) plays a key role in modulating the surface energy
and water partition, we primarily focus on SSM modeling
here. In addition, in this study, the Common Land
Model (CoLM; Dai et al., 2003) is applied to conduct
offline simulations of land surface processes. The CNOP-
P approach (Mu et al., 2010), which determines the max-
imal uncertainties in numerical simulations within the
reasonable range of parameter errors and considers the

nonlinear interactions among parameters, is employed to
conduct the uncertainty analysis and sensitivity evalua-
tions for SSM.

2. Sites, model and data

2.1. Sites

To achieve sufficient representation of land surfaces
throughout the entire TP, five sites in total were selected:
AnDuo, Ms3478, Ms3637, GaiZe and ShiQuanHe (Table
1). Among these sites, three (i.e., AnDuo, Ms3478 and
Ms3637) are wet alpine meadow sites in the central and
eastern TP, whereas the other two (i.e., GaiZe
and ShiQuanHe) are dry alpine desert sites in the west-
ern TP.

2.2. The common land model (CoLM)

The CoLM is a land surface model developed by Dai et al.
(2003). It combines the best features of three successful
land surface models: the Land Surface Model (Bonan,
1996), the Biosphere-Atmosphere Transfer Scheme
(Dickinson et al., 1993), and the 1994 version of the
Chinese Academy of Sciences/Institute of Atmospheric
Physics LSM (Dai and Zeng, 1997). Biophysical, biochem-
ical, ecological and hydrological processes are comprehen-
sively described in the CoLM. In addition, energy and
water transmissions among soil, vegetation, snow and the
atmosphere are taken into account. To date, the CoLM
has been applied to numerous offline tests by employing a
variety of observational data, and the results have revealed
that the model reasonably captures different land surface
processes (Liu and Lin, 2005; Xin et al., 2006; Luo et al.,
2008; Meng and Fu, 2009). Moreover, this model can be
coupled with other earth system model components (Zeng
et al., 2002). In this research, the CoLM was used to con-
duct uncoupled simulations.

In the CoLM, one vegetation layer along with up to
five snow layers (determined by the total snow depth) are
included, and the soil column has a fixed depth of
343.31 cm. The vertical discretization for soil has 10
layers with depths of 1.75 cm, 4.51 cm, 9.06 cm, 16.56 cm,
28.91 cm, 49.3 cm, 82.89 cm, 138.28 cm, 229.61 cm, and

Table 1. Information about the study sites situated in the TP region.

Sites Locations Study periods Elevations Land surface types

Anduo (91.625�E, 32.241�N) 6/16-6/22 (1998) 4700 m Alpine meadow
Ms3478 (91.715�E, 31.926�N) 9/1-9/16 (1998) 5063 m Alpine meadow
Ms3637 (91.657�E, 31.017�N) 8/1-8/31 (1998) 4533 m Alpine meadow
GaiZe (84.050�E, 32.300�N) 5/1-5/31 (1998) 4420 m Alpine desert
ShiQuanHe (80.080�E, 32.500�N) 7/1-7/31 (1998) 4278 m Alpine desert
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343.31 cm, respectively. The soil water content within
each layer is computed based on the water balance equa-
tion. Soil ice is computed separately. In each soil layer,
the soil moisture is first updated based on the phase
changes, including the melting of soil ice and the freezing
of soil water, and then altered based on the net water
input from the neighboring soil layer. The depth of the
first three soil layers in the CoLM is 9.06 cm. Therefore,
the SSM is calculated as the weighted average of the soil
moisture in the first three soil layers based on soil layer
thicknesses. For the surface soil layer, the net water input
is mainly associated with soil ice, evapotranspiration
(ET), surface runoff (Rsur) and the water transfer between
the subsurface and surface soil layers. Here, the varia-
tions in soil moisture in the subsurface soil layer are used
as an indicator of the water transfer between the subsur-
face and surface soil layers. In addition, the subsurface
soil moisture is calculated as the weighted average of the
soil moisture in soil layers 4-10 of the CoLM according
to soil layer thicknesses. A decrease in subsurface soil
moisture indicates water transfer from the subsurface to
the surface soil layers, and an increase in subsurface soil
moisture implies water transfer in the opposite direction.

2.3. Data

In situ data from the intensive observation period
(May–September 1998) of the GAME-Tibet (GEWEX
Asian Monsoon Experiment in the Tibetan Plateau;
Koike et al., 1999) were used as the forcing dataset to
drive the CoLM in an uncoupled run. Due to instances
of missing data, different simulation periods were chosen
at different sites (Table 1).

3. Methods and experimental design

3.1. Methods

3.1.1. The conditional nonlinear optimal perturbation
related to parameters (CNOP-P) approach. The CNOP-P
approach proposed by Mu et al. (2010) is a nonlinear
optimization method to identify a kind of parameter per-
turbation that satisfies some given constraints and results
in the maximal simulation error at a target time. In add-
ition, this type of parameter perturbation acquired by the
CNOP-P approach is called CNOP-P. To date, the
CNOP-P approach has been applied in studies on ENSO
predictability (Yu et al., 2012), grassland ecosystems (Sun
and Mu, 2011), terrestrial ecosystems (Sun and Mu, 2012,
2013, 2014), land surface hydrology (Peng et al., 2017;
Sun et al., 2017a), and parameter sensitivity analyses of
numerical models (Sun and Mu, 2017; Sun et al., 2017b).

The CNOP-P approach is described briefly here. A
more detailed introduction to this method is presented in
Mu et al. (2010). We assume that the state variable U sat-
isfies the nonlinear differential equations as follows:

oU
ot

¼ FðU,PÞ U 2 Rn, t 2 0,T½ �
Ujt¼0 ¼ U0

,

8<
: (1)

where F represents a nonlinear operator, U0 represents
the initial value of the state variable U, P represents the
parameter vector, and Rn represents the n-dimensional
real space. Let Mt be the propagator of the nonlinear dif-
ferential equations above from the initial time 0 to t.
Then, the solution at time t, U(t), satisfies U(t)¼Mt (U0,
P). A perturbation of the parameter vector P, denoted as
p, is considered. Now, the solution of Eq. (1) is Mt (U0,
Pþ p) and can be characterized by U(t)þu(t), where
u(t)¼Mt (U0, Pþ p)-Mt (U0, P) shows the change in the
reference state U(t) due to p.

For a given time T and norm k � k, the perturbation pd is a
CNOP-P under the constraint condition p 2 X if and only if

JðpdÞ ¼ max
p2X

JðpÞ, (2)

where

JðpÞ ¼ kuðTÞk ¼ kMTðU0,Pþ pÞ �MTðU0,PÞk: (3)

Generally, p is the perturbation of the reference state for
the parameter vector P and represents the parameter vec-
tor error. X represents the feasible domain of the param-
eter perturbation p. In addition, the cost function J
signifies the variation in magnitude of the reference state
U (i.e., the simulation error of U) caused by the param-
eter vector error p. Accordingly, the CNOP-P is the kind
of parameter perturbation that makes the cost function J
at time T attain its maximum value. The cost function
value with the CNOP-P represents the maximal variation
magnitude of the reference state U (i.e., the maximal
simulation error of U) due to parameter perturbations. In
this study, this type of cost function value is interpreted
as the maximal uncertainty extent in numerical simula-
tions due to parameter errors.

As the cost function constructed in the CNOP-P
approach (Eq. (3)) might be nondifferentiable with
respect to the parameter(s) of the CoLM, an efficient and
derivative-free method, the differential evolution (DE,
Storn and Price, 1997) algorithm, was applied to calculate
the CNOP-P and the cost function value with the CNOP-
P (i.e., the maximum of the cost function).

3.1.2. Sensitivity analysis framework for the model
parameter combination based on the CNOP-P approach.
To identify the most important and sensitive parameter
combinations with a specified number of members and
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take the nonlinear interactions among parameters into
account, a new sensitivity analysis framework for screen-
ing sensitive parameter combinations was proposed by
Sun and Mu (2017) based on the CNOP-P approach.
Generally, this framework includes three steps, as illus-
trated in Figure 1, of which the last two steps are the
key procedures.

The first step is to specify the parameters. The prin-
ciple is that these selected parameters should be obtained
through direct or indirect observations. Here, we suppose
that there are a total of n parameters to identify the
sensitivity.

Given that not all parameters lead to large uncertain-
ties in numerical simulations, the second step aims to
remove some parameters that cause small uncertainties.
To achieve this, the CNOP-P approach is employed.
Through the CNOP-P approach with a reasonable con-
straint on parameter error ranges, the maximal uncer-
tainty extent in numerical simulations that a single
parameter could induce can be obtained. Then, this max-
imal uncertainty extent is used to measure the sensitivity
of a single parameter. The greater the maximal uncer-
tainty extent is, the more sensitive the corresponding par-
ameter is. Then, according to the sensitivity rank for
every parameter, the first m sensitive parameters, which
are relatively more sensitive and important, are identified,
where m< n.

In the third step, the sensitivity and importance of par-
ameter combinations with a specified number of members
(e.g., k) are evaluated to acquire the most significant and
sensitive parameter combinations. From the identified m

parameters in the second step, Ck
m groups of parameter

combinations with the member number of k can be deter-
mined. As in Step 2, for each parameter combination, the
maximal uncertainty extent in numerical simulations due
to errors from its parameter members can be acquired
using the CNOP-P approach with a reasonable constraint
on parameter error ranges. The greater the maximal

uncertainty extent is, the more sensitive the corresponding

parameter combination is. For the Ck
m parameter combi-

nations, the most sensitive combination is identified as
the most important and sensitive parameter combination.
In the CNOP-P approach for this step, multiple parame-
ters are perturbed simultaneously. Consequently, the
impacts of nonlinear interactions among parameters are
considered during the determination of the most import-
ant and sensitive parameter combination.

3.1.3. The approach for validating the importance of the
most sensitive parameter combinations. To verify the identi-
fied most sensitive parameter combinations, a formula to
measure the gains in reducing errors in parameter combi-
nations is defined in this section. Inspired by the work of
Mu et al. (2009) which explored the improvements made in
typhoon predictions by reducing the initial errors in sensi-
tive regions, Sun and Mu (2017) investigated the impacts
of reduced uncertainties in different parameter combina-
tions on simulations of the terrestrial ecosystem. Similar to
Sun and Mu (2017), the gain s, which describes the
reduced extent of the uncertainty in the numerical simula-
tion due to the reduced error of a tested parameter combin-
ation, is defined by the following formula:

s¼
kMTðU0,PþpÞ�MTðU0,PÞk�kMTðU0,PþapÞ�MTðU0,PÞk

kMTðU0,PþpÞ�MTðU0,PÞk :

(4)

Here, the meaning of each variable is as defined in Eq.
(3). In addition, a represents a tunable constant (0<a<1)
used to characterize the reduced extent of the parameter
error. Since kMTðU0,Pþ pÞ �MTðU0,PÞk represents the
simulation error caused by the considered parameter
error p, and kMTðU0,Pþ apÞ �MTðU0,PÞk represents
the simulation error caused by the reduced parameter
error ap (0<a<1), then s characterizes the improvement
in the numerical simulation due to the decrease in the
parameter error p. The greater the value of s is, the larger
the reduction in the extent of the simulation uncertainty
will be.

3.2. Experimental design

For conducting the assessment of the uncertainty and
sensitivity associated with SSM due to model parameters,
28 physical parameters were selected, as shown in Table
2. Both the 28 specific parameters and their ranges were
chosen based on expert advice from model developers
and existing research by Dai et al. (2003), Li et al. (2013),
and Sun et al. (2017b). To characterize the vertical soil
heterogeneity in the CoLM, soil-related parameters were
differentiated between topsoil and subsoil. The soil in the

Fig. 1. Sensitivity analysis framework for model parameter
combinations based on the CNOP-P approach.
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first five soil layers was classified as topsoil, and the soil
in the lower five soil layers was classified as subsoil. At
each site, SSM was taken as the state variable in the cost
function of the CNOP-P approach. For every selected
parameter, the reference state was its default value in the
CoLM. The study period relevant to the CNOP-P
method was the same as the simulation period noted in
Table 1. Here, the target time T represents a period (i.e.,
the entire study period). The propagator at the target
time T (i.e., MT) represents the SSM averaged over the
entire study period. In calculating a CNOP-P, many par-
ameter perturbation values were sampled. To satisfy the
constraint in the CNOP-P approach that model param-
eter errors should lie within reasonable ranges, the per-
turbed parameter values for each tested parameter were
guaranteed to lie between its minimum and maximum
values, which are listed in Table 2. Moreover, in each
model run, parameter perturbations were static during
the entire simulated period. The obtained CNOP-P

represented the type of parameter error that led to the
maximal extent of uncertainty in the simulated SSM aver-
aged over the entire study period. Hereafter, the param-
eter error derived from the computed CNOP-P was called
the CNOP-P-type parameter error. Therefore, the CNOP-
P-type parameter error would induce the maximal uncer-
tainty extent in the simulated SSM, which was the max-
imum value of the cost function.

From the above description, the number of all selected
parameters, n, was 28. Because of the limitation on com-
putational resources, m and k were set to 8 and 4,
respectively. The values of both m and k can be appropri-
ately augmented or reduced depending on the practical
demands and the available computational resources.
After specifying the values of m and k, the abovemen-
tioned sensitivity analysis framework based on the
CNOP-P approach was accomplished step by step as fol-
lows. First, the 8 most sensitive physical parameters were
chosen from the 28 parameters according to the

Table 2. The physical parameters and their default, minimum and maximum values for the TP sites in the CoLM. Def¼Default
value; Min¼Minimum value; Max¼Maximum Value.

Index Parameter Physical meaning Category Def Min Max

P01 porsl(up) Porosity of upper soil, fraction of soil mass that is void soil 0.43 0.25 0.75
P02 porsl(low) Porosity of lower soil, fraction of soil mass that is void soil 0.45 0.25 0.75
P03 phi0(up) Minimum soil suction of upper soil (mm) soil 207.35 50.0 500.0
P04 phi0(low) Minimum soil suction of lower soil (mm) soil 288.93 50.0 500.0
P05 bsw(up) Clapp and Hornberger “b” parameter of upper soil soil 5.77 2.5 10.0
P06 bsw(low) Clapp and Hornberger “b” parameter of lower soil soil 8.32 2.5 10.0
P07 hksati(up) Saturated hydraulic conductivity of upper soil (mm/s) soil 0.0042 0.001 1.0
P08 hksati(low) Saturated hydraulic conductivity of lower soil (mm/s) soil 0.0028 0.001 1.0
P09 sqrtdi Inverse square root of the leaf dimension (m-1/2) canopy 5.0 2.5 7.5
P10 slti Slope of the low temperature inhibition function canopy 0.2 0.1 0.3
P11 shti Slope of the high temperature inhibition function canopy 0.3 0.15 0.45
P12 trda Temperature coefficient of the

conductance-photosynthesis model
canopy 1.3 0.65 1.95

P13 trdm Temperature coefficient of the
conductance-photosynthesis model

canopy 328.0 300.0 350.0

P14 trop Temperature coefficient of the
conductance-photosynthesis model

canopy 298.0 250.0 300.0

P15 extkn Coefficient for leaf nitrogen allocation canopy 0.5 0.5 0.75
P16 zlnd Roughness length for the soil surface (m) soil 0.01 0.005 0.015
P17 zsno Roughness length for snow (m) snow 0.0024 0.0012 0.0036
P18 csoilc Drag coefficient for soil under the canopy soil 0.004 0.002 0.006
P19 dewmx Maximum ponding of the leaf area (mm) canopy 0.1 0.05 0.15
P20 wtfact Fraction of the shallow groundwater area soil 0.3 0.15 0.45
P21 capr Tuning factor of the soil surface temperature soil 0.34 0.17 0.51
P22 cnfac Crank Nicholson factor soil 0.5 0.25 0.5
P23 ssi Irreducible water saturation of snow snow 0.0033 0.03 0.04
P24 wimp Factor for controlling whether water is impermeable soil 0.05 0.01 0.1
P25 pondmx Maximum ponding depth for the soil surface (mm) soil 10.0 5.0 15.0
P26 smpmax Wilting point potential (mm) canopy �1.5eþ 5 �2.0eþ 5 �1.0eþ 5
P27 smpmin Restriction for the minimum soil potential (mm) soil �1.0eþ 8 �1.0eþ 8 �9.0eþ 7
P28 trsmx0 Maximum transpiration for vegetation (mm/s) canopy 0.0002 0.0001 0.01
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sensitivity rank for a single parameter obtained by using

the CNOP-P approach. Second, C4
8 (70) groups of param-

eter combinations were determined. For each combin-
ation, its sensitivity was also determined by employing

the CNOP-P approach. Among the C4
8 (70) parameter

combinations, the 4-parameter combination that gener-
ated the largest cost function value was regarded as the
most significant and sensitive parameter subset.

It should be noted that a model spin-up of 100 days at
every site was first conducted by employing the forcing
dataset for the first day of the simulation period repeat-
edly to run the CoLM. Then, the land surface conditions
at the end of the spin-up process were saved and applied
to initialize all the model runs involved in the optimiza-
tion procedure for the CNOP-P approach.

In contrast, the traditional OAT approach (Pitman,
1994) was also employed to identify the sensitivity of a sin-
gle parameter. The OAT approach focuses on the variation
due to the representative perturbation value of a param-
eter. In essence, this method was performed based on the
uncertainty extent of the numerical simulation caused by
parameter errors. When the sensitivity of a certain param-
eter was evaluated, the other parameter values remained

the same. Consequently, in the OAT method, the interac-
tions among the parameters were neglected. In our
research, the sensitivities based on this method were eval-
uated by fixing each parameter at its maximum and min-
imum values. The greater one of the two uncertainty
extents in the simulated SSM, that were caused by the max-
imal and minimal parameter errors respectively, was used
to determine the sensitivity of a single parameter.

4. Results and analyses

4.1. Uncertainties in SSM due to parameter
uncertainties

As SSM was the state variable in the cost function of the
CNOP-P approach, the maximal value of the cost function
represented the maximal magnitude of the variation in the
SSM reference state due to parameter errors. The maximal
value of the cost function can be understood as the max-
imal uncertainty of the simulated SSM due to parameter
errors. At this moment, the maximal uncertainty in SSM
was demonstrated in the form of absolute changes. For
each observation station, the reference state of SSM was
fixed. Consequently, the CNOP-P-type parameter error
also induced the maximal percentage magnitude change in
SSM due to parameter errors and could illustrate the max-
imal uncertainty in the form of percentage change. In the
following section, the maximal uncertainties related to
SSM at all observational sites will be presented in terms of
both absolute changes and percentage changes.

Figure 2a displays the reference states of SSM simu-
lated using the default parameter values. Fig. 2b shows
the maximum uncertainties in the simulated SSM due to
the errors in the 28 selected model parameters at the five
Tibetan sites. Generally, relative to the reference states,
these uncertainties fluctuated in the range 0.33–0.64 m3

m�3 (235–510%) in terms of absolute (relative) change
(Fig. 2b). Furthermore, this type of uncertainty at the
wet alpine meadow sites was greater than that at the dry
alpine desert sites. In the wet alpine meadows (AnDuo,
Ms3478 and Ms3637), the uncertainties in SSM exceeded
0.6m3 m�3; however, in the dry alpine deserts (GaiZe
and ShiQuanHe), the uncertainties in the SSM were
smaller than 0.5m3 m�3.

The physical processes that mainly contributed to
uncertainties in the SSM were also explored by analyzing
the variations in hydrological processes related to the sur-
face water budget (i.e., ET, soil ice, Rsur and the water
transfer between the subsurface and surface soil layers
indicated by the changes in the subsurface soil moisture).
The CNOP-P-type parameter errors that caused the max-
imal uncertainties led to increases in SSM at all study
sites. The changes in soil ice due to the CNOP-P-type

Fig. 2. The reference states of SSM simulated by using the
default parameter values (a) as well as the maximal uncertainties
in the simulated SSM due to errors from all 28 selected
parameters at different TP sites during different simulation
periods in terms of absolute changes (b).
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parameter errors at different sites were small and played
little role in the SSM variations (figures not shown). For
ET, Rsur, and subsurface soil moisture, their variations as
well as their reference states simulated using the default
parameter values are displayed in Fig. 3. Among the
wet alpine meadow sites (e.g., Anduo, Ms3478 and
Ms3637), large differences existed in the ET variations
(Fig. 3a). At Anduo, ET was dramatically enhanced, but
at Ms3637, ET was decreased. At Ms3478, ET was
almost unchanged. Rsur was shown to experience obvious

changes only at these wet alpine meadow sites, and the
magnitudes of the changes generally did not exceed
0.1mm day�1 (Fig. 3c). Additionally, the subsurface soil
moisture decreased at all sites (Fig. 3e). It was suggested
that water in the subsurface soil layer was transferred to
the surface soil layer, which was conducive to the
increases in SSM. Generally, at the wet alpine meadow
sites, the interactions among changes in ET, Rsur and the
water transfer from the subsurface to surface soil layers
resulted in the changes in SSM. At the dry alpine desert

Fig. 3. The variations (left column) in ET (a, mm day�1), Rsur (c, mm day�1) and subsurface soil moisture (e, m3 m�3) relative to
their respective reference states (right column) of ET (b, mm day�1), Rsur (d, mm day�1), subsurface soil moisture (f, m3 m�3) caused by
the CNOP-P-type parameter errors associated with all 28 parameters at different TP sites during different simulation periods.
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sites (i.e., GaiZe and ShiQuanHe), Rsur was almost
unchanged (Fig. 3c); however, there were significant
increases in ET of more than 3.0mm day�1 (Fig. 3a),
which facilitated soil water loss. Subsurface soil moisture
also decreased, indicating that the water in the subsurface
soil layer was transferred to the surface soil layer (Fig.
3e). This contributed to the increases in the SSM.
Consequently, changes in SSM in the dry alpine deserts
were the result of the changes in ET and the water trans-
fer between the subsurface and surface soil layers.

4.2. Identification of the most sensitive and important
parameter combination

From Section 4.1, we can see that parameter errors might
induce great uncertainties in SSM by affecting the

representation of some key hydrological processes. The
uncertainties caused by inappropriate parameters cannot
be ignored. However, not all parameter errors can cause
great uncertainties in numerical simulations. To deter-
mine which parameters would induce larger uncertainties
in the simulated SSM, sensitivity analyses were conducted
by employing the new sensitivity analysis framework
based on the CNOP-P method and the OAT method.

Through the single-parameter sensitivity analysis using
the CNOP-P approach, the sensitivities of all 28 parame-
ters were ranked, and they are displayed in Fig. 4a. For
all TP sites, P01 (i.e., the porosity of the upper soil layer),
P02 (i.e., the porosity of the lower soil layer) and P05
(i.e., the Clapp and Hornberger “b” parameter of the
upper soil layer) were in the five most sensitive parame-
ters. A similar result was obtained by using the OAT

Fig. 4. The sensitivity ranks of all 28 parameters based on the single-parameter sensitivity analyses using the CNOP-P approach (a)
and the OAT method (b) at different TP sites. Numbers “1”, “2”, “3”, and “4” on colored boxes label the 4 most sensitive parameters
(in order of sensitivity) at each site.
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approach (Fig. 4b). In fact, in the CoLM, Darcy’s law is
used to determine the water flow within the soil to calcu-
late the soil moisture. In Darcy’s law, the water flow is
dependent on two variables (i.e., the soil hydraulic con-
ductivity and matric potential), both of which are formu-
lated according to Clapp and Hornberger (1978). In the
Clapp and Hornberger empirical formulas (Clapp and
Hornberger, 1978), P05 is the exponent of wetness in the
formulas for soil hydraulic conductivity and matric
potential, and P01 and P02 are part of the effective por-
osity, which is used to compute wetness. As a result, the
three parameters P01, P02 and P05 significantly influence
water flow in soil by altering the soil hydraulic conductiv-
ity and matric potential. Consequently, SSM was very
sensitive to P01, P02 and P05. In addition, regardless of
which sensitivity analysis approach was used, for all sites,
the first 8 sensitive parameters were basically related to
soil texture, except for the 8th sensitive parameter at the
wet alpine meadow sites (i.e., Anduo, Ms3478 and
Ms3637), which was associated with vegetation character-
istics. This confirmed the key role of the soil texture-
related parameters (i.e., porosity, minimum soil suction,
Clapp and Hornberger “b” parameter, and saturated
hydraulic conductivity) in simulating soil moisture at the
TP sites. Additionally, the vegetation parameters, such as
P19 (i.e., maximum ponding of the leaf area) and P14
(i.e., temperature coefficient of the conductance-photo-
synthesis model), seemed to play a more important role
in soil moisture modeling in wet alpine meadows than in
dry alpine deserts.

From the above results from the single-parameter sen-
sitivity analysis using the CNOP-P approach, the first 8
sensitive parameters were selected from a total of 28
parameters. Then, from those 8 relatively more sensitive
and important parameters, the most sensitive and import-
ant 4-parameter combinations were identified and are
shown in Table 3. For each site, the most sensitive and
important combination was only composed of soil tex-
ture-related parameters and belonged to a subset of the
parameter set composed of P01, P02, P03, P04, and P05.

In addition, these combinations all included P01 and P02,
which denoted the porosities of the upper and lower soil
layers, respectively. On the whole, the difference between
the most sensitive and important combinations at differ-
ent sites was small. The maximal values of the cost func-
tion related to the most sensitive 4-parameter
combinations, which described the maximal uncertainties
in SSM in the form of absolute changes, are shown in
Fig. 5a. These uncertainties lie in the range between 0.28
and 0.52m3 m�3. In terms of percentage changes, the
maximal uncertainties fluctuated in the range from 150%
to 408% (Fig. 5b). Comparisons between the simulation
uncertainty caused by the most sensitive 4-parameter
combination and that caused by all 28 parameters
revealed that although the most sensitive and important
parameter combination only comprised 4 parameters, the
uncertainty that the 4 parameter members could cause
accounted for a large proportion of the uncertainty
caused by all 28 parameters (Figs. 2b and 5a).

Furthermore, the most 4 sensitive parameters from the
single-parameter sensitivity analysis using the OAT

Table 3. The most sensitive parameter combinations at different
TP sites identified by using the sensitivity analysis framework
based on the CNOP-P approach.

Site
The most sensitive

parameter combination

Anduo P01, P02, P03, P05
Ms3478 P01, P02, P03, P04
Ms3637 P01, P02, P03, P04
GaiZe P01, P02, P03, P05
ShiQuanHe P01, P02, P04, P05

Fig. 5. The maximal uncertainties in the simulated SSM due to
errors from the most sensitive and important 4-parameter
combinations identified by using the CNOP-P approach as well
as errors from the 4 most sensitive parameters determined by
using the OAT method: (a) in terms of absolute changes, (b) in
terms of percentage changes.
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approach also comprised a type of 4-parameter combin-
ation, which was identified without considering the non-
linear interactions among parameters. At all sites except
the Anduo site, these 4-parameter combinations based on
the OAT method were different from the most sensitive
and important combinations identified by the sensitivity
analysis specifically for parameter combinations (Table 3
and Fig. 4). In general, the 4-parameter combinations
identified by the two methods possessed 2 or more identi-
cal parameter members. In addition, the maximal uncer-
tainties in SSM caused by the 4 most sensitive parameters

identified using the OAT method were smaller than those
caused by the most sensitive and important 4-parameter
combinations (Fig. 5a and 5b). Therefore, at the TP sites,
nonlinear interactions among parameters played a role
and should be taken into account when searching for the
most sensitive and important parameter combinations. It
should be noted that the differences in parameter combin-
ation sensitivity between the two different analyses were
not statistically significant which might be associated
with the limited observations (at only 5 observational
sites) we can acquire.

Fig. 6. The reductions in the uncertainties of the simulated SSM at different TP sites, which are represented by s, caused by the
different decreased extents (as indicated by a) of three types of parameter error: CNOP, CNOP_Single, and OAT.
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4.3. Verification of the most sensitive and important
parameter combinations

By employing the gain s defined by Eq. (4), this section
compares the impacts of reducing errors in parameter
combinations identified by different methods to demon-
strate the benefits of eliminating errors in the identified
most sensitive parameter combinations for SSM. Then,
SSM is chosen as the state variable in Eq. (4), and the
value of s characterizes the improvement of the SSM
simulation due to the decrease in the parameter error.
The greater the value of s is, the larger the reduction in
the simulation uncertainty of SSM will be.

Based on the results of the sensitivity analyses using
different approaches, at each site, three types of param-
eter error were chosen. The first type was the CNOP-P-
type parameter error corresponding to the most sensitive
and important parameter combination identified using
the multiple-parameter sensitivity analysis specifically for
parameter combinations (denoted as CNOP). The remain-
ing two parameter errors were the CNOP-P-type param-
eter errors corresponding to the most 4 sensitive
parameters using the single-parameter sensitivity analyses
– the OAT method (denoted OAT) and the CNOP-P
approach (denoted CNOP_single) – as identified in Fig.
4. Then, a series of numerical experiments were con-
ducted to reveal the benefits of reducing the abovemen-
tioned three types of parameter errors by setting a to be
0.2, 0.4, 0.6, and 0.8, where the different values represent
different extents of reduction in the parameter errors.

Figure 6 presents the gains s that represent the extent
of the reduction in uncertainties in the simulated SSM
obtained by reducing the different types of parameter
errors. Note, the single-parameter analyses using the
CNOP-P and OAT methods identified the same 4 param-
eters for all sites except Ms3478 (Fig. 4); and all 3 sensi-
tivity analyses identified the same 4 parameters for the
AnDuo site, which was therefore not included in Fig. 6.
It can be seen that decreases in the CNOP errors always
made the greatest gains at the Ms3637 and ShiQuanHe
sites (Fig. 6b and 6d). At the other two sites, the gains
due to reductions in the CNOP and CNOP_single errors
were close (Fig. 6a and 6c). Moreover, decreases in the
OAT errors contributed to the smallest gains. On aver-
age, the uncertainties in SSM were reduced by 70.5%
(acquired by averaging the values of s across all a and all
sites except AnDuo) due to the decreases in the CNOP
errors, which corresponded to the most sensitive and
important parameter combinations, compared to smaller
decreases from the single parameter analyses (57.3% and
51.9% for the reduced CNOP_single and OAT errors
respectively). As a result, taking nonlinear interactions

among parameters into account resulted in greater
improvements.

5. Conclusion and discussion

Previous studies have addressed the poor representation
of TP land surface processes in current LSMs, which
could significantly affect numerical weather predictions
and climate simulations associated with TP-induced ele-
vated heating and circulation. Hence, to provide scientific
support for improvements in land surface modeling of the
TP by means of reducing uncertainties in model parame-
ters, a comprehensive uncertainty and sensitivity analysis
for SSM in the TP has been implemented in this study by
using the CNOP-P approach and the uncoupled CoLM
along with 28 uncertain parameters. Five sites were inves-
tigated, of which three were typical alpine meadows (i.e.,
Anduo, Ms3478, and Ms3637) in the central and eastern
TP, and two were typical alpine deserts (i.e., GaiZe and
ShiQuanHe) in the western TP. The CNOP-P approach is
a nonlinear optimization method that can be used to
determine the upper boundaries of uncertainties in simu-
lations within the reasonable range of parameter errors
by considering the nonlinear interactions
among parameters.

The uncertainty analysis based on the CNOP-P
approach suggested that the uncertainties in the 28
parameters could induce great uncertainties in the simu-
lated SSM, which generally fluctuated in the range
0.33–0.64 m3 m�3 (235–510%) in terms of absolute (rela-
tive) changes. Additionally, this type of uncertainty was
greater in the wet alpine meadows than in the dry alpine
deserts. At the wet alpine meadow sites (i.e., Anduo,
Ms3478 and Ms3637), the uncertainties in SSM exceeded
0.6m3 m�3, but at the dry alpine desert sites (i.e., GaiZe
and ShiQuanHe), the uncertainties in SSM were smaller
than 0.5m3 m�3. The key hydrological processes leading
to these uncertainties in SSM were closely related to local
dry and wet conditions. Generally, in wet alpine mead-
ows, changes in ET, Rsur and water transfer from the
subsurface to surface soil layers principally resulted in
uncertainties in SSM. In the dry alpine deserts, the uncer-
tainties in SSM were the result of variations in ET and
the water transfer between the subsurface and surface
soil layers.

The results from the uncertainty analysis indicated that
uncertainties in model parameters cannot be ignored for
land surface modeling in the TP and should be reduced
by parameter estimation methods. For the high-dimen-
sional parameter space of current LSMs, it is necessary
to conduct a parameter sensitivity analysis to provide
guidance for the determination of parameters in which
uncertainties should be reduced first. Here, the sensitivity
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analysis framework, which is based on the CNOP-P
approach and considers the nonlinear interactions among
parameters, was applied to examine the sensitivities of
individual parameters or parameter combinations. The
results revealed that the most sensitive and important
combinations of 4 parameter members differed slightly
among the study sites. In addition, these combinations
only contained soil texture-related parameters and
belonged to a subset of the parameter set composed of
P01, P02, P03, P04, and P05 (i.e., porosity of topsoil and
subsoil, minimum soil suction of topsoil and subsoil, and
Clapp and Hornberger “b” parameter). Orth et al. (2016)
revealed that total soil depth was one of the sensitive
parameters that had the most influence on the model per-
formance of the European Centre for Medium-Range
Weather Forecasts (ECMWF) land surface model
Hydrology Tiled ECMWF Scheme of Surface Exchanges
over Land (HTESSEL) in uncoupled runs. The research-
ers explained that the soil depth affected the variability of
the water storage. In contrast to HTESSEL, the CoLM
has a fixed soil depth. The water storage capacity can be
modulated by the porosity of the different soil layers.
The key roles of P01 and P02 are consistent with the
results of Orth et al. (2016). Additionally, based on the
Sobol first-order sensitivity indices, Rosero et al. (2010)
found that the most sensitive parameter for the top 5 cm
soil moisture simulated by different versions of the Noah
LSM was porosity at most of the selected sites over tran-
sition zones located in the U.S. southern Great Plains.
Using the CoLM, Li et al. (2013) also demonstrated the
sensitive and important role of porosity and the Clapp
and Hornberger “b” parameter in soil moisture modeling
for the A’rou observation station located in the arid
region of northwestern China. These results were in line
with those of our research. Sun et al. (2017b) applied the
CNOP-P approach and CoLM to conduct a comprehen-
sive uncertainty and sensitivity analysis for soil moisture
due to the uncertain model parameters within four differ-
ent regions of China that did not cover any area of the
TP. Their research was based on simulations averaged
over a grid of 0.5ox0.5� rather than observational sites.
They found that the most sensitive and important param-
eter combinations screened were region- and season-
dependent. The precise combination of parameters
identified in our study were different from those found in
Sun et al. (2017b). However, both studies reported the
sensitivity and importance of soil texture-related parame-
ters (such as porosity and the Clapp and Hornberger “b”
parameter) for soil moisture modeling. Therefore, in the
future, soil texture-related parameters should be specified
with caution for better land surface modeling.

Although the most sensitive and important parameter
combinations only included 4 parameters, the

uncertainties they could cause contributed to a great pro-
portion of the uncertainties due to all 28 parameters. In
the CoLM, the abovementioned five sensitive parameters
(i.e., P01, P02, P03, P04, and P05) were all derived from
the soil data inputs. Consequently, the most sensitive and
important parameter combinations obtained imply that
the development and application of a high-quality soil
dataset is of significant importance for improving land
surface modeling in the TP. Zheng and Yang (2016)
explored the role of soil-type datasets in simulating
regional terrestrial water cycles and suggested that in
China, the applications of different soil datasets could
cause modeled soil moisture to change by 12%.

In addition, the 4 most sensitive parameters identified
by the OAT approach generally differed somewhat from
the CNOP-P 4-parameter combinations, and the uncer-
tainties they induced were smaller. This further confirmed
the effectiveness and value of the sensitivity analysis
framework built on the CNOP-P approach that can take
account of non-linear interactions among parameters.
Compared to the OAT results, the increased sensitivities
due to interactions implied by the CNOP-P analysis were
not statistically significant which might be due to the lim-
ited observations (at only 5 observation sites) we can
access. Finally, decreasing the errors in parameter combi-
nations was shown to indicate decreases in the uncertain-
ties of SSM. Generally, the SSM error reductions were
largest due to decreasing errors in the CNOP-P parameter
combinations.

With the application of model calibrations for improv-
ing numerical weather forecasting, the sensitivity analysis
results here can provide important land surface parameter
candidates for calibration or SA problems associated with
numerical weather prediction models (Santanello et al.
2013; Quan et al., 2016; Duan et al., 2017; Di et al.,
2018). Duan et al. (2017) and Di et al. (2018) calibrated
several parameters from different physical parameteriza-
tions of the Weather Research and Forecasting (WRF)
model, in which one or two crucial soil parameters from
the coupled land surface model were incorporated. They
reported better forecast results for precipitation and tem-
perature using the optimal parameter values than using
the default parameter values. In addition, in research on
ensemble prediction, land surface uncertainty has been
included by perturbing key parameters from land surface
models or land surface states (such as soil temperature
and soil moisture) to improve weather predictability and
seasonal predictions (Deng et al., 2016; MacLeod et al.,
2016; Orth et al, 2016; Duda et al., 2017). For example,
MacLeod et al. (2016) incorporated land surface uncer-
tainties in an ensemble by perturbing two key soil param-
eters and considerably improved the prediction of
extreme air temperature for summer 2003 in Europe. In
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this research, the most sensitive parameter combinations
for SSM that mainly contributed to the simulation uncer-
tainties were identified by running an uncoupled LSM.
Orth et al. (2016) found that the uncoupled calibration of
a land surface model improved the coupled forecasts for
both temperature and precipitation. Hence, the most sen-
sitive parameter combinations identified may also have
the potential to be applied for incorporating land surface
uncertainties when ensemble forecasts are constructed.

It should be noted that the sensitivity analysis frame-
work built on the CNOP-P approach is not limited to
combinations of only 4 parameters. In practice, if neces-
sary, this framework could be employed to identify the
most sensitive and important parameter combinations
with five or more members. Additionally, this research is
conducted by running an uncoupled LSM. For compari-
son, a similar uncertainty and sensitivity analysis based
on the CNOP-P approach could also be conducted by
coupling an LSM to other earth system model compo-
nents. Limited by the observations we could access, in
this study, datasets with relatively short time durations (7
to 31 days) at the five Tibetan sites were applied. A much
longer dataset and more Tibetan sites (if available) should
be included in the future.
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