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ABSTRACT

Conceptual box models of the interhemispheric thermohaline circulation are studied with
respect to bifurcations. Freshwater fluxes are the main control parameters of the system: they
determine the stable states and transitions between stable states of the large-scale thermohaline
circulation. In this study of interhemispheric box models both numerical and analytical methods
are used to investigate transition mechanisms of the thermohaline circulation. The box model
examined first is an interhemispheric four-box model. It is shown that the two bifurcations
where the present THC can become unstable, the saddle-node and the Hopf bifurcation, depend
in a different way on hemispheric freshwater fluxes. A reduction of the model variables leads
to the conclusion that two fixed freshwater fluxes between three surface boxes are the model
feature responsible for the bifurcation behaviour found. The significance of the Hopf bifurcation
for the stability of the thermohaline circulation is discussed.

1. Introduction warmed by up to ~10 °C in annual mean, with
the largest effect occurring in winter when oceanic
heat release is at its maximum and solar heatingThe thermohaline circulation (THC) of the
at its minimum.Atlantic ocean (sometimes referred to as the
Paleoclimatic reconstructions show that the‘‘conveyor belt’’ is a density-driven large-scale

Atlantic circulation has been subject to large andoverturning motion with relatively warm surface
rapid changes throughout the last Ice Age. Threewaters flowing northward and cold North Atlantic
main circulation modes have been identified indeep water returning southward at 2–3 km depth.
both sediment data and models (Alley et al., 1999;This circulation carries heat northward at a rate
Ganopolski and Rahmstorf, 2001): a warm orof up to 1 PW (1 PW=1015W) and has a signi-
interglacial mode with deep water forming in theficant effect on climate, which can be seen e.g. in
Nordic Seas and large oceanic heat transport toclimate model experiments (Manabe and Stouffer,
northern high latitudes (the present climate oper-1988), or by looking at the winter sea ice margins
ates in this mode); a cold or stadial mode with(Fig. 1 of Rahmstorf, 1997) or the deviations of
deep water forming south of the shallow sillthe climatological air temperature from the zonal
between Greenland, Iceland and Scotland; and amean (Fig. 1 of Rahmstorf and Ganopolski, 1999).
‘‘switched off ’’ or ‘‘Heinrich’’ mode with practicallyThe air over the northern North Atlantic is
no deep water formation in the North Atlantic.
In the last mode, the Atlantic deep circulation is
dominated by inflow of Antarctic bottom water* Corresponding author.

e-mail; sven@agnld.uni-potsdam.de from the south.
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A full hierarchy of ocean and climate models THC of the Atlantic ocean. Both numerical and
(where possible) analytical bifurcation analyses arehas been used to study the nonlinear behaviour

of the Atlantic circulation, its equilibria, stability performed. We try to make the box model as

simple as possible while retaining the key featuresthresholds and mode transitions (see reviews by
Weaver and Hughes, 1992; Rahmstorf et al., 1996 of its qualitative behaviour [i.e., the topology in

phase and parameter space, including bifurcations:and Rahmstorf, 2000). It was found that the non-

linearity stemsmainly from two positive feedbacks: see Guckenheimer and Holmes (1983) for an
introduction]. Bifurcation points are followed inan advective feedback and a convective feedback

(Rahmstorf, 1999). Simple box models play an parameter space and interpreted as instability

mechanisms of the box model THC. In section 2important role in understanding the THC, as they
are easy to understand, individual processes and of this paper the basic box model is described

briefly, and a numerical bifurcation analysis usingfeedbacks can be studied in isolation, and bifurca-

tion maps can often be computed analytically. path-following software is performed. For chan-
ging freshwater fluxes two bifurcations can beQualitative agreement between box models and

highly complex circulation models is good in many found: a Hopf bifurcation and a saddle-node

bifurcation. The analytical solutions for theserespects (Rahmstorf, 1996), and box models can
be used to interpret results from coupled general bifurcations are presented for a ‘‘minimal’’ version

of the box model in section 3. Section 4 describescirculation models [e.g., the apparent climate

instability found by Tziperman (1997) can be the impact of the Hopf bifurcation on the stability
of the THC in terms of its basin of attraction inreproduced and explained with the help of a box

model, Rahmstorf and Ganopolski, 1998]. The phase space. In the final section the implications
of the analysis are discussed.present paper is concerned with the nonlinearity

of the circulation arising from advective feedback.

This feedback was first studied in the seminal box
model of Stommel (1961), which consisted of two 2. The basic four-box model
boxes in one hemisphere. In this model, the stable

state of the THC loses its stability at a saddle- 2.1. Description
node bifurcation (Stommel’s bifurcation point).

The basic box model we study and modify is
Increasing freshwater forcing (the responsible con-

Rahmstorf ’s (1996) interhemispheric four-box
trol parameter) reduces the north–south density

model. It has been designed to cover the qualitat-
difference which determines the overturning rate,

ive behaviour of the large-scale circulation cell of
while northward salt advection by the overturning

the THC found in general circulation models
circulation counteracts this. At the bifurcation

(GCMs). In Fig. 1 it is shown that two boxes
point the northward advection of salty water is

represent the surface and deep water layer in the
no longer able to balance the surface freshwater

tropics, whereas one box is set up for the North
input to the northernmost box in the model, and

and South Atlantic, respectively. Mixed boundary
the THC breaks down. This basic mechanism

conditions are applied, i.e. surface temperatures
occurs in all the variations on Stommel’s model

are relaxed to prescribed values and freshwater
which have subsequently been studied (e.g., Rooth,
1982; Marotzke, 1990; Joyce, 1991; Huang and
Stommel, 1992; Tziperman et al., 1994).

In addition to Stommel’s bifurcation a Hopf
bifurcation occurs in some models (Tziperman
et al., 1994; Scott et al., 1999), and the THC

becomes unstable before the saddle-node bifurca-
tion point is reached.

In this paper we use the box model of Rahmstorf
(1996) and modifications of it to investigate sys-
tematically the role of freshwater forcing for both

saddle-node and Hopf bifurcations. The model Fig. 1. The basic box model: box 3 represents the trop-
ical surface layer, and box 4 the deep water layer.has been designed to mimic the interhemispheric
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fluxes are fixed. The boxes are connected by a salinity. Thus, the overturning rate m is
flow with volume transport m as indicated by m=k[b(S2−S1 )−a(T2−T1 )] (9)
arrows in Fig.1.

where k is a hydraulic constant which is the mostFor the present circulation direction the model
tunable parameter. It can be used to fit bifurcationequations read:
diagrams to simulation runs with global circula-
tion models. Here, we use k=23×1017m3 yr−1.Ṫ1=

1

V
m(T4−T1 )+l(T *1−T1 ) (1)

This value yields an overturning rate of about
18 Sv (1 Sverdrup=1×106 m3 s−1) when the
approximated parameter values of ‘‘present cli-Ṫ2=

1

V
m(T3−T2 )+l(T *2−T2 ) (2)

mate’’ (given later) are used. a and b are expansion
coefficients for temperature and salinity (a=

Ṫ3=
1

V
m(T1−T3 )+l(T *3−T3 ) (3) 1.7×10−4K−1 and b=0.8×10−3 psu−1).

In general, we use the following parameter
values: T *1=0 °C, T *2=3.8 °C, T *3=15 °C, F1=Ṫ4=

1

V
m(T2−T4 ) (4)

0.05 Sv (a conservative estimate), F2=0.25 Sv and
t=25 yr, that is l=0.04 yr−1. The box volume

Ṡ1=
1

V
m(S4−S1 )+

1

V
S0F1 (5) used for all four boxes is V=1017 m3. Some

authors use different volumes for different boxes
(Rooth, 1982; Joyce, 1991; Tziperman et al. 1994).

Ṡ2=
1

V
m(S3−S2 )−

1

V
S0F2 (6) For example, they use a smaller box volume for

box 2, as the water column of deeply mixed water
is less extended compared to the tropical waterṠ3=

1

V
m(S1−S3 )+

1

V
S0 (F2−F1 ) (7)

masses. This can be considered as a more realistic

setup. We have also studied the box model withEvery box has a homogeneous temperature T
i different box volumes but found no difference inand salt content S

i
. S0 is a reference salinity the qualitative behaviour. For simplicity we there-(S0=35.0 psu) used to convert the freshwater fore present the results with equal box volumes.fluxes into the unit psu s−1.

If (r2−r1 ) is negative, the advective terms ofThe salinity of box 4 can be computed from the
the model must be adequately reformulated,total salt content Stot and the other salinities because the circulation direction is inverse then.because of salt conservation in the model:
In this case, the model equations are

S4=Stot−S1−S2−S3 (8)

Ṫ1=−
1

V
m(T3−T1 )+l(T *1−T1 ) (10)As the dynamical equations (1)–(7) of the model

do not depend on absolute salinity values but

only on salinity differences, we can use any value Ṫ2=−
1

V
m(T4−T2 )+l(T *2−T2 ) (11)

for Stot .
The inverse of the temperature restoring coeffi-

Ṫ3=−
1

V
m(T2−T3 )+l(T *3−T3 ) (12)cient l is the relaxation time t, and the T *i are

the prescribed restoring temperatures. F1 and F2
are hemispheric freshwater fluxes which not only

Ṫ4=−
1

V
m(T1−T4 ) (13)

represent atmospheric water vapour transport but
also wind-driven oceanic transports. The latter is

Ṡ1=−
1

V
m(S3−S1 )+

1

V
S0F1 (14)the reason why F1 in the present climate is a

freshwater transport directed towards the Equator
(i.e., into the Atlantic; Rahmstorf, 1996; a view

Ṡ2=−
1

V
m(S4−S2 )−

1

V
S0F2 (15)

which is supported by Weijer et al. 1999), in spite
of the Atlantic being an evaporative basin.
The overturning rate m is proportional to the Ṡ3=−

1

V
m(S2−S3 )+

1

V
S0 (F2−F1 ) (16)

density difference between box 1 and box 2.
Density depends linearly on temperature and For the given formulation the model equations
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are not differentiable with respect to m at m=0,
but algorithms of numerical bifurcation analysis
only work properly with differentiable models.

This shortcoming was eliminated by a technical
trick: instead of m we use the function

m+=
m

1−e−am
(17)

for advection terms with northward surface flow,
and the function

m−=
−m
1−e−am

(18)

for those with southward surface flow. We then

use both advection terms in each model equation.
The parameter a has no physical meaning. The Fig. 2. Upper stable (solid) branch: increasing F1 leads

to a Hopf bifurcation (star), where an unstable periodicdeviation from the physically correct function m
solution (dashed) emerges. The points of the unstablecan be made arbitrarily small by increasing the
periodic solution are the minimum and the maximumparameter a:
overturning rate. At the saddle-node bifurcation (square)
instability remains. Lower stable branch: inverse flow of

lim
a�2
m+=− lim

a�2
m−=Gm for m�0

0 for m<0
(19) the THC.

Qualitative behaviour, and in particular bifurca-
the Hopf bifurcation does not exist in Stommel’stion points near m=0, are always checked with
two-box model.respect to the limit a�2. In the numerical
An unstable periodic solution emerges at thebifurcation analysis, a=10 is used.

Hopf bifurcation. The advective mechanism which
is responsible for the periodic solution is due to

2.2. Bifurcation study of the basic model
the fixed freshwater fluxes. The Hopf bifurcation

cannot occur in Stommel’s box model, as at leastConceptual models can contribute to a better
understanding of some basic properties of the three boxes are needed for the mechanism. Period

times of the unstable periodic solution are on aTHC. Although quantitative results cannot be

expected to be exact, the occurrence of bifurcations millennial timescale.
If one chooses the values of state variables atis a rather robust finding from box models.

Therefore, a numerical bifurcation analysis of the the Hopf bifurcation point as initial condition for

a simulation with F1>F1,Hopf , the new fixed pointbasic model is performed. We use CANDYS/QA
(Feudel and Jansen, 1992) for that purpose. attractor will be a state with southern sinking and

inverse flow of about−9 Sv ( lower stable branch).For this ocean box model, the most important

control parameters are the freshwater fluxes F1 Thus, we have a bistable system for F1<F1,Hopf .
Decreasing F1 on the lower stable branch leads toand F2 .

In Fig. 2 the bifurcation behaviour for varied another subcritical Hopf bifurcation (not shown)

where the THC switches on again, resulting in aF1 is displayed. If the southern freshwater flux F1
is increased, the stable steady state (upper branch hysteresis behaviour of the model circulation.

However, there is a caveat, as this box model withwith northern sinking) will become unstable at a

Hopf bifurcation. It is a subcritical Hopf bifurca- parameters and geometry chosen appropriately
for the present climate is unlikely to cover thetion because the emerging cycle is unstable.

The additional bifurcation point shown in Fig. 2 behaviour of the THC with weak or inverse
overturning.is a saddle-node bifurcation where the stationary

state remains unstable. This saddle-node bifurca- The same bifurcation behaviour also holds with

different volumes for different boxes.tion is the same bifurcation as in Stommel’s box
model, where it corresponds to the loss of stability; In the box model of Scott et al. (1999), Hopf
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bifurcations also occur on the stable branches (TB) point]. It is obvious that the saddle-node
bifurcation does not depend on the northern fresh-with northern and southern sinking. In their

bifurcation diagram, the northern freshwater flux water flux F2 , which can be shown analytically for
reduced box models (see section 3). In contrast,is the bifurcation parameter. Scott et al. (1999)

show a curve of a transient, unstable solution the Hopf bifurcation curve is determined by both
freshwater fluxes. We can derive a qualitativeconnecting the two Hopf bifurcations. This transi-

ent solution was observed by the authors in critical distinction of paths from present climate (with a
stable THC) to instability of the THC with north-perturbation experiments. As Scott et al. (1999)

state, it is not rigorously defined. Using numerical ern sinking from Fig. 3:

bifurcation analysis, we find that the emerging
Increase of F1 alone; saddle-node

unstable cycles are not connected with each other.
F2<F2,TB bifurcation

The restoring temperature T *2 can also be used Increase of F1 alone; Hopf bifurcation
as a control parameter, as the atmospheric temper-

F2>F2,TBatures of the northern hemispheric high latitudes
Increase of F2 alone Hopf bifurcation

will probably increase most in future climate
Decrease of F1 ; Hopf bifurcation

change. The corresponding bifurcation diagram is
increase of F2not shown, because it looks very similar to Fig. 2.

Increase of F1 and F2 saddle-node or
For increasing T *2 , the upper stable branch Hopf bifurcation
becomes unstable at a Hopf bifurcation.

Increase of F1 ; saddle-node or
With constant temperatures, the box model can

decrease of F2 Hopf bifurcation
be fitted to a perturbation experiment with a

The outcome of the last two paths depends onglobal circulation model, as shown in Fig. 7 of
the ratio Ḟ1/Ḟ2 and on the initial parameter values.Rahmstorf (1996). For this purpose, k and the
Following this qualitative picture of a boxinterhemispheric temperature difference (T2−T1 ) model, the THC of the present climate (or, gener-are tuned.

ally speaking, the THC in a strong pole-to-poleBy following the two bifurcation points of the
state) can become unstable due to an increase inupper stable branch in two-parameter space of F1 one of the hemispheric freshwater fluxes or due toand F2 , one can study when the Hopf bifurcation combined changes.occurs. This is shown in Fig. 3. The Hopf bifurca-

tion curve vanishes where it touches the saddle-
node bifurcation curve [in a Takens–Bogdanov

3. Bifurcations in simpler box models

3.1. Description

A four-box model with seven independent vari-

ables is in itself a highly conceptual model.
Nevertheless, we study simpler modifications in
order to find the essential features needed for the

bifurcation behaviour of the basic model. For this
purpose a model with constant temperatures is
considered (as temperature restoring terms are

small compared with the advection and freshwater
flux terms). In the simplified box model the equa-
torial deep-water box (box 4) was omitted.

Actually, this is very similar to the box model of
Rooth (1982), although he used a model with

different box volumes for the tropics and the high
latitudes. Box 4 can be neglected when steady

Fig. 3. Two-parameter bifurcation diagram. The Hopf
states and bifurcations are studied, but it seemsbifurcation point curve (dotted) and the saddle-node
to be necessary for a better representation of thebifurcation point curve (solid) meet in a Takens–

Bogdanov point (cross). time-dependent system behaviour.
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In the modified model, only two, independent
T *=−A 2bka2 S0F2B1/2 (27)variables are left:

Thus, we have an analytic expression for the
V Ṡ1=S0F1+Gm(S2−S1 ) for m�0m(S1−S3 ) for m<0

(20)
occurrence of Hopf bifurcations:

F2>
ka2
2bS0

T *2 (28)V Ṡ2=−S0F2+Gm(S3−S2 ) for m�0m(S2−S1 ) for m<0
(21)

Equation (28) says that the minimum value of
The salinity S3 is computed from the other the freshwater flux F2 required for a Hopf bifurca-salinities:

tion is proportional to the square of the prescribed
S3=Stot−S1−S2 (22) interhemispheric temperature difference T *=

T2,const−T1,const .In the equation for the overturning rate m the
The qualitative behaviour of the basic model,

temperature difference is now a parameter:
i.e. a saddle-node bifurcation and a subcritical

m=k[b(S2−S1 )−aT *] (23) Hopf bifurcation which meet in a Takens–
Bogdanov point, is fully represented by the simplewith T *=T2,const−T1,const . three-box model with constant temperatures. The

model feature which is essential for Hopf bifurca-
3.2. Analytical solutions for the bifurcations tions is the existence of three surface boxes with

two connecting freshwater fluxes. Thus, we haveWe consider the model with positive over-
a ‘‘minimal’’ interhemispheric box model.turning rate m which is equivalent to the upper
Variable temperatures provide a negative feed-stable branch of the basic model. The stationary

back and are important for the quantitativestate is calculated for the reduced model from eqs.
response (Rahmstorf and Ganopolski, 1999 and(20) and (21) by solving Ṡ

i
=0, i=1, 2. Then,

appendix of Rahmstorf, 1996), but temperatureslinear stability theory is applied: the characteristic
can be held constant in box model studies of theequation for the eigenvalues of the Jacobian at
qualitative behaviour of the THC. This is sup-the stationary state can be solved analytically. It
ported by the fact that the qualitative features ofyields equations for the occurrence of local bifurca-
the bifurcation diagrams shown do not changetions of the model (see Appendix).
whether the temperatures are variables or not.The qualitative behaviour turns out to be the

same as for the basic model. The saddle-node

bifurcation is independent of F2 (as for the basic 4. The unstable cycle of the Hopf bifurcation
model): and the basin boundary

F1=
ka2
4bS0

T *2 (24) Both the basic box model and the reduced
model can exhibit a subcritical Hopf bifurcation.

The Hopf bifurcation depends on F1 , F2 , and At the bifurcation point an unstable cycle emerges.
T *: In the following the role of the unstable cycle is

discussed.
The stable state coexisting with the unstableF1=

C

S0
+
1

S0 cycle has a certain basin of attraction which can
be computed numerically. Every simulation start-

×AC2+S0F2 3(a2/b)kT *2−S0F216 B1/2 (25) ing with initial conditions within the basin of

attraction leads to the stable state of the THC.
with The unstable cycle turns out to be located on the

boundary of this basin. In the reduced model it is
C=

3

32

a2
b
kT *2−

1

4
S0F2 (26) the basin boundary itself. This is shown in Fig. 4

for a value of F1 near the Hopf bifurcation. All
initial conditions within the cycle converge to theThe curves of the two bifurcation points meet

in the TB point which is independent of F1 : stable steady state. In a box model with a different
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Fig. 4. The unstable cycle is the boundary of the basin of attraction for F1=0.045 Sv and T *=−2 K.

heat flux parameterization, Stone and Krasovskiy oscillations only if the overturning rate is a nonlin-
ear function of the density gradient instead of a(1999) investigated this cycle using Van der Pol’s

method, which yields an equation for the period linear one. Rahmstorf (1996) found a linear rela-
tion between overturning strength and densityof the limit cycle.

The period of the unstable periodic orbit difference in a GCM study, and this is why we

use a linear function here.strongly depends on the box volumes used. As it
is very difficult to define realistic box volumes, we Using nonlinear transformations according to

normal form theory it can be shown (Titz et al.,think that periodic behaviour of the THC should

not be studied with box models, since the uncer- 2002) that the Hopf bifurcation on the positive
overturning branch is always subcritical, i.e., thetainties are too big to relate model results to

observations (e.g. paleodata). emerging cycle is always unstable.

When the control parameter F1 is increased, the
stable state gets closer to the Hopf bifurcation
and both the unstable cycle and the basin bound- 5. Conclusions
ary shrink in size. Thus, there is a critical radius
of deviations from the stable state: disturbances In this paper, interhemispheric box models of

the THC are studied with respect to state tran-in the state variables pushing the system beyond

that radius would make the THC become unstable sitions when freshwater fluxes are varied. A ‘‘min-
imal’’ box model of the interhemispheric THC isbefore F1 reaches the value of the Hopf bifurcation.

In addition, even those disturbances which cause found. The unstable periodic solution that emerges

at one bifurcation point limits the stability ofa temporary increase of the overturning strength
can destabilize the THC and lead to a collapse. the THC.

Like Stommel’s (1961) model, the box modelsSubcritical Hopf bifurcations do occur in simple

box models, but not in 2D fluid models: Quon exhibit bistability, i.e., for a certain parameter
range both the positive and the negative over-and Ghil (1995) and Dijkstra and Molemaker

(1997) found supercritical Hopf bifurcations on turning circulation are stable. The stable state of
‘‘present climate’’ THC (positive overturning) canthe pole-to-pole branches of their bifurcation dia-

grams, that is, a stable cycle emerges at the bifurca- become unstable due to two bifurcations that are

different in nature: a saddle-node bifurcation or ation point. Rivin and Tziperman (1997) studied a
coupled box model and found that there are stable Hopf bifurcation. Scott et al. (1999) also found
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these bifurcations in their box model. Which of points alone: the basin of attraction around stable
steady states should also be taken into accountthe bifurcations occurs depends on hemispheric
when the risk of state transitions is investigated.freshwater fluxes; this is now shown in a specific
It is not necessarily at the bifurcation point wherebifurcation diagram (Fig. 3). The two bifurcations
state transitions may occur, since small perturba-represent two different mechanisms by which the
tions are always present.present THC can become unstable: the saddle-
Whether a Hopf bifurcation may possibly causenode bifurcation can only occur for a change in

a destabilization of the THC should be investi-total freshwater input into the North Atlantic
gated with two- or three-dimensional fluid models.catchment, but not for a redistribution of fresh-
Whether the Hopf bifurcation is super- or sub-water between the low and high latitudes of the
critical is an important additional question. UpNorthern Atlantic. The Hopf bifurcation, in con-
to now, Hopf bifurcations occurring in two-trast, depends on both freshwater fluxes.
dimensional models were supercritical, i.e., theWe have reduced the variables of the box models
emerging cycle was stable (Quon and Ghil, 1995;to find a ‘‘minimal’’ interhemispheric box model
Dijkstra and Molemaker, 1997). Rivin andwhich exhibits both bifurcations described above.
Tziperman (1997) found with a box model that

At least three boxes with surface contact connected
the Hopf bifurcation is supercritical only if the

by two hemispheric freshwater flux terms appear
overturning rate is a nonlinear function of the

to be required for the qualitative behaviour, i.e.,
density gradient, which was not the case in the

the properties of the water masses on a large scale
GCM study of Rahmstorf (1996). In our study we

in the Atlantic (two well-mixed high-latitude water
used a linear function, and this is probably why

columns and the tropical surface layer) are the
the Hopf bifurcation we find is subcritical. Perhaps

essential feature needed for the bifurcations we a Hopf bifurcation could be found in models
found. Analytical solutions for the two bifurcations of even higher resolution, and especially with
are given, so that one can clearly see how they strongly asymmetric boundary conditions. A thor-
depend on the parameters. ough comparison of the underlying mechanism
It is not clear a priori which of the bifurcations and its dependence on model setup needs to be

could lead to a state transition of the THC when done in further studies.
freshwater fluxes change in the model. Only Oscillations on a decadal and centennial scale
beyond a threshold for the freshwater flux in the discovered in GCMs and intermediate models are
Northern Hemisphere does the Hopf bifurcation often localized on the North Atlantic (with a
exist in the model. In contrast to Scott et al. (1999) decadal time scale), except for the 320 yr oscilla-
we find that the Southern Hemisphere freshwater tion found by Mikolajewicz and Maier-Reimer
flux governs stability in general and that the (1990) in an ocean general circulation model and
Northern Hemisphere freshwater flux only plays the 200–300 yr oscillations studied by Mysak et al.
a role if its value is beyond the threshold (1993) in a two-dimensional ocean model. If a
mentioned above. supercritical Hopf bifurcation can be found in a

three-dimensional model, with a stable oscillationIf a Hopf bifurcation is possible, this has con-
connected to it, the latter oscillations on a centen-sequences for the stability of the THC near the
nial timescale might perhaps be explained in thisbifurcation point. At the Hopf bifurcation, an
way.unstable periodic orbit emerges which coexists
This study shows that methods of nonlinearwith the stable steady state of the THC with

dynamics applied to simple ocean box modelspositive overturning. In the ‘‘minimal’’ model, the
yield valuable information about different possibleunstable periodic orbit is identical with the bound-
transition mechanisms of the THC and theirary of the basin of attraction that belongs to the
dependence on relevant parameters.stable steady state. As this basin of attraction

shrinks when the Hopf bifurcation is approached,

small perturbations may destabilize the THC even 6. Acknowledgements
if the bifurcation point is not yet reached. Positive
overturning perturbations can also destabilize the We thank Wolfgang Jansen for help with the
THC in this case. bifurcation analysis software. This work was sup-

ported by the Deutsche Forschungsgemeinschaft.Therefore, it is not sufficient to study bifurcation

Tellus 54A (2002), 1



      97

7. Appendix: Bifurcations of the minimal values of the system:
model

l1,2=A±AA2− 3V 2 km(2bŜ2−aT *)B1/2 (A3)

After a transformation of variables (Ŝ1=S1 ,
withŜ2=S2−S1 ), the stationary state of the reduced

model is given by
A=

1

2V
{kb[Stot−3(Ŝ1+2Ŝ2 )]+3kaT *} (A4)

Ŝ1=
1

3 AStot− S0 (F1+F2 )
k(bŜ2−aT *)B− Ŝ2 (A1) If one real eigenvalue becomes zero, a saddle-

node bifurcation exists. Hence, we can find eq. (24)
for the saddle-node bifurcation.
At a Hopf bifurcation, two purely imaginary,Ŝ2=

aT *

2b
+CAaT *2b B2− S0F1kb D1/2. (A2)

complex conjugate eigenvalues must exist, i.e.,
A=0. Thus, we can calculate eq. (25) for Hopf

By solving Ŝ
i
=0 (i−1, 2) the characteristic bifurcations.

equation for the eigenvalues of the Jacobian can At a TB point, both conditions (for the saddle-
be computed. node bifurcation and the Hopf bifurcation) must

hold.The characteristic equation yields the eigen-
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