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ABSTRACT
This paper introduces a computationally efficient data assimilation scheme based on Gaussian quadrature
filtering that potentially outperforms current methods in data assimilation for moderately nonlinear systems.
Moderately nonlinear systems, in this case, are systems with numerical models with small fourth and higher
derivative terms. Gaussian quadrature filters are a family of filters that make simplifying Gaussian
assumptions about filtering pdfs in order to numerically evaluate the integrals found in Bayesian data
assimilation. These filters are differentiated by the varying quadrature rules to evaluate the arising integrals.
The approach we present, denoted by Assumed Gaussian Reduced (AGR) filter, uses a reduced order version
of the polynomial quadrature first proposed in Ito and Xiong [2000. Gaussian filters for nonlinear filtering
problems. IEEE Trans. Automat. Control. 45, 910–927]. This quadrature uses the properties of Gaussian
distributions to form an effectively higher order method increasing its efficiency. To construct the AGR filter,
this quadrature is used to form a reduced order square-root filter, which will reduce computational costs and
improve numerical robustness. For cases of sufficiently small fourth derivatives of the nonlinear model, we
demonstrate that the AGR filter outperforms ensemble Kalman filters (EnKFs) for a Korteweg-de Vries
model and a Boussinesq model.
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1. Introduction

Data assimilation is the process of estimating the system
state given previous information and current observa-
tional information. The methods typically used for data
assimilation in the ocean and atmosphere are variational
schemes (Talagrand and Courtier, 1987; Daley, 1991;
Courtier et al., 1998) and ensemble Kalman filters
(EnKFs) (Evensen, 2003; Bishop et al., 2001). Both meth-
ods are built on linear hypotheses and have led to useful
results in quasi-nonlinear situations. These methods are
optimal for the case where the observations and model
error are Gaussian. These methods have been successful
in numerical weather prediction (NWP) (Buehner et al.,
2010; Kuhl et al., 2013) but are suboptimal for nonlinear
model dynamics as the Fokker-Plank equations that gov-
ern the evolution of a pdf may only be solved exactly for
certain cases. This sub-optimality has led to a prolifer-
ation of methods to perform data assimilation each with
their own advantages (see, for example, Daley, 1991;

Anderson, 2001; Bishop et al., 2001; Sondergaard and
Lermusiaux, 2013; Poterjoy, 2016).

While it is well known that atmospheric and oceanic
models may have non-Gaussian statistics (Morzfeld and
Hodyss, 2019), computational resources limit our ability
to fully resolve the data assimilation problem. It was
shown in Miyoshi et al., (2014) that ensembles need to
have on the order of a thousand members to represent
non-Gaussian prior pdfs in an EnKF for a general circu-
lation model, however, typical ensemble sizes are on the
order of a hundred (Houtekamer et al., 2014).
Additionally, computational constraints lead to data
assimilation systems using lower resolutions than the
forecasting model and are therefore more linear. In tar-
geting this specific application, algorithmic efficiencies
may be found.

Gaussian quadrature filters explicitly assume condi-
tional pdfs are Gaussian in the Bayesian filtering equa-
tions. Then powerful numerical integration techniques are
used, e.g. Gaussian quadrature and cubature, to evaluate
the resulting integral equations. The first of these types of�Corresponding author. e-mail: sarah.king@nrlmry.navy.mil
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filters appeared in the early 2000s with Ito and Xiong
(2000) and Wu et al. (2006) but it was not until the cuba-
ture Kalman filter (Arasaratnam and Haykin, 2009) that
Gaussain quadrature filters became popular. Since then,
they have seen extensive use in radar tracking (Haykin
et al., 2011), traffic flow (Liu et al., 2017), power systems
(Sharma et al., 2017), etc.; however, they have not
enjoyed the same popularity in atmospheric and oceano-
graphic sciences. This is likely due to their expense as
quadrature rules require many evaluations of the nonlin-
ear model. The central difference filter (CDF) (Ito and
Xiong, 2000) uses low-order polynomial quadrature
requiring twice the number of model evaluations as the
size of the state space. Higher order quadrature methods
require even more model evaluations. The CDF has suc-
cessfully outperformed Extended Kalman Filter (EKF)
(Ito and Xiong, 2000), unscented Kalman filter (UKF)
(Ito and Xiong, 2000), and 4D-Var (King et al., 2016)
for low dimensional problems. The nonlinear filter pre-
sented here, the Assumed Gaussian Reduced (AGR) fil-
ter, is essentially a square root version of the CDF with
dynamical sampling.

The AGR filter uses low-order polynomial quadrature
that takes advantage of the properties of Gaussian distri-
butions to achieve an effective higher order of accuracy.
To further reduce the computational costs of the filter,
singular value sampling is used. These two techniques
make the AGR filter efficient in terms of nonlinear model
evaluations giving it potential for atmospheric and
oceanic applications. The algorithm for the AGR filter is
similar to that of a square-root EnKF but with a differ-
ent prediction step. This prediction step will cost more
computationally to perform than a typical EnKF predic-
tion step in terms of matrix and vector operations.
However, the AGR filter formulation of this prediction
step will be more accurate for numerical models with
small fourth order derivatives, i.e., moderately nonlin-
ear systems.

This manuscript is organized as follows: Section 2
begins with a brief review of Bayesian filtering followed
by details regarding assumptions about the associated
pdfs to arrive at a discrete filter in terms of Gaussian
integrals. The evaluation of these Gaussian integrals is
discussed in Section 3 in terms of low-rank polynomial
quadrature for scalar and multi-dimensional problems.
Results are presented relating to the performance of this
quadrature to help to define the scenarios in which this
filter should be used. The algorithm for the full AGR fil-
ter is presented in Section 4. Section 5 uses a one-dimen-
sional Korteweg-de Vries model and a two-dimensional
Boussinesq model to compare the performance of the
AGR filter versus a square root EnKF filter. Final

remarks are in Section 6. The appendix contains the for-
mulas used in Sections 2 and 3.

2. Linking Bayesian filtering to Gaussian
quadrature filters

We begin our discussion with a review of Bayesian filter-
ing in order to highlight the differences between common
types of nonlinear filters. The aim of Bayesian filtering is
to estimate the pdf pðxtjYTÞ, where xt is the current state
at time t and YT ¼ fy1, ::, ytg contains the previous obser-
vations up to time t. The Bayesian filter is most com-
monly developed as a recursive filter formed by first
applying Bayes’ rule to pðxtjytÞ and then applying the
Markovian properties of the observations, i.e. the prop-
erty that observations depend only on the current state.
The filter was first described in Ho and Lee (1964) and is
discussed detail in S€arkk€a (2013) and Chen (2003). This
filter is typically divided into two steps: the first step,
which we will refer to as the prediction step, computes
the prior distribution using preliminary information given
by the Chapman–Kolmogorov equation

pðxtjYT�1Þ ¼
ð
pðxtjxt�1Þpðxt�1jYT�1Þdxt�1: (2.1)

The second step, which we will refer to as the correc-
tion step, computes the posterior distribution

pðxtjYTÞ ¼ 1
Zt

pðytjxtÞpðxtjYT�1Þ (2.2)

where

Zt ¼
ð
pðytjxtÞpðxtjYT�1Þdxt

is the normalization constant. The exact solutions of (2.1)
and (2.2) are unknown except in special cases. In particu-
lar, for linear state dynamics where the prior pdf
pðxtjxt�1Þ is Gaussian and the measurement likelihood
pðytjxtÞ is Gaussian, the filter (2.2) has an exact solution
given by the Kalman filter (Kalman, 1960). Otherwise
(2.2) may be approximated using a particle filter (S€arkk€a,
2013; Poterjoy, 2016). In practice, the full pdf pðxtjYTÞ is
not used and instead only its first two moments, the
mean and covariance, are used. Under Gaussian assump-
tions this leads to what are referred to as Kalman-
type filters.

To summarize the relationship between the Bayesian
filter in (2.1) and (2.2) and Kalman-type filters we begin
by considering the system given by

xt ¼ f ðxt�1Þ þ wt (2.3)

with the observation process

yt ¼ Hxt þ vt (2.4)
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where x 2 R
n, y 2 R

d , f is the model, H is the linear map
between the state space and the observation space, w is
the Gaussian model error with covariance Q, and v is the
Gaussian observation error with covariance R. At time t,
the mean of the predictive distribution (2.1) is given by

xbt ¼ E xt,YT�1½ � (2.5)

¼
ð
R

n
xtpðxtjYT�1Þdxt (2.6)

¼
ð
R

n
f ðxt�1Þpðxt�1jYT�1Þdxt�1 (2.7)

where b in xbt indicates that x is the background estimate
of the mean at time t. Equation (2.7) is computed using
(A.3) from Appendix A where E½�� is the expectation.

Similarly, the covariance of (2.1) is given by

Pb
t ¼ E ðxt�xbt Þðxt�xbt ÞT

h i
(2.8)

¼
ð
R

n
ðxt � xbt Þðxt�xbt ÞTpðxtjYt�1Þdxt (2.9)

¼
ð
R

n
ðf ðxt�1Þ�xbt Þðf ðxt�1Þ�xbt ÞTpðxt�1jYT�1Þdxt�1 þQ

(2.10)

using (A.6). The equations for the prediction step, (2.7)
and (2.10), are both a consequence of the model error w
being Gaussian. To approximate the correction step, it is
first assumed that the joint distribution of ðxt, ŷtÞ is
Gaussian, more specifically,

pðxt, ytjYT�1Þ ¼ pðytjxtÞpðxtjYt�1Þ (2.11)

¼ N
xtb
^
yt

b

 !
, Pt

b Pt
xy

Pt
xyð ÞT Py

� � !
(2.12)

¼ N
xtb
^
yt

b

 !
, Pt

b Pt
bHT

HPt
b HPt

bHT þ R

� � !
(2.13)

where ŷbt is the estimated observations computed via (2.4)
using xbt ,P

xy
t is the cross-covariance between xbt and ŷbt ,

and Py
t is the covariance of ŷbt : The observation process

ŷbt and Py
t are computed similar to (2.7) and (2.10). The

computation of the cross covariance Pxy
t (2.13) may be

found in the appendix (Equation (A.12)). Then it follows
from (2.13) that the conditional distribution of xt given yt
in (2.2) is approximated in terms of the mean xat and
covariance Pa

t

pðxtjyt,Yt�1Þ ¼ pðxtjYTÞ
¼ NðxtjYTÞ

where the mean and covariance are given by the Kalman
equations

xat ¼ xbt þ Ktðyt�Hxbt Þ (2.14)

Pa
t ¼ ðI�KtHÞPb

t (2.15)

Kt ¼ Pb
tH

TðHPb
tH

T þ RÞ�1 (2.16)

where xat is the mean at the analysis (denoted by the a) at
time t, y are the observations, and Kt is the Kalman gain.
Note that in the above Kalman-type filter framework we
have assumed the observation operator H is linear, how-
ever, this need not be the case (Ito and Xiong, 2000;
S€arkk€a, 2013). In general, solving (2.7) and (2.10) expli-
citly is intractable for large problems, including the large
problems found in geosciences. One strategy for approxi-
mating (2.7) and (2.10) is to use sampling which leads to
the expressions for the sample mean and covariance used
in EnKFs. Another strategy is to make the further simpli-
fying assumption that pðxt�1jYT�1Þ is Gaussian, arriving
at a particular type of assumed density filter referred to
as a Gaussian filter in literature. Since EnKF filters also
contain Gaussian assumptions, to differentiate these fil-
ters we will refer to Gaussian filters as Gaussian quadra-
ture filters.

To form the basis for Gaussian quadrature filters, we
will make the additional simplifying assumption

pðxt�1jYT�1Þ ¼ Nðxt�1jYT�1Þ, (2.17)

i.e., that our prior distribution is Gaussian. With this
additional assumption, Equations (2.7) and (2.10) sim-
plify and we arrive at the algorithm

(1) Prediction step:

xbt ¼
ð
R

n
f ðxt�1ÞNðxt�1jYT�1Þdxt�1 (2.18)

Pb
t ¼

ð
R

n
ðf ðxt�1Þ�xbt Þðf ðxt�1Þ�xbt ÞTNðxt�1jYT�1Þdxt�1

þQ:

(2.19)

(2) Correction step:

Kt ¼ Pb
tH

TðRþHPb
tH

TÞ�1

xat ¼ xbt þ Ktðyt �Hxbt Þ
Pa
t ¼ ðI � KtHÞPb

t :

With this formulation it is easily verified that for a lin-
ear f(x) in (2.3), we arrive at the Kalman filter equations
exactly. In this regard, the Gaussian quadrature filters
can be seen as a nonlinear extension of the Kalman filter.
Other nonlinear filters such as the extended Kalman filter
or UKF (Julier et al., 2000) may also be formulated using
this framework (S€arkk€a, 2013).

3. Gaussian integration

The distinct feature of Gaussian quadrature filters is the
evaluation of the Gaussian integrals (2.18) and (2.19)
which are multidimensional integrals of the form

I ¼
ð
R

n
Fðxt�1ÞNðxt�1jxat�1,P

a
t�1Þdxt�1 (3.1)
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where Fð�Þ is a general function and Nðxt�1jxat�1,P
a
t�1Þ is

equivalent to Nðxt�1jYT�1Þ: These types of filters are dif-
ferentiated by the type of quadrature they use, for
example, the Gauss-Hermite Kalman filter (Ito and
Xiong, 2000; Wu et al., 2006), the cubature Kalman filter
(Arasaratnam and Haykin, 2009), and the central differ-
ence filter (Ito and Xiong, 2000). The quadrature rules in
these methods entail model evaluations and the computa-
tion of weights requiring a trade-off between cost and
performance. Higher order methods provide greater
numerical accuracy but require substantially more model
evaluations which may be cost prohibitive. We will use
low-order polynomial quadrature to balance computa-
tional cost and performance.

3.1. Gaussian pdf integration: scalar case

To discuss the evaluation of the Gaussian integrals of the
form (3.1), we begin with the scalar case given by

I ¼
ð
R

Fðxt�1ÞNðxt�1jxat�1,P
a
t�1Þdxt�1:

Using the change of variables xt�1 ¼
ffiffiffiffi
P

p
gþ xat�1,

where
ffiffiffiffi
P

p
is the square root of Pa

t�1, we arrive at the
integral in standard form given by

I ¼
ð
R

~F ðgÞNðgj0, 1Þdg

where ~F ðgÞ ¼ F
ffiffiffiffi
P

p
gþ xat�1

� �
: This form of the Gaussian

integral allows for the development of explicit formulas
to evaluate it. We approximate Fð�Þ by a second-degree
polynomial cðsÞ given by

cðsÞ ¼ ~F ð0Þ þ a1sþ 1
2
a2s2 (3.2)

where

a1 ¼
~F ðdÞ�~F ð�dÞ

2d
and a2 ¼

~F ðdÞ�2~F ð0Þ þ ~F ð�dÞ
d2

(3.3)

where d> 0 is the step size. Note that because of the
change in variables the first and second derivatives, a1
and a2, are in the direction of

ffiffiffiffi
P

p
: Then using (3.2) in

(2.18), the prior mean estimate is given by

xbt ¼
ð
R

f
ffiffiffiffi
P

p
gþ xat�1

� �
Nðgj0, 1Þdg (3.4)

¼
ð
R

f
ffiffiffiffi
P

p
� 0þ xat�1

� �
þ a1gþ 1

2
a2g2

� �
1ffiffiffiffiffiffi
2p

p e�
1
2g

2
dg

(3.5)

¼ f ðxat�1Þ þ
1
2
a2: (3.6)

The odd term in (3.5) zeros out and the mean estimate
is now the previous mean propagated forward with a

second-order correction term. Similarly, using (3.2) and
(3.6), we may compute the prior covariance prediction
(2.19) as

Pb
t ¼

ð
R

�
f

ffiffiffiffi
P

p
gþ xat�1

� �
�xbt

�2

Nðgj0, 1ÞdgþQ (3.7)

¼
ð
R

a1gþ 1
2
a2g2 � 1

2
a2

� �2
1ffiffiffiffiffiffi
2p

p e�
1
2g

2
dgþQ (3.8)

¼ a21 þ
1
2
a22 þQ: (3.9)

The variance is now in terms of the first and second
derivatives of the model. The primary cost of evaluating
(3.6) and (3.9) comes from computing a1 and a2 via (3.3)
which requires three evaluations of the model (2.3):
f ðxat�1Þ, f xat�1�d

ffiffiffiffi
P

p� �
, and f xat�1 þ d

ffiffiffiffi
P

p� �
:

One of the reasons this method is effective is that the
quadrature error of the mean estimation in (3.6) is based
on the fourth derivative of the model f even though we
are using a second-order polynomial approximation, see
(B.3) in Appendix B. This is due to the fact that odd
terms drop out in Gaussian polynomial integration.
Meanwhile, the quadrature error in the estimation of the
covariance, see (B.6), is related to the size of the third
derivative of f.

3.2. Non-Gaussian pdf integration

For comparison, we now consider the case of (2.7) and
(2.10) without making a Gaussian assumption. To sim-
plify our notation, we will denote pðxt�1jxat�1,P

a
t�1Þ the

prior pdf by pðxt�1Þ: Assume at time t we have xt�1

sampled from pðxt�1Þ we may then determine the
expected error in the mean and variance at time t by
propagating samples drawn from pðxt�1Þ forward, and
determining their error (see Section 3.3). As in the previ-
ous case where pðxt�1Þ is Gaussian, we will relate the
error to the moments of pðxt�1Þ: This is most conveni-
ently done through a Taylor-series expansion of (2.3). To
this end, note that

xt ¼ f ðlt�1Þ þ
df

dxt�1
ðxt�1�lt�1Þ þ

1
2

d2f
dx2t�1

ðxt�1�lt�1Þ2

þ � � �
(3.10)

where lt�1 is the true mean of pðxt�1Þ: Applying (3.10) to
the expectation of xt gives

lt ¼ E xt½ � (3.11)

¼
ð
R

f ðxt�1Þpðxt�1Þdxt�1 (3.12)

¼ f ðlt�1Þ þ
1
2

d2f
dx2t�1

r2t�1 þ � � � (3.13)
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where r2t�1 is the variance derived from pðxt�1Þ: Similarly,
subtracting (3.13) from (3.10), squaring the result, and
applying the expectation one obtains

r2t ¼
df

dxt�1
r2t�1

df
dxt�1

þ 1
2

df
dxt�1

Tt�1
d2f
dx2t�1

þ 1
4

d2f
dx2t�1

ðFt�1�r4t�1Þ
d2f
dx2t�1

þ � � � (3.14)

where Tt�1 and Ft�1 are the third and fourth moments of
pðxt�1Þ, respectively. Without the simplifying assump-
tions used in the Gaussian pdf case, we arrive at these
infinite sums for the mean and covariance.

3.3. EnKF framework

To evaluate integrals of the form (2.7) and (2.10), or the
expressions in (3.13) and (3.14), in an EnKF framework,
statistical sampling is used. The sample mean and vari-
ance at time t are

�xt ¼ 1
k

Xk
i¼1

xðiÞt (3.15)

s2t ¼
1

k� 1

Xk
i¼1

�
xðiÞt ��xt

�2

(3.16)

where k is the number of samples. The error in these esti-
mates is well-known form central limit theorem-type
arguments (for example, see Hodyss et al., 2016). The
error may be quantified by calculating the squared devi-
ation about the true mean and variance:

Eðð�xt�ltÞ2Þ ¼
r2t
k

(3.17)

Eððs2t�r2t Þ2Þ ¼
1
k

Ft � k�3
k� 1

r4t

� �
: (3.18)

The AGR filter update Equations (3.6) and (3.9) are only
approximating the first few terms in (3.13) and (3.14)
assuming the pdf pðxt�1Þ is Gaussian. In contrast, the sam-
ple mean (3.15) and sample covariance (3.16) are attempting
to approximate the full sums in (3.13) and (3.14) without
knowledge of pðxt�1Þ which is a more difficult task.

3.4. Scalar example

In this example, we explore the differences in the pre-
dicted mean and covariance estimates used by the AGR
filter and EnKF filters. In the scalar case, the AGR filter
is full rank allowing for comparison between the error
caused by the low-order polynomial approximation (3.2)
versus the sampling error in an EnKF estimate. Consider
the scalar model given by

f ðxÞ ¼ c1xþ c2x2 þ c3x3 þ c4x4 (3.19)

with pðx0Þ Gaussian and l0 ¼ 0: This implies from (3.13)
and (3.14) that the true mean and variance are given by

l1 ¼ hx1i ¼ c2r20 þ � � � (3.20)

r21 ¼ c1r20c1 þ 2c2r40c2 þ � � � (3.21)

In this example, and the following examples, we are
not considering model error. For the EnKF case, where
we approximate (3.20) and (3.21), the mean and covari-
ance depend on c1 and c2. We set the variance P¼ 1 and
c1, c3 ¼ 0 and let 0 � c2 � 0:6 and 0 � c4 � 0:05: We
define the true solution to this problem to be given by
(3.15) with k¼ 50,000. In this case, we perform a random
draw from P to form the ensembles. We propagate the
mean estimate for the AGR filter and the ensemble for
the EnKF using (3.19) and compute the error in the pre-
dicted means and covariances. The error map of the
mean estimates of (3.6) and (3.15) for the different values
of c2, c4 and ensemble sizes k¼ 5, 10, 100 for the EnKF
are shown in Fig. 1. Note for this example the AGR filter
only requires 3 model evaluations as described in Section
3.1 whereas the EnKF requires the same number of
model evaluations as the ensemble size.

In Fig. 1a and (b), for a similar number of model eval-
uations to the AGR filter, the sampling error in the
EnKF estimates are quite large. Note that the color bars
in (a) and (b) are the same and are of a different order
than the color bars used in (c) and (d). In panels (c) and
(d), the amount error in the EnKF estimate with k¼ 100
and the AGR filter is comparable. The AGR filter quad-
rature error is invariant with respect to changes in c2,
whereas the EnKF estimation error depends on both c2
and c4 as expected given (3.20). If c4, which the fourth
derivative depends on, is sufficiently small we expect bet-
ter performance from the AGR filter estimated mean
(3.6) regardless of the size of c2.

In the prior covariance estimates in Fig. 2, we see in
(a) that the error in the EnKF covariance estimate with
k¼ 100 grows with increases in c2 and c4. By comparison,
the error in the AGR filter covariance in (b) is small
when c4 is small and grows as the fourth-order derivative
grows as expected since the error depends on c24: The
AGR filter covariance estimation is equal to or better
than the EnKF estimate for small c4. For larger c4, the
EnKF covariance estimate performs better. Note for this
example we do not have a c3 term which the error in the
AGR filter and EnKF depends on as well.

This example demonstrates the types of scenarios
where one might choose one type of filter over another.
For small ensemble sizes, the AGR filter may be the pref-
erable choice as well as for the case where the model is
moderately nonlinear, i.e. small magnitude higher order
terms. For a large ensemble with large model fourth
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Fig. 2. The L2 error in (a) EnKF prior covariance estimate for k¼ 100 and (b) the error in the AGR filter prior covariance estimate
for increasing values of c2 (horizontal axis) and c4 (vertical axis).

Fig. 1. The L2 error in the estimated (a) EnKF mean (3.15) for k¼ 5, (b) EnKF mean for k¼ 10, (c) EnKF mean for k¼ 100, and (d)
AGR filter mean (3.6) for increasing values of c2 (horizontal axis) and c4 (vertical axis). Note that the color scales are different between
the first two plots (a) & (b) and the second two (c) & (d).
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derivatives, the EnKF may provide a better estimate of
the predicted mean.

3.5. Gaussian pdf integration: multi-dimensional case

We will now extend the results in Section 3.1 to higher
dimensions. To evaluate integrals of the form (3.1), we
begin by first applying the coordinate transform xt�1 ¼
STgþ xat�1, where S is the square root of the covariance
Pa
t�1 such that Pa

t�1 ¼ STS: Using this change of coordi-
nates, we can convert (3.1) to the standard form with
N(0, I), where I is the identity matrix. Then

I ¼
ð
R

n

~F ðgÞ 1

ð2pÞn=2
e�

1
2jgj2dg (3.22)

where

~F ðgÞ ¼ FðSTgþ xat�1Þ: (3.23)

Using (3.22) we can develop formulas to evaluate (2.18)
and (2.19) explicitly based on polynomial quadrature. In
Ito and Xiong (2000), ~F ðgÞ is approximated by the func-
tion cðgÞ such that ~F ðziÞ ¼ cðziÞ for points fzig in R

n:

The multivariate polynomial cðgÞ is given by

cðgÞ ¼ ~F ð0Þ þ
Xn
i¼1

aisi þ 1
2

Xn
i¼1

bis2i (3.24)

where ai 2 R
n is the ith column of a, the first-order vari-

ation or Jacobian, si is the ith column of S, and bi is the
ith column approximation of the second-order variation,
or Hessian. The coefficients a and b may be determined
using centered differencing, similar to the scalar case, via

ai ¼ f ðdeiÞ�f ð�deiÞ
2d

, 1 � i � n (3.25)

where feig 2 R
n are unit vectors and d> 0. We approxi-

mate bi via

bi ¼ f ðdeiÞ�2f ð0Þ þ f ð�deiÞ
d2

, 1 � i � n: (3.26)

Evaluating a and b requires 2nþ 1 model evaluations.
Note that we do not use cross derivative terms in the
Hessian which would require an additional 1

2 nðn�1Þ
model evaluations to compute.

Using the polynomial in (3.24), we can write the inte-
gral (3.22) as

I ¼
ð
R

n
cðgÞ 1

ð2pÞn=2
e�1=2jgj2dg (3.27)

and create explicit formulas for the mean and covariance:

xbt ¼
ð
R

n
cðgÞ 1

ð2pÞn=2
e�1=2jgj2dg (3.28)

¼ 1

ð2pÞn=2
ð
R

n

~F ð0Þ þ
Xn
i¼1

aigi þ
1
2

Xn
i¼1

big2i

 !
e�1=2jgj2dg (3.29)

¼ f ðxat�1Þ þ
1
2

Xn
i¼1

bi (3.30)

and

Pb
t ¼ Qþ

ð
R

n
ðcðgÞ�xbt ÞðcðgÞ�xbt ÞT

1

ð2pÞn=2
e�1=2jgj2dg

(3.31)

¼ Qþ 1

ð2pÞn=2
ð
R

n

Xn
i¼1

aigi þ
1
2

Xn
i¼1

big2i �
1
2

Xn
i¼1

bi

 !

(3.32)

�
Xn
i¼1

aigi þ
1
2

Xn
i¼1

big2i �
1
2

Xn
i¼1

bi

 !T

e�1=2jgj2dg (3.33)

¼ Qþ
Xn
i¼1

aiaTi þ 1
2

Xn
i¼1

bibTi : (3.34)

To summarize, a change of coordinates is used to trans-
form the Gaussian integrals into standard form. We then
approximate ~F ðsÞ by a quadratic polynomial. Using this
approximation, we create self-contained formulas for the
predicted mean and covariance.

Similar to the scalar case, odd polynomial terms drop
out in the polynomial quadrature. This results in the quad-
rature error in estimating the mean (3.30) on the order of
the fourth derivative of the nonlinear model (see (B.8) in the
appendix) even though our polynomial approximation
(3.24) is only second order. We do not see as much benefit
in the computation of the covariance as the error given by
(B.11) is related to the cross terms in the Hessian approxi-
mation that were dropped in (3.24). Overall, the contribu-
tion to the filter error from the low-order polynomial
quadrature is minimized for moderately nonlinear systems.

3.5.1 Multidimensional example. For this example, we
will again look at the effects of nonlinearity versus sam-
pling in the AGR filter and the EnKF. We consider a
variable coefficient Korteweg-de Vries (KdV) model that
governs the evolution of Rossby waves in a jet flow
(Hodyss and Nathan, 2002). This may be written as

At�Axxxx þmpðxÞAx þmgðxÞ�AAx ¼ 0 (3.35)

where

mpðxÞ ¼ 1� exp ð�ax2Þ
mgðxÞ ¼ �2ax exp ð�ax2Þ

and a¼ 0.0005. The derivatives are vanishing on the
boundary, the initial condition is given by a solitary
Rossby wave, and we use 512 model computational
nodes. A contour plot of the true solution in time is
shown in Fig. 3.

We begin by creating a 35,000 member ensemble that
will be used as the true solution in our experiments. This
ensemble was created by drawing the members from

A NUMERICAL INTEGRATION-BASED KALMAN FILTER 7



climatology then using an EnKF to perform three system
cycles using observations created from an ensemble mem-
ber. This was done to improve the quality of the ensem-
ble. The resulting covariance Pb

0 of this ensemble has
eigenvalues plotted in Fig. 4.

The eigenvalues of Pb
0 and their corresponding eigen-

vectors will be used to form S ¼ ffiffiffiffi
P

p
needed by the AGR

filter. Additionally, members for smaller ensemble sizes
will be drawn randomly from the 35,000-member ensem-
ble. Since Pb

0 has near-zero eigenvalues, we will consider
only the first 250 eigen-directions thus

Pb
0 �UmRmUT

m

where Rm is a truncated matrix with the first 250 eigen-
values of Pb

0 along the diagonal and Um is composed of

the corresponding eigenvectors. The square root of Pb
0 is

then given by Sm ¼ Um
ffiffiffiffiffiffiffi
Rm

p
which is used in the coordin-

ate transform (3.23). In this example, 501 model evalua-
tions are used to compute (3.30) and (3.34), thus the
solution will be compared to an ensemble with 500 mem-
bers for fairness. Similar to the one-dimensional example,
the error in the prior mean estimates of the AGR filter
and the EnKF is examined as nonlinearity is increased.
The nonlinearity is further developed by increasing the
amount of time (t0) the model is integrated forward.

One way to observe the impact of the increased nonli-
nearity is to look at the influence of b in (3.24). For com-
parison we consider the filter without the second-order
correction term which uses the first-order polynomial
quadrature as AGR1, and with b which uses the second-
order polynomial quadrature as AGR2.

Both filters are initialized using the mean of the 35,000
member ensemble, which we consider to be the true
mean. The perturbations for the 500 member ensemble
are drawn from the 35,000 member ensemble and then
re-centered on the true mean. The S for the AGR filters
is described above. All methods are integrated forward to
t0 and the prior means and covariances are computed.
Fig. 5a compares the L2 error in the EnKF prior mean
solution with K¼ 500 and the AGR filter solutions with
m¼ 250. The AGR2 filter significantly outperforms the
AGR1 filter, demonstrating the importance of the
second-order correction term. The AGR2 filter outper-
forms the EnKF until about t0 ¼ 0:55 or 5501 model
time steps. The AGR2 filter performs well prior to this
point having half the error of the EnKF at t0 ¼ 0:25 or
2501 model time steps. Fig. 5b compares the covariances
of the EnKF and AGR filter using the Frobenius norm
given by

Fig. 3. Contour plot of the wave amplitude over the domain (vertical axis) of the KdV equation over time (horizontal axis).

Fig. 4. The 512 sorted eigenvalues of the initial background
error covariance Pb

0 created from a 35000 member climatological
ensemble. The horizontal axis is the eigenvalue number and the
vertical axis is the magnitude of each eigenvalue.

8 S. A. KING ET AL.



jjAjjFRO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðATAÞ

q
:

The AGR1 and AGR2 filters have about the same
error in their covariances and outperform the EnKF until
about t0 ¼ 1: For model regimes which do not have
overly large higher order terms, the AGR2 may provide
better estimation.

For large n, evaluating (3.30) and (3.34) is prohibitively
expensive since it requires 2ne þ 1 model evaluations
where ne is the number of nonzero eigenvalues. To reduce
the computational cost, we consider the case where only
the leading m eigenvalues are kept. Ideally, m would be
chosen so that the singular values capture the essential
dynamics, however, in atmospheric applications this is
may not be possible due to computational constraints.
The truncation error in the estimation of the square root
Sm of Pa

t�1 is given by

jS�Smj �
X
i>m

ffiffiffiffi
ri

p
: (3.36)

If Pa
t�1 has n–m eigenvalues approaching zero this esti-

mation is very accurate. In other words, the extent of the
correlations in Pa

t�1 determines the accuracy of this trun-
cation. The error in evaluating (3.30) and (3.34) now
comes from both quadrature and this truncation.

We repeat the previous experiment with K¼ 40 intro-
ducing undersampling for the EnKF estimate and m¼ 20
for the AGR estimates. Again we see the importance of
the second-order correction term when comparing AGR1
and AGR2 in Fig. 6a. In (a) the AGR2 filter again has
half the error of the EnKF at t0 ¼ 0:25: However, due to
the presence of sampling error in both of the prior mean
estimates, the AGR2 continues to outperform the EnKF

until about t0 ¼ 1:55 or 15,501 model time steps after
which time the EnKF has a slight edge in performance.
In (b) both the AGR1 and AGR2 estimates outperform
the EnKF covariance estimates for various values of t0.

In both the cases with undersampling and without
undersampling the AGR2 consistently outperformed
AGR1 due to the inclusion of the second-order correction
term b. Additionally, in both cases, there was a moder-
ately nonlinear regime in which the AGR2 filter outper-
formed the EnKF. Similar to the scalar case, the AGR2
filter was found to be more sensitive to increased nonli-
nearity than the EnKF; however, the EnKF proved to be
more sensitive to undersampling. This broadened the
regime in which the AGR2 filter outperformed
the EnKF.

3.5.2 A note on Pb
0. For this example, Sm was computed

from Pb
0 for the AGR filters. This Pb

0 was created using a
35,000 member climatological ensemble. Using fewer
ensemble members to create Pb

0 introduces another source
of error at the starting time. For example, if Pb

0 is con-
structed with ke ¼ 40, 80, 160, 35000 ensemble members,
then the accuracy of the AGR2 filter for m¼ 20 decreases
accordingly for computing the prior covariance estimates
as in Fig. 7. For convenience, we have included the error
estimate for the EnKF in this plot. Note that the ensem-
ble of the 40 member EnKF is drawn from the 35,000
member climatological ensemble. There are numerous
strategies to develop a more accurate and higher rank Pb

0

(Clayton et al., 2013; Derber and Bouttier, 1999) which
are beyond the scope of this paper.

Fig. 5. (a) The L2 error (vertical axis) in the estimate of the prior mean for the EnKF with k¼ 500, the AGR1 with m¼ 250, and
AGR2 with m¼ 250 for time step length t0 (horizontal axis). (b)The error in the Frobenius norm of the corresponding
covariance estimates.
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4 AGR filters

In order to utilize the mean (3.30) and covariance (3.34)
updates, we develop an algorithm in the same vein as the
ensemble square root filters (Whitaker and Hamill, 2002),
i.e. we will update Sm keeping Pb in factored form. To
begin with we note that after some algebraic manipula-
tion and dropping Q, we may rewrite (3.34) as

Pb
t ¼ a I þ aT

1
2
bbT

� ��1

a

 !�1
0
@

1
AaT: (4.1)

where a ¼ ½a1, :::, am� and b ¼ ½b1, :::, bm� are computed
using the centered differencing scheme

ai ¼ f ðSTðdeiÞ þ xat�1Þ�f ðSTð�deiÞ þ xat�1Þ
2d

, 1 � i � m

(4.2)

and we approximate bi via

bi ¼ f ðSTðdeiÞ þ xat�1Þ�2f ðxat�1Þ þ f ðSTð�deiÞ þ xat�1Þ
d2

,

1 � i � m:

(4.3)

The above equations are the same as (3.25) and (3.26)
but with the truncated S ¼ Sm. Letting n ¼ ffiffiffi

2
p

b†a, where
b† is the Moore-Penrose pseudo inverse, and using (4.1),
then P ¼ ~a~aT where

~a ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ ðnTnÞ�1

q
: (4.4)

Note that n 2 R
m so the expression in (4.4) may not be

overly expensive to compute. To form the filter, we use
the Potter method (Potter, 1963) for the Kalman square
root update in reduced order form. This will improve the

numerical robustness by ensuring P ¼ STS is symmetric
and reducing the amount of storage required by the
AGR filter by only storing the square root S. To form
the filter, let

b ¼ H~a 2 Rp�m (4.5)

then

Z ¼ RþHPbHT ¼ Rþ bbT,Kt ¼ ~abTZ�1: (4.6)

Thus,

Pa
t ¼ ~aðI�bTZ�1bÞ~aT :

Letting g ¼ I�bTZ�1b ¼ VDVT then we update S by

St ¼
ffiffiffiffi
D

p
þ �I

� �
VT~a

where �> 0 is a tunable parameter. We have chosen to
form a regularized S which will help with the condition-
ing of the matrix and decrease dispersion. Other inflation
methods such as multiplicative covariance inflation may
also be used. To summarize, the algorithm for the AGR2
filter is as follows:
1. Given St�1 ¼ ½s1, :::, sm� compute xbt and ai, bi

for 1 � i � m:

2. Compute ~a as in (4.4).
3. Let b ¼ H~a then

xat ¼ xbt þKtðyt�HxbtÞ
where

Kt ¼ ~abTZ�1

and

Z ¼ Rþ bbT :

Fig. 6. (a) The L2 error (vertical axis) in the estimate of the prior mean for the EnKF with k¼ 40, the AGR1 with m¼ 20, and AGR2
with m¼ 20 for time step length t0 (horizontal axis). (b) The corresponding error in the Forbenius norm for the prior
covariance estimates.
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1. Decompose g such that g ¼ VDV T where D is
diagonal and V is unitary. Then St ¼

ffiffiffiffi
D

p þ �I
� �

V T ~a:

The algorithm itself is readily implemented and requires
minimal tuning of the parameter d from Equations (4.2)
and (4.3). For quasi-linear systems, the second-order cor-
rection term b may be dropped giving the AGR1 filter. In
this case, we may further reduce computational cost by
using finite differencing instead of centered differencing.
Then to evaluate (3.30) and (3.34), we use the finite differ-
encing scheme to approximate the ai, i ¼ 1, :::,m, i.e.,

ai ¼ f ðSTðdeiÞ þ xat�1Þ�f ðxat�1Þ
d

, 1 � i � m (4.7)

after the coordinate change where d> 0 is the step size.
The benefit of computing ai in this manner is that this
only requires mþ 1 model evaluations. Note that the
expression (4.7) amounts to a directional derivative deter-
mined by the truncated S. In using S the derivative is
computed in the direction of the largest change in the
dynamics. Meanwhile, the parameter d restricts the search
direction to a constrained set. This is a generalization of
the standard derivative, in fact it is a numerical approxi-
mation of the Jacobian under a coordinate transform-
ation. In this way, the AGR1 may be viewed as a form
of an extended Kalman filter.

5. Data assimilation

In this section, we present data assimilation comparisons
between the AGR2 filter, described in the previous section,
and the ensemble square root filter (Tippett et al., 2003) as the
example EnKF method. We use this particular filter as the
correction step as it is most similar to the AGR filter while
having an ensemble estimate for the mean and covariance.

5.1. 1D Example

We return to the KdV model given by (3.35). As before
we will use k¼ 40 ensemble members drawn from the
35,000 member ensemble for the EnKF and the AGR2
filter with m¼ 20. This time the initial xa0 for the AGR2
filter will be the mean of the k¼ 40 EnKF ensemble.
Both the EnKF and AGR2 filter will use the same 32
observations at assimilation time. We use localization and
multiplicative inflation wherein the correlation length
scale used in the localization and the inflation factor were
tuned so that the ensemble variance correspond to the
true error variance. We again consider different values of
t0, the time the model is integrated forward before assimi-
lation, to see how increasing the nonlinearity affects these
two filtering algorithms. To reduce the influence of the
initial conditions, we will only consider assimilation cycles
200–450.

Fig. 7. The error in the Frobenius norm (vertical axis) of the prior covariance estimates in the AGR2 filter for m¼ 20 with Pb
0

computed using ke ¼ 40, 80, 160, 35000 ensemble members for time step length t0 (horizontal axis).
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Figure 8 is a plot of the average error across a data
assimilation window for various t0. For smaller t0 the
model integration is less nonlinear and we can see that
the AGR2 filter has about 30% less error than the EnKF.
As t0 gets larger, the model integration is more nonlinear
and the error in the solution of the AGR2 grows more
rapidly than the EnKF and by t0 ¼ 2:05 or 20001 model
time steps the AGR2 error is about 24% less than
the EnKF.

This cycling experiment result demonstrates that the
improvement in the predicted mean and covariance esti-
mates seen in Fig. 6 leads to an improvement in the data
assimilation state estimation or analysis. Also it demon-
strates that increasing the nonlinearity has more of an
impact on the quality of the AGR2 solution versus the
EnKF solution.

5.2. 2D Example

We will now investigate the performance of the proposed
AGR filter using a two-dimensional Boussinesq model
that develops Kelvin-Helmhotz waves, specifically, we use
the model developed in (Hodyss et al., 2013). The govern-
ing equations given by

@f
@t

¼ � u
@f
@x

þ w
@f
@z

þ g
h0

@h
@x

� �
þ F,

@h
@t

¼ � u
@h
@x

þ w
@h
@z

þ w
@h0
@z

� �
þH,

(5.1)

where

u ¼ @w
@z

,w ¼ � @w
@x

, and f ¼ r2w,

r2 is the Laplacian operator, u and w are zonal and ver-
tical winds, respectively, h is the potential temperature,
and f is the vorticity. The vorticity source F and the heat
source H both have sub-grid scale parameterizations,
more details may be found in Hodyss et al. (2013). The
buoyancy frequency of the reference state H0 is given by
the background potential temperature: N2

0 ¼ g
h0

dh0
dz ¼

10�4s�1: And

U0 ¼ V
2

1þ tanh l
z�z0
L

� �	 


is the reference state for the zonal wind with V ¼
10ms�1, l¼ 8, L¼ 1 km, and z0 ¼ 0:5 km. The z bound-
ary conditions are a mirrored forcing the vertical velocity
to vanish. Additionally, there are sponge boundaries
along the left and right sides of the channel. At time
t¼ 0, the flow is perturbed leading to waves that amplify
as they travel then break. For this experiment, the model
was run with 128 computational nodes in the x direction
and 33 nodes (unmirrored) in the z direction. All told the
state vector has 8448 elements. The true solution at the
end of the assimilation window may be seen in Fig. 9 for
(a) the vorticity and (b) the temperature. As the waves
move across the atmospheric slice, they grow and eventu-
ally shear.

Fig. 8. The L2 error (vertical axis) averaged over the assimilation window for increasing t0 (horizontal axis), the time between cycles,
for the EnKF and the AGR2 filter.
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During the assimilation window, the model is
advanced, then the filtering is performed with 112 tem-
perature and 112 wind observations. The observations are
created by perturbing the truth via

yt ¼ ytruet þ R1=2nt (5.2)

where R is the instrument error covariance and n is
white noise. For this experiment, R ¼ 1e�2 for both
the temperature and wind. A 24,000 member ensemble
was created by cycling random perturbations through
the model. The smaller k¼ 20 and k¼ 40 ensembles
were drawn from this 24,000 member ensemble and
which was also used to create Pb

0 for the AGR filter.
We initialize the xa0 used in the AGR filter with the
mean of the k¼ 20 ensemble for the EnKF. Both the
EnKF with k¼ 20, 40 and the AGR2 filter will use the
same observations for a particular t0. Again both types

of filters are using localization and inflation tuned to
so that the ensemble variance matches the true error
variance. We will compute the error averaged over
assimilation cycles 100–400 to reduce the influence of
the initial conditions.

The error in the mean estimation plots in Fig. 10a and
b demonstrate similar results to the one-dimensional KdV
example. For the more linear case t0 ¼ 75, the AGR2 fil-
ter significantly outperforms the EnKF. As t0 is
increased, the nonlinearity increases and the AGR2 filter
loses its performance advantage over the EnKF until
around t0 ¼ 300: As before, the increased nonlinearity
has a greater impact on the performance of the AGR2 fil-
ter as opposed to the EnKF.

We have presented two example problems comparing
the AGR filter and the EnKF. The first example was a
one-dimensional KdV model in which the AGR filter
outperformed the EnKF but was more influenced by

Fig. 9. The true solution of (5.1) at time t¼ 15000, or 200 cycles of 75 seconds, for (a) vorticity and (b) temperature. The vertical axis
is the height and the horizontal axis is the distance.
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nonlinearity. In the second example, a two-dimensional
Boussinesq model was considered. In this case, starting
with t0 ¼ 75, the AGR filter out performed the EnKF.
When t0 ¼ 300, the error in the mean estimation has

more than doubled and the performance between the
AGR filter and the EnKF are comparable. Again we see
that the AGR filter is more affected by the nonlinearity
in the model than the EnKF.

Fig. 10. The averaged L2 error (vertical axis) across the data assimilation window in the mean estimates for particular t0 (horizontal
axis) for (a) vorticity and (b) temperature.
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6. Final remarks

We have presented a quadrature Kalman filter, the AGR
filter, for moderately nonlinear systems. The filter uses
numerical quadrature to evaluate the Bayesian formulas
for optimal filtering under Gaussian assumptions. The
AGR filter has the Gaussian noise assumptions and
Gaussian joint distribution assumption from Kalman fil-
tering with the added assumption that the prior distribu-
tion is Gaussian. This leads to Gaussian integrals which
are evaluated using the second-order polynomial quadra-
ture. Due to the properties of Gaussian distributions,
using this polynomial achieves the same precision as a
third-order polynomial quadrature. This effective higher
order quadrature is key to the success of this filter.

In numerical tests, the AGR filter was found to out-
perform a comparable square-root EnKF in regions of
low-to-moderate nonlinearity for a KdV model and a
Boussinesq model. We expect these results to extend to
more realistic atmospheric models, given that fourth and
higher order terms of the model are sufficiently small.
For highly nonlinear dynamical systems, the AGR filter
is affected more than the square-root EnKF but may still
provide performance benefit if the system is severely
under-sampled as demonstrated in the scalar example in
Section 3.4. It is also possible to use higher order quadra-
ture to reduce the effect of nonlinearity but this would,
of course, increase the computational costs of the filter.

While the Gaussian assumption made in this filter may
seem restrictive, this assumption is commonly made, or
effectively made, in data assimilation. For example, recent
results indicate that it may require an ensemble with on the
order of one thousand members to capture non-Gaussianity
pdfs present in an EnKF for a simplified general circulation
model (Miyoshi et al., 2014). This is already significantly
more than the O(100) ensemble members typically used in
EnKFs for full complexity atmospheric models. Effectively,
a Gaussian assumption is being made due to the sample
size. The computational efficiency of the AGR filter means
that there is greater opportunity to pursue non-Gaussian
pdfs via Gaussian mixture models (GMMs). In GMMs a
non-Gaussian distribution is approximated by a series of
Gaussian distributions which, in this case, would lead to an
optimally weighted ensemble of AGR filters.
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A. Formulas

A.1. Expectation formulas

Consider the expectation

E xt,YT�1½ � ¼
ð
R

n
xtpðxtjYT�1Þdxt (A.1)

¼
ð
R

n

	ð
R

n
xtpðxtjxt�1Þdxt



pðxt�1jYT�1Þdxt�1 (A.2)

¼
ð
R

n
fðxt�1Þpðxt�1jYT�1Þdxt�1 (A.3)

where E½�� is the expectation. Note that (A.2) follows
from (2.1) and Fubini’s theorem and (2.7) follows from
(2.3) and wt being Gaussian. Similarly, the predicted
covariance is given by

E xtx
T
t

� � ¼ ð
R

n
xtx

T
t pðxtjYT�1Þdxt (A.4)

¼
ð
R

n

	ð
R

n
xtx

T
t pðxtjxt�1Þdxt



pðxt�1jYT�1Þdxt�1 (A.5)

¼
ð
R

n
fðxt�1Þfðxt�1ÞT pðxt�1jYT�1Þdxt�1 þQ: (A.6)

A.2. Covariance

The cross covariance in (2.13) is computed via
Pxy
t ¼ E ðxt�xbtÞðŷt�ŷbtÞT

h i
(A.7)

¼
ð
ðxt � xbtÞðŷt�ŷbtÞT pðxt, ŷtjYt�1Þdxtdŷt (A.8)

¼
ð
R

n
ðxt � xbtÞ½

ð
R

d
ðŷt�ŷbtÞT pðŷtjxtÞdŷt�pðxtjYT�1Þdxt

(A.9)

¼
ð
R

n
ðxt � xbtÞðHxt�HxbtÞTpðxtjYt�1Þdxt (A.10)

¼
ð
R

n
ðxt � xb

tÞðxt�xbtÞTHTpðxtjYt�1Þdxt (A.11)

¼ Pb
t H

T : (A.12)

B. Qquadrature error

B.1. Scalar quadrature error

The quadrature error in evaluating the integrals (2.18)
and (2.19) comes from the low-order polynomial
approximation (3.2). Consider the estimation error of
(3.6) given by

emean ¼
ð
R

�
f

ffiffiffiffi
P

p
gþ xat�1

� �
�cðgÞ

�
Nðgj0, 1Þdg (B.1)

¼
ð
R

1
6
a3g

3 þ 1
24

a4g
4 þ � � �

� �
1ffiffiffiffiffiffi
2p

p e�
1
2g

2
dg (B.2)

¼ 3
24

a4 þ � � � (B.3)
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where a3, a4 are the third and fourth derivatives,
respectively, of f. Similarly, the quadrature error for (3.9)
is given by

ecovariance ¼
ð
R

�
f

ffiffiffiffi
P

p
gþ xat�1

� �
�xat�1

�2

Nðgj0, 1Þdg

(B.4)

¼
ð
R

1
6
a3g

3 þ 1
24

a4g
4 þ � � � � 3

24
a4 þ � � �

� �� �2
1ffiffiffiffiffiffi
2p

p e�
1
2g

2
dg

(B.5)

¼ 15
36

a23 þ
105
576

a24 þ � � � : (B.6)

B.2. N-d quadrature error

The estimation error of (3.30) and (3.34) is given by

emean ¼ 1

ð2pÞn=2
ð
R

n

1
2

Xn
i 6¼j

bi, jgigj þ
1
6

Xn
i, j, k¼1

ci, j, kgigjgk

 

þ 1
24

Xn
i, j, k, ‘¼1

di, j, k, ‘gigjgkg‘ � � �Þe�1=2jgj2dg (B.7)

¼ 1
8

Xn
i¼1

di, i, i, i þ 1
24

X
i¼j, k¼‘, i6¼k

di, i, k, k þ 1
24

X
i¼k, j¼‘, i6¼j

di, j, i, j

þ 1
24

X
i¼‘, j¼k, i 6¼k

di, j, j, i þ � � �

(B.8)

and

ecovariance ¼ 1

ð2pÞn=2
ð
R

n

1
2

Xn
i 6¼j

bi, jgi þ
1
6

Xn
i, j, k¼1

ci, j, kgigjgk

 

þ � � � � 1
8

Xn
i¼1

di, i, i, i þ � � �
 !!

(B.9)

� 1
2

Xn
i 6¼j

bi, jgi þ
1
6

Xn
i, j, k¼1

ci, j, kgigjgk

 

þ � � � � 1
8

Xn
i¼1

di, i, i, i þ � � �
 !!T

e�1=2jgj2dg (B.10)

¼ 1
4

Xn
i 6¼j

bijbTij þ
15
36

Xn
i¼1

ciiicTiii þ
1
36

Xn
i 6¼j 6¼k

cijkcTijk þ � � � (B.11)

where

cijk ¼
Xn

i, j, k¼1

@3f
@xi@xj@xk

and dijk‘ ¼
Xn

i, j, k, ‘¼1

@4f
@xi@xj@xk@x‘

:

Note that the error on the mean does not depend on the
cross terms in the Jacobian.
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