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ABSTRACT

The atmosphere is often cited as an archetypal example of a chaotic system, where prediction
is limited by the model’s sensitivity to initial conditions. Experiments have indeed shown that
forecast errors, as measured in 500 hPa heights, can double in 1.5 d or less. Recent work,
however, has shown that, when errors are measured in total energy, model error is the primary
contributor to forecast inaccuracy. In this paper we attempt to reconcile these apparently
conflicting sets of results by examining the role of the chosen metric. Using a simple medium-
dimensional model for illustration, it is found that the metric has a strong effect, not just on
apparent error growth, but on the perceived causes of error. If an insufficiently global metric
is used, then it may appear that error is due to sensitivity to initial condition, when in fact it
is caused by sensitivity to error in the other variables. If the goal is to diagnose the causes of
error, a sufficiently global metric must be used. The simple model is used to predict the internal
rate of growth of the ECMWF operational model, and preliminary results compared. It is found
that both 500 hPa and total energy results are consistent with high model error and a relatively
low internal rate of growth. Experiments are suggested to further verify the results for
weather models.

1. Introduction rapid doubling time in the 500 hPa metric of 1.5 d
or less (Simmons et al., 1995), which implies that
most forecast error is a result of chaos.Error in weather forecast models arises from
On the other hand, results in the total energyboth the initial condition and the model (Bjerknes,
metric have shown that model error plays a signi-1911). Since weather models are thought to be
ficant role. In fact, the error attributable to thechaotic, and therefore sensitive to initial condition,
model accounts for the majority of forecast errorit follows that a small perturbation to the initial
out to 3 d (Orrell et al., 2001).condition may grow rapidly (Lorenz, 1963). This
Of course, it is well known that different metricshypothesis has been tested for weather models in
give different error growth (Mullen and Buizza,a number of experiments, by launching model
2001; Rabier et al., 2000); it is easier, for example,forecasts from perturbed initial conditions and
to predict the 500 hPa height than it is to predictmeasuring the doubling time of error growth.
the wind at ground level. However, the 500 hPaEarly estimates of doubling times were for 5 d or
results seem to imply that model error is relativelymore (Mintz, 1965; Smagorinsky, 1963), but more
low, so most error is due to initial condition, whilerecent results, based on the lagged forecast method
the total energy results indicate that most error isdiscussed below, have indicated a much more
due to the model. It is not possible for both of
these scenarios to be true at the same time, because
any model error in the wind and temperature* e-mail: d.orrell@ucl.ac.uk
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variables that make up the total energy metric
will affect the 500 hPa height after a period of time.
The question of whether forecast error is caused
predominately by sensitivity to initial condition
or model errors is of more than theoretical impor-
tance. The weather’s initial state can never be
perfectly known, so the model’s sensitivity to initial
condition essentially places an upper limit on the
atmosphere’s predictability, and to some extent
the potential economic benefit of weather forecasts
(Ehrendorfer, 1997). It also serves as a guide
to whether resources should be allocated to
improving the initial condition or the model.
In this paper we attempt to reconcile the
500 hPa and total energy results by examining the
role of the metric. It is shown that error growth
can appear very different when viewed in a non-
global, rather than a global, metric; and that errors
in a non-global metric can be misattributed to
initial condition when in fact they are due to the
model. We begin by examining typical patterns of
error growth in the 500 hPa and total energy
metrics. A medium-dimensional system, based on
the Lorenz ’96 system, is then constructed which
manages to simulate weather model error growth.
The likely impact of the metric on experimental
results is determined, and the model used to
predict the internal rate of growth of an opera-
tional model. The possible effects of errors trans-
ferring from small scale to large scale is discussed.
Finally, preliminary results for the operational
model are presented, and further experiments

Fig. 1. Plot of r.m.s. forecast errors and drift. Upperproposed.
panel shows GCM forecast error (+) and drift
(# symbol) in 500 hPa metric over Northern hemisphere
for 10 d in October 1999. Lower panel shows total energy

2. Patterns of error growth error and drift integrated globally over a 15 d period in
December 2000. All errors are relative to the analysis.

In nonlinear systems, errors due to initial condi- Solid and dotted lines show error and drift for the two-
level system over the large-scale x variables (upper)tion typically grow in an exponentially-on-average
and small-scale y variables ( lower), r.m.s. over 500 fore-fashion (Smith et al., 1999). If models were highly
casts, as discussed in text. The dashed lines show thesensitive to initial condition, were a good approxi-
propagated drift.

mation to the real weather, and also grew in a
reasonably exponential manner, then doubling
times could be determined simply by looking at exponential. The situation is even more pro-

nounced in the lower panel showing errors in thethe error growth relative to the analysis of the
observations. In practice, however, errors do not total energy metric, which is more global and

includes wind and temperature errors over allgrow exponentially. The upper panel of Fig. 1
shows root-mean-square 500 hPa errors model levels (Buizza and Palmer, 1995). The error

actually has negative curvature.(+ symbols) for a General Circulation Model
(GCM), in this case the ECMWF operational Orrell et al. (2001) argued that the reason for

the negative curvature is because the equationsmodel. Error growth is fairly linear, instead of
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create model errors which grow in a square-root and M(t, t) is the model linear propagator evalu-
ated along the target orbit from time t to time t.fashion. To see this, suppose the target orbit (in

this case the analysis) is s̃(t), and we write the The propagated drift can be viewed as a version
of the drift that also incorporates higher-ordermodel equations in the form
terms.
For weather models, the propagated drift is not

ds(t)

dt
=G[s(t)], (1)

easily calculated. An attempt to estimate its effect
where G is C1 and s is the state space vector. The was made in Orrell et al. (2001) by considering
forecast error is the exponential growth of the forecast errors in

the drift computation. We will see below, though,e(t)=s(t)− s̃(t), (2)
that if the action of the propagator is on average

and the tendency error (Klinker and to expand propagations, then we can usually
Sardeshmukh, 1992; Schubert and Schang, 1996), assume that
is the difference between the model tendency and

d(t)∏ddp (t)d, (9)that of the target:

so the drift is an underestimate of the propagated
Ge[s̃(t)]=G[s̃(t)]−

ds̃(t)

dt
. (3) drift, and approaches the propagated value for

short times.
The time dependence of the forecast error is Because the linear propagator increases expo-

then nentially, the propagated drift includes higher-
order terms, which tend to blow up at large times.de(t)

dt
=
ds(t)

dt
−
ds̃(t)

dt
The drift, by contrast, is numerically stable, and
easy to calculate. It is therefore a useful measure
of model error, which will be zero if the model=G[s̃(t)+e(t)]−G[s̃(t)]+Ge[s̃(t)]
agrees with the target orbit. When the drift is

#J[s̃(t)]e(t)+Ge[s̃(t)]. (4)
calculated numerically for a finite step size, the

A first-order solution to this equation is integral is performed by summing a series of short
forecast errors. For example, suppose the targete(t)#M(t, 0)e(0)+d(t) , (5)
point at time t

j
=t0+ jD is s̃(tj ), and let sj (t) forwhere M(t, 0) is the linear propagator (Strang, t�t

j
be the model trajectory initiated at the target

1986) evaluated along the target orbit from time point s̃(t
j
). The forward difference approximation

0 to t, and the drift vector is to the model tendency at this point is

d(t)= P t
0
Ge[s̃(t)] dt

s
j
(t
j+1 )− s̃(tj )
D

(10)

and to the system tendency is
= P t
0
G[s̃(t)] dt− s̃(t)+ s̃(0). (6)

s̃
j
(t
j+1 )− s̃j (tj )
D

. (11)
The drift is equal to the average tendency error
multiplied by time, while the propagator term The tendency error is the difference between these
accounts for the average effect of the gradient. two:
The approximation is valid for short times t, and
particularly for shadow orbits, where the shadow s

j
(t
j+1 )− s̃j (tj+1 )
D

. (12)
time is limited by the shadow radius.
A more exact solution to eq. (4) (Palmer, 1999; The drift at time t

K
is the numerical integral of

Vannitsem and Toth, 2002) is given by the tendency error over the target orbit, which is
a sum of short forecast errors:e(t)#M(t, 0)e(0)+dp (t) (7)

where the propagated drift vector is
d(t
k
)=L ∑K−1

j=0
[s
j
(t
j+1 )− s̃(tj+1 )]L . (13)

dp (t)= P t
0
M(t, t)Ge[s̃(t)] dt, (8)

The timestep D should be chosen sufficiently small
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that the calculation converges. If the forecast error growth may vary with physical scale, there
does not appear to be experimental evidence toerrors have little correlation, as tends to be the

case with weather models, the drift increases like suggest that it varies with time in such a drastic
fashion. Nevertheless, it is worth bearing in minda random walk (Chatfield, 1989), which lends the

error curve a square-root shape. Figure 1 shows that internal error growth will not be perfectly
exponential, and there is undoubtedly some vari-the drift measured in both 500 hPa and total

energy. It can be compared with the forecast error ation in growth rate. For example, the growth
eventually saturates after a couple of weeks whene(t), which is for a model forecast initiated on the

target orbit, so e(0)=0 in eq. (7). errors reach a certain limit.
Another possible explanation is that the errorJudging from the drift in Fig. 1, it appears that

the impact of model error is metric-dependent, is an artefact of analysis error, which is itself a
complex combination of observation error andand accounts for much of the total energy error,

but rather less of the 500 hPa error. However, model error. Again, though, this would not explain
the scaling behaviour of the drift, nor the fact thatinterpretation is complicated by the fact that

500 hPa fields, being a non-global metric, are the sum of short forecast errors in the drift
equals the total error up to 2 d.affected by errors in other variables as time pro-

gresses. For example, miscalculations of winds at Our aim here, however, is not primarily to
demonstrate the importance of model error [seesea level [or near-surface temperature, as discussed

in Viterbo et al. (1999)] may not immediately also Orrell et al. (2001) for a discussion of this
subject], but to examine the effect of the metricinfluence the 500 hPa height, but after a time the

error may propagate through the entire system. on forecast error growth, point out some of the
experimental dangers, and show that the 500 hPaTherefore the true impact of model error on

500 hPa height is not clear. and total energy results are consistent with each
other. Since experiments on weather models areIn fact, the choice of metric always has an effect,

not just on perceived error growth, but perceived expensive and sometimes difficult to interpret, we
begin by looking at a simple medium-dimensionalcauses of error growth, even for simple systems.

We will here try to quantify this effect for weather system, which is capable of simulating many prop-
erties of weather model error growth. The resultsmodels. Before proceeding further, it may first be

worth discussing an alternative explanation for are then verified against a weather model, and
further tests proposed.the negative curvature of the growth curve, which

is that it is caused, not by model error, but by a
growth rate which varies with scale. It is known
that, in weather models, small-scale errors tend to 3. The two-level system
saturate more quickly than large-scale errors
(Simmons et al., 1995; Savijarvi, 1995; Toth and The two-level system used to simulate weather

errors is a variant of the Lorenz ’96 system, whichKalnay, 1993). Suppose that the initial error
growth is very fast, but then saturates, to be was previously used to model forecast error

growth in Lorenz (1996). There are eight large-replaced by a slower growth rate, which again
saturates, and so on, so that the net effect is an scale variables x

i
and 32 coupled small-scale

variables y
i,j
, which can be viewed as atmosphericerror curve which grows with decreasing slope.

This picture might be plausible, and would pro- variables around a circle, as shown in Fig. 2. The
equations, which are given in the Appendix, simu-duce a negative curvature slope, but the fact that

the drift varies with the square root of time (rather late properties such as advection, damping, and
forcing. Model error is provided by stochasticthan simply having negative curvature) would

have to be considered a fluke. Also, if the growth forcing terms which are present in the system, but
absent in the model. In addition, the stochasticrate varied with time as described, then one would

expect the drift calculation to be sensitive to the component of analysis errors is simulated by
adding a random noise component to eachstep size used in the calculation, as demonstrated

for simple models in Orrell (2001). In fact, the 6 h observation of the system.
Because the x variables are large-scale and slow-and 24 h time steps give a similar result (i.e., the

drift calculation has converged). Finally, while varying, while the y variables are small-scale and
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ingly little effect on the drift calculation. This can
be seen in Fig. 3, which shows the forecast error
and drift calculated with a 6 h step length. If the
noise term is increased by a factor of 3, then the
drift changes a relatively small amount.
It might seem counter-intuitive that observation
errors have little effect on a chaotic model. It is
often thought that any small perturbation will
grow rapidly. However, in a dissipative system
such as this, the reality is that small perturbations

Fig. 2. The two-level system variables. The x variables
are large-scale and slow-varying, and can be compared
with 500 hPa fields. The y variables are more energetic,
and can be compared with wind and temperature fields.
The forcing of each x

i
variable depends in part on the

adjoining y
i,j
variables.

fast-varying, the former resemble variables such
as 500 hPa height, while the latter resemble more
energetic variables like wind and temperature. By
using an appropriate choice of scaling, the errors
can be brought to match their weather model
counterparts. The results are shown in Fig. 1: the
forecast errors and drift of the large-scale x (solid
line, upper panel ) agree reasonably well with the
GCM 500 hPa errors, while the small-scale y
errors ( lower panel ) match the GCM total
energy errors.
The stochastic forcing terms in the model were
chosen to give the correct drift (dotted lines in the
figure), and as a result are larger for the small-
scale y variables than for the large-scale x. They
are simply a convenient method to produce the
required square-root shape drift, and are not
meant to imply that actual forecast errors are
stochastic. The observation errors were added to

Fig. 3. Plot showing the effect of noise on calculation ofreflect the stochastic component of analysis errors.
r.m.s. forecast errors (solid lines) and drift (dotted lines)The real analysis errors are unknown: furthermore,
for the two-level system. Upper panel shows error in theestimates of their magnitude will be affected by
large-scale x variables, lower panel shows small-scale y

model error, due to use of the model in the analysis
variables, r.m.s. over 500 forecasts. When the observation

procedure. Therefore the observation error terms noise term is increased by a factor 3, the effect on either
might be of the wrong size, or the wrong sort. In forecast error or drift is small. A 6 h time step was used

to calculate the drift.general, though, the observation error has surpris-
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are at least as likely to shrink as expand over the
short term. Errors only grow exponentially over
the longer term. Therefore the drift calculation,
which is a summed series of short forecasts, is not
strongly affected. Even the total forecast error is
little changed; we return to discuss this point
below.
The propagated drift for the two-level model is
also shown in Fig. 1. As in eq. (13), it can again
be calculated as a sum of short forecast errors,
each of which is this time multiplied by a linear
propagator term:

ddp (tK )d=L ∑K−1
j=0
M(t
K
, t
j+1 )[sj (tj+1 )− s̃(tj+1 )]L .

(14)

The effect of the linear propagator M(t
K
, t
j+1
) in

the integral will be to rotate each short error term,
and (in most cases) stretch it a small amount.
Since the direction of the model error is assumed
to be random, the rotation has little effect on the
total magnitude of the sum; but the stretching will

Fig. 4. Figure comparing the model errors for the two-mean that the drift underestimates the true magni-
level system y1,1 variable (top) with the average 230 hPatude of the propagated drift, as stated in eq. (9).
temperature over Europe over a 6 d period from

In the y variables, the propagated drift is a
15 October 1999 (bottom) in K. A model trajectory is

slightly better estimate of the forecast error than initiated every 12 h; the resulting errors are indicated by
the drift for times up to 4 d. However, it rapidly the dashed lines.
blows up for larger times due to the presence of
the higher-order terms (this could perhaps be
corrected by accounting for saturation effects). It ( lower panel ). The upper panel can be compared

with any 500 hPa GCM ensemble. The totalis interesting to note, though, that the propagated
drift does a much better job of predicting the x energy ensemble is similar, but has a relatively

smaller spread due to the larger model error (aserrors. It appears that, for the two-level model,
the proportion of x error not due to drift in the x for weather models, the spread will also depend

to an extent on the initial perturbations).terms can be understood as model error rotating
in from the y variables through the action of the
linear propagator. In other words, it is primarily
a result of model error rather than chaos. 4. Calculating doubling times
Although the two-level parameters were chosen
to give realistic error growth, the equations also To assess the internal doubling times of error

growth due to a small change in initial condition,simulate a number of properties of GCM behavi-
our. For example, Fig. 4 compares errors for the one must compare not the model trajectory with

the true weather, but instead a model trajectorytwo-level system y1,1 variable (top) with the aver-
age 230 hPa temperature over Europe for a 6 d with another from a perturbed initial condition.

A question is how to choose the perturbation inperiod (bottom). A model trajectory is initiated
each 24 h; the resulting errors are indicated by the a physically realistic manner. Suppose for example

that errors are measured in 500 hPa heights: howdashed lines. The plots have a similar nature in
terms of their variability and relative error magni- should the other variables be perturbed? One

approach is the Monte-Carlo technique, wheretude. Figure 5 shows ensemble errors in the large-
scale x variables (upper panel ) and small-scale y random perturbations, with a magnitude con-
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advantage of this lagged forecast method is that
the initial perturbation has a degree of physical
relevance: it may not approximate the analysis
error, but it does reflect the forecast error after
the lag time, and therefore is relevant to the errors
experienced as the forecast progresses with time.
Figure 6 shows the lagged forecast technique
for the two-level model. Two forecasts are run,

Fig. 5. Plot showing the two-level model ensemble
behavior. Upper panel shows an ensemble of large-scale
x variables, which can be compared with any 500 hPa
GCM ensemble. Lower panel shows a similar ensemble
in the small-scale y variables. Note the smaller spread of
the y ensemble. The ensembles contain 500 points, per-
turbed in random directions with magnitude 2 m in x
and 1 m s−1 in y.

sistent with the observation errors, are added
to the initial condition. A potential disadvantage

Fig. 6. Plot of r.m.s. forecast errors, normal and lagged.
to the Monte-Carlo approach is that the exact Upper panel shows GCM forecast error (+) in the
characteristics of the analysis error can never 500 hPa metric, lower panel shows total energy. Solid

line shows errors for the two-level system over the large-be known.
scale x variables (upper) and small-scale y variablesAnother widely adopted approach is to let the
( lower), r.m.s. over 500 forecasts. Also shown are theperturbed initial condition be the one-day forecast
difference between consecutive model forecasts with a

generated a day earlier (Lorenz, 1982; Dalcher
1 d lag, which are used to measure sensitivity to initial

and Kalnay, 1987). The difference between this condition. The two-level results are shown by dotted
perturbed initial condition and the unperturbed lines; the GCM results are indicated in the lower panel

by (#).control is then just the one-day forecast error. An
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initiated a day apart. The difference between the
two is the lagged forecast error. This process is
repeated over 500 initial conditions. The root-
mean-square errors are shown by the dotted lines
starting at time 1 d. When applied to the large-
scale x variables of the two-level model (upper
panel ), it appears that errors double in slightly
less than 2 d. When applied to the small-scale y
variables ( lower panel ), however, the growth rate
is much slower, and the error takes more than 3 d
to double. There is clearly a metric-dependent
effect.
The problem is that, in a non-global metric, the
concept of a doubling time is not well defined. If
the metric only measures errors in certain vari-
ables, then the apparent growth rate will depend
on errors in the other, unseen variables. For
example, from Fig. 6 the x variables appear to
grow in a more exponential fashion than the y
variables, so it could seem that the model is more
sensitive to perturbations in the former than the
latter. In fact, the oppposite is true. This is demon-
strated in Fig. 7, which shows the result of a
Monte-Carlo experiment when applied to the two-
level system. The upper panel shows error growth
in x when perturbations are made to all variables
(+ symbol), and to x variables only (dotted line).
Similarly the lower panel shows error growth in
y when perturbations are made to all variables,
and to y variables only. Perturbations in x were
chosen for convenience to be consistent with the
24 h forecast errors, while perturbations in y were
chosen to be consistent with the 6 h forecast error. Fig. 7. Plot of internal error growth for the two-level
Also shown for comparison are the lagged model, as measured by a Monte-Carlo experiment.
forecasts, rebased so they begin at t=0. Upper panel shows r.m.s. errors over 500 runs for the x

variables, lower panel shows the y variables. Initial per-In the upper panel, when perturbations are
turbation in x was equal to the 24 h forecast error, themade only to x variables, the error growth is
perturbation in y was equal to the 6 h error. Shown areessentially flat. In other words, the model is insen-
the x errors where x variables alone, or both x and y,

sitive to changes in x. When perturbations are
are perturbed; and the y errors where y variables alone,

made to the y variables, the apparent growth rate or both x and y, are perturbed. Also shown are the errors
in x increases. The lagged forecast, however, gives from lagged forecasts. The results vary depending on

method for the x error growth, with the lagged forecastthe fastest growth rate. The reason is that, in the
giving the fastest growth. The three methods give similarlagged forecast experiment, the initial perturbation
results when errors are measured in the y variables.to the y variables is determined by the 1-d error.

Because the 1-d error is large in those variables
(due to model error), but relatively small in the x amount of error into the unseen variables, and

create a rapid but apparently plausible rate ofvariables, the initial perturbation appears smaller
than it would in a more global metric, and the growth.

This variability of growth rate may explain whyresulting error growth faster. In fact, if model
error is significant, the lagged forecast technique estimates of 500 hPa doubling times depend on

the method. For example, some Monte-Carlo testsis almost unique in its ability to inject a large
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in 500 hPa showed no systematic growth at all but simply the growth of the 1-d error. However,
this is no more true of the GCM than it is of(Leith, 1964). The apparent growth rate will be a

function of which perturbations are made to the the two-level model. In a high-dimension system,
error due to initial condition is expected to beunseen variables.

So what is the actual internal doubling time of orthogonal to error due to the model, so that
only a portion contributes to the total error.the two-level model, and what is a realistic value

for weather model doubling times? For a repres- Furthermore, saturation effects mean that the
contributions from different sources are not addit-entative picture of error growth, the metric must

be reasonably global, and it must contain those ive even in an orthogonal sense. In general, the
convolution of model error and initial conditionvariables which introduce the largest errors into

the system. This latter is especially relevant if error is complex, and it is difficult to infer the
contribution of each from the forecast errorcertain variables experience large model errors. In

the case of the two-level system, the small-scale y curve alone.
While the lagged experiment is identical, apartvariables are responsible for most of the error,

due to the large model error component. The from metric, to that used for the 500 hPa lagged
forecast experiments, it should still only be con-lagged forecast in these variables gave a doubling

time of slightly over 3 d. As shown in the lower sidered a preliminary result. We discuss in the
conclusions further tests that can be carried out.panel of Fig. 7, the Monte-Carlo approach gives

the same result, regardless of whether perturba-
tions are made to the y variables only, or both x
and y. Because the lagged forecast and Monte- 5. Other systems
Carlo techniques give the same answer, the doub-
ling time represents a robust measure of the The two-level system has a special structure

that combines large-scale x parameters with smallmodel’s internal rate of growth.
It is now clear that the reason why the forecast scale y parameters, which is useful because it aids

comparison with the 500 hPa and total energyerror in Fig. 3 was unaffected by noise in the
observations of the target orbit is that, with such metrics. However, it leads to questions about the

transfer of error from small-scale to large-scale,a slow doubling time, error growth is dominated
by model error. The noise term in the y observa- which as mentioned in Section 2 is known to

occur with weather models. Is the difference thattions has standard deviation 0.5 units. Such an
error in the initial condition grows by about a we see between x and y forecast error growth due

to a similar effect?factor 25/3 to 1.6 units after 5 d. The total error,
meanwhile, is 12.8 units. Assuming that the initial In fact, the difference between x and y error

growth is due primarily to the disparity in theircondition term is orthogonal to the total error (a
safe assumption in a high-dimension space), then stochastic model error terms. This can be seen by

looking at simpler systems. For example, the one-a rough idea of the likely combined error is given
by the orthogonal sum √(1.62+12.82 )=12.9, a level system is similar to the two-level system but

has only x variables. The equations, which arenegligible difference of 0.7%.
Since the two-level model agrees in other aspects given in the Appendix, are similar to the large-

scale equations, with the difference that the forcingof error growth with GCMs, it seems reasonable
to expect that they would have a similar internal F=10 is a constant function of time. The model

is the same as the system, but the forcing term forrate of growth. Figure 6 shows the result of a total
energy lagged forecast experiment performed at variables x2 through x8 is F=12, an error of 20%,

while x1 has the same forcing as the system.ECMWF using the operational model (circle sym-
bols). Apart from the fact that the two-level model Therefore x1 is now the low-error variable, but

there is no difference in scale between it and thesaturates earlier, the growth curves are quite sim-
ilar, and the weather model has a doubling time other variables.

The model’s tendency error is equal to theof about 3 d.
Viewed naively, the lagged forecast in Fig. 6 constant forcing error. When measured over all

variables seven of which have forcing error 2, thecould be interpreted as indicating that most of the
GCM forecast error is a result, not of model error, magnitude of the tendency error is equal to 2�7.
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If measured over the first variable x1 only, the (constant) model error term, and a specifies the
internal growth rate due to initial condition error.forcing error for that variable is zero, so the

tendency error is zero. The drift, which is the The dashed line shows this fit with S=0.0204 and
a doubling time of 0.082 time units. One wouldintegral of the tendency error over the target orbit,

will then be equal to 2�7t over all variables (i.e., therefore conclude from this fit that model error
was small, and the doubling time was fast. Thislinear), but zero over x1 . The effect of the drift

can be seen in the forecast errors in the left panels conclusion would be backed up by the x1 lagged
forecast, made with a lag of 0.1 time units, whichof Fig. 8. The x1 error (solid line, top left panel )

has an initial slope of zero, because tendency error is shown by the dotted line.
In the right panels, the lagged forecasts areand drift in that variable is zero. The error over

all variables ( lower left) grows linearly for small compared with error growth from a Monte-Carlo
experiment where perturbations are made to allt, with a slope equal to 2�7 as expected.

Since the forecast error in x1 grows in a quasi- variables. The actual doubling time over all vari-
ables, using either the lagged technique or theexponential fashion, it is possible to try to fit it

with one of the standard error growth formulas Monte-Carlo method, is about 0.27. The reason
for the difference in estimated doubling time isfrom the literature. An example from Leith (1978)

is again that the x1 error is due not to sensitivity to
initial condition, but to error in other variables;
one can think of the model error as advecting in

dE(t)

dt
=aE(t)+S (15)

from the other x
i
(or drift rotating in due to the

action of the linear propagator).where E(t) denotes the error variance, S is a
Such curve fits should only be applied with
extreme caution, since the convolution of model
error with initial conditional error will be complex.
[Note also that eq. (15) is not perfectly compatible
with eq. (7).] For the case considered here, use of
the formula with a non-global metric led to a
factor 3.3 error in estimated doubling time.
This example shows that the difference in error
growth between high-error and low-error para-
meters is not a unique property of the two-level
system, or due to the disparity in scale between
variables. Rather, it is a fairly generic property of
model/system pairs where model error is distrib-
uted unevenly among the variables. It is easy to
come up with versions of even simpler systems,
such as Lorenz ’63, which behave similarly.

6. Conclusions and future work

In this paper we have aimed to show that
experimental results in 500 hPa and total energy,Fig. 8. Plot of error growth for the one-level model. Top
which appear to have conflicting error patterns,panels show errors in the low-error variable x1 only,

lower panels show errors over all variables. Left panels are in fact consistent with one another. A medium-
show r.m.s. error growth and a lagged forecast with a dimensional system was constructed which man-
lag time of 0.1. The x1 error (top left) is compared with aged to simulate both types of error, with the
a fit using eq. (15) with doubling time 0.082. The right-

result depending only on the chosen metric. The
hand panels compare the lagged forecasts (rebased to

internal doubling time of the model was aboutstart at time zero) with Monte-Carlo experiments where
3 d. It was shown that error growth can only beerrors are made to all variables. The actual internal

doubling time is 0.27 time units. accurately diagnosed if the metric is sufficiently
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global, and in particular contains the high-error though, to a doubling time of 1.5 d, it represents
an order of magnitude difference in the amountvariables. This requirement is common to all

dynamical systems, from the Lorenz ’63 system of error attributable to initial condition over a
10-d forecast. This finding is also consistent withup to full weather models. Experiments with the

simpler one-level system showed that the difference other localised studies where sensitivity to initial
condition was seen to be small (Shukla, 1998).in error growth was due to the uneven distribution

of model error, rather than the disparity in scale Because an accurate estimate of internal doub-
ling times is useful for allocating resources andof the variables.

In weather models, the total energy metric is estimating the potential economic worth of
forecasts, more experiments should be carried outbetter suited for the purposes of error diagnosis

than the 500 hPa metric. By integrating wind and using a global metric such as total energy. The
lagged forecast test can be performed with atemperature errors over the entire space, it offers

the most global, complete and physically relevant variety of lag times to determine whether the
internal growth rate changes with time. Monte-description of the atmospheric state (after all, you

cannot feel the 500 hPa height on your face, Carlo experiments provide an independent test of
growth rates, and can also be used to determineespecially if you are standing at sea level ). Most

importantly, these variables are also responsible the dependence of growth rate on the size of the
initial perturbation. Together, lagged forecastsfor the majority of the error. The 500 hPa height,

by contrast, is too strongly affected by unseen and Monte-Carlo experiments should give a
robust and complete picture of a weather model’serror in other variables to be a reliable measure

of error growth. For example, it tends to reflect sensitivity to initial condition.
As for the weather itself: by searching a 5-yrthe average temperature below the layer, so is

intrinsically smoother and less variable than the climate record for reasonably near analogs, and
extrapolating to small errors, Lorenz (1969) estim-actual temperature measurements, and tends to

mask the causes of error. Apparent rapid error ated an error doubling time in the region of 2.5 d.
However, the analogs were not very close. Van dengrowth indicates sensitivity to errors in the unseen

variables rather than sensitivity to initial condi- Dool (1994) calculated that it would take an
observational record of order 1030 yr before thetion. In particular, experiments with 500 hPa

lagged forecasts, on which many current estimates atmospheric state repeated itself to within the
current observational error, so we will have toof doubling time are based, give misleadingly

fast results. wait a long time for a more accurate figure. In the
meantime, if the models are anything to go by, itThis is not to say that the 500 hPa field is not

a useful metric for forecasting. A forecaster may may be the case that the atmosphere is more
predictable, and the potential economic worth ofwell prefer to use the 500 hPa height, which by its

nature will smooth out some of the short-term forecasting higher, than some of the more
pessimistic estimates have indicated.errors in, for example, temperature. However, the

aims on the one hand of making a forecast, and
on the other of diagnosing the cause of forecast
error in a numerical model, are completely differ- 7. Acknowledgements
ent. For the former, a model output which experi-
ences low error in the near term is obviously Thanks to M. Leutbecher for performing the

total energy experiments, and to J. Barkmeijer forpreferable; but one cannot determine the cause of
forecast error by ignoring the contribution of high- helping with other calculations. Thanks also to

L. Smith for useful discussions.error variables as time unfolds.
Preliminary tests using a lagged forecast in total
energy indicate a doubling time of about 3 d, as
for the two-level model. This result is not particu- 8. Appendix: the systems
larly unusual: historically it is in the intermediate
range of doubling time estimates, and if results The two-level system is a scaled version of the

Lorenz ’96 system, which was used in Lorenzbased on 500 hPa lagged forecasts are discounted
it is even on the faster end of the scale. Compared, (1996) to simulate error growth, with stochastic
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terms added. The equations are ively. These terms are meant to simulate the
random component of the analysis errors.
The model has the same equations, but with no

dx
i
dt
=x
i−1 (xi+1−xi−2 )−xi+F− ∑

4

j=1
y
i,j+Nx

stochastic forcing, soN
x
=N
y
=0, and no observa-

(A1)
tion error so O

x
=O
y
=0. The difference between

the model and the system is therefore the stoch-dy
i,j
dt
=c2y

i,j+1 (yi,j−1−yi,j+2 )−cyi,j+xi+cNy astic forcing terms, and the observation error.
Equations are solved using a Runge–Kutta scheme(A2)
with time step of 1 h. A long transient of 100 000 h

for i=1 to 8, and j=1 to 4. The indices are cyclic,
is run before making calculations.

so for example x
i+8
=x
i
and y

i,j+4
=y
i+1,j
, and

The one-level system has only x variables. The
the variables can be viewed as atmospheric quant-

equations are
ities around a circle. The parameter c is set to 10.
The x variables are scaled by a factor 900 to put dx

i
dt
=x
i−1 (xi+1−xi−2 )−xi+Fi (A3)in units of m for comparison with GCM 500 hPa

results, while the y variables are scaled by a factor
5.3 to put in units of m s−1 for comparison with for i=1 to 8. The indices are again cyclic, so

x
i+8
=x
i
. In the system, F

i
=10 for all i. In thetotal energy. Time is scaled by a factor 100 to put

in days. F=14 is a constant forcing term, while model, F1=10, so there is no forcing error in the
first variable, but F

i
=12 for i>1which introducesN

x
and N

y
are random variables with variance 2.5

and 7.5 respectively, updated every hour. In addi- model error. The variables are left unscaled, and
there is no stochastic observation error. Equationstion, the x and y variables are observed each hour

with a stochastic error O
x
and O

y
, which have are solved using a Runge–Kutta scheme with time

step of 0.005.standard deviation 1.0 m and 0.5 m s−1, respect-
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